
Lecture 18: Naming and Directories

18.1 Main Points
How do users name files? What is a name?
Lookup: given a name, how do you translate it into a file

heade r?

18.2 File Header Storage
Where is file header stored on disk? In (early) UNIX, special
array in outermost cylinders.

file header
array

data, indirect
blocks, doubly
indirect ...

UNIX refers to file by index into array -- tells it where to find
the file header

UNIX-isms:
 "i-node" -- file header
 "i-number" -- index into the array

UNIX file header organization, seems strange:
1. header not anywhere near the data blocks. To read a small
file