
Lecture 19: Transactions: Reliability from Unreliable
Component s
19.0 Main Points

Relations
Transaction concept: atomicity, durability, serializability
Write ahead, write behind logging
Log structured file systems
RAIDs and availability

19.1 Motivation
File systems have lots of data structures
 Bitmap of free blocks
 Directory
 File header
 Indirect blocks
 Data blocks

For performance, all must be cached! OK for reads, but what
about writes?

19.1.1 Modified data kept in memory can be lost

Options for writing data:

Write-through : write change immediately to disk
 Problem: slow! Have to wait for write to complete before
you go on.

Write-back : delay writing modified data back to disk (for
example, until replaced). Problem: can lose data on a crash!

19.1.2 Multiple updates
If multiple updates needed to perform some operation, crash
can occur between them!

For example, to move a file between directories:
delete file from old directory
add file to new directory

Or create new file:
 allocate space on disk for header, data
 write new header to disk
 add the new file to directory

What if there's a crash in the middle? Even with write-through
can have problems.

19.2 UNIX approach (ad hoc)
Meta-data : needed to keep file system logically consistent
(directories, bitmap, file headers, indirect blocks, etc.)
Data : user bytes

19.2.1 Meta-data consistency
For meta-data, UNIX uses synchronous write-through. If
multiple updates needed, does them in specific order, so that if
crash, runs special program "fsck" that scans entire disk for
internal consistency to check for "in progress" operations, and
then fixes up anything in progress:

For example:
file created, but not yet put in any directory => delete file
blocks allocated, but not in bitmap => update bitmap

19.2.2 User data consistency
What about user data? Write back, forced to disk every 30
seconds (or user can call "sync" to force to disk immediately).

No guarantee blocks are written to disk in any order.

However, sometimes meta-data consistency is good enough.

For example, how should vi or emacs save changes to a
file to disk?

delete old file
write new file

How vi used to work!

Now vi does the following:
write new version in temp file
move old version to other temp file
move new version into real file
unlink old version

If crash, look at temp area; if any files out there, send e-mail to
user that there might be a problem.

But what if user wants to have multiple file operations occur as
a unit? Example: Bank transfer -- ATM gives you $100, debits
it from your account.

19.3 Transaction Concept

Transactions : group actions together so that they are:

Atomic : either happens or it doesn't (no partial operations)

Serializable : transactions appear to happen one after the
o the r

Durable : once it happens, stays happened

Critical sections are atomic and serializable, not durable.

Karl
atomic: from point of view of client!

Two more terms:
 Commit -- when transaction is done (durable)
 Rollback -- if failure during a transaction (means it didn't
happen at all)

Metaphor:
 Do a set of operations tentatively. If get to commit, ok.
 If not, roll back the operations as if the transaction never
happened.

19.4 Transaction Implementation (one thread)
Key idea: fix problem of how you make multiple updates to
disk atomically, by turning multiple updates into a single disk
write!

Illustrate with simple money transfer, from account x to
account y.

Begin transaction

 x = x + 1;

 y = y - 1;

Commit

Keep "write-ahead" (or "redo") log on disk of all changes in
transaction. A log is like a journal -- never erased, record of
everything you've done. Once both changes are on log,
transaction is committed. Then can "write behind" changes to
disk -- if crash after commit, replay log to make sure updates
get to disk.

Memory cache

X: 0

Y: 2

X: 0

Y: 2

Disk

Write-ahead log (on disk or
tape or non-volatile RAM)

X=1 Y = 1 commit

Sequence of steps to execute transaction:

 1. write new value of x to log

 2. write new value of y to log

 3. write commit

 4. write x to disk

 5. write y to disk

 6. reclaim space on log

What if we crash after 1? No commit, nothing on disk, so just
ignore changes.

What if we crash after 2? Ditto.

What if we crash after 3 before 4 or 5? Commit written to log,
so replay those changes back to disk.

What if we crash while we are writing "commit?" As with
concurrency, need some primitive atomic operation, or else
can't build anything. Writing a single sector on disk (with a
CRC) is atomic!

Karl
cyclic redundancy check: used to verify integrity of information. Also as hash function. Sensitive to order of bytes.

Can we write x back to disk before commit? Yes: keep an
"undo log": save old value along with new value. If transaction
doesn't commit, "undo" change!

19.5 Two phase locking
What if two threads run same transaction at the same time?

Concurrency => use locks

Begin transaction

 Lock x, y

 x = x + 1

 y = y - 1

 Unlock x, y

 Commit

What if A grabs locks, modifies x, y, writes to the log, unlocks,
and right before commiting, then B comes in, grabs lock, writes
x, y, unlocks, does commit. Then before A commits, crash!

Problem is: B commits values for x, y, that depend on A
commiting.

Solution: two-phase locking. First phase, only allowed to
acquire locks. All unlocks happen at commit.

Thus, B can't see any of A's changes, until A commits and
releases locks. This provides serializability!

19.6 Transactions in file systems

19.6.1 Write-ahead logging
Almost all file systems built since 1985 use write ahead logging
(Windows NT, Solaris, OSF, etc). Write all changes in a
transaction to log (update directory, allocate block, etc.), before

Karl
see Silberschatz/Galvin for two phase protocol

sending any changes to the disk. "Create file", "delete file",
"move file" are transactions.

This eliminates any need for file system check (fsck) after
crash!

If crash, read log:
 If log isn't complete, no change!
 If log is completely written, apply all changes to disk
 If log is zero, then all updates have gotten to disk.

Advantage:
 + reliability
 + asynchronous write-behind
 - all data written twice

19.6.2 Log-structured file systems
Log-structured file systems: idea is to write data only once, by
having the log be the only copy of the data.
As you modify disk blocks, just store them out to disk in the
log. Put everything: data blocks, file header, etc. on log.

If need to get data from disk, get it from the log -- keep map
in memory to tell you where everything is (for crash recovery,
have to put map on log too).

Advantages: all writes are sequential! No seeks, except for
reads. But
 RAM is getting cheaper => Caches getting bigger.
 In extreme case (infinite size caches) -> disk I/O only for

writes (only for durability of data)

 Thus, optimize for writes! Logging does that.

Eventually, wrap around. Run out of room. What happens?
Have to garbage collect. Majority of files deleted in the first 5
minutes. So go back over log, and compress pieces that are no
longer in use. If disk fills up, need to clean more frequently,
so keep disk under-utilized.

Pros & cons:
 + write performance
 + reads, if file written sequentially from beginning to end
 - cleaning cost (off-line?)
 - bad if files are updated in place

19.7 RAIDs and availability
Suppose you need to store more data than fits on a single disk
(eg, large databases or file servers). How should you arrange
data across disks?

One option: treat disks as huge pool of disk blocks, so that
disk1 has blocks 1..N
disk2 has blocks N+1..2N
etc.

Another option: RAID = Redundant Arrays of Inexpensive Disks
(now a $5B business)

Idea is to stripe data across disks. With k disks:
disk1 has blocks 1, k+1, 2k+1, ...
disk2 has blocks 2, k+2, 2k+2, ...
etc.

Benefits:
1. Load gets automatically balanced among disks.
2. Can transfer large file at aggregate bandwidth of all disks.

Problem: what if one disk fails?
Availability: never lose access to data. System should continue
to work even if some components are not working.

Karl
Redundant array of independent disks = RAID

In RAID, dedicate one disk to hold bitwise parity for other
disks in stripe. With k+1 disks:

disk1 has blocks 1, k+1, 2k+1, ...
disk2 has blocks 2, k+2, 2k+2, ...
...
parity disk has blocks parity(1..k), parity(k+1..2k), ...

If lose any disk, can recover data from other disks plus parity:
Ex: disk1 holds 1001
 disk2 holds 0101
 disk3 holds 1000
 parity disk: 0100

What if we lose disk2? Its contents are parity of remainder!
Thus, can lose any disk, and data is still available.

However, how do you update a disk block on a RAID? Have to
update both data and parity. If get crash between when data
is updated and parity is updated, will reconstruct incorrect
data!

Solution: write ahead logging or log structure! Update must be
atomic.

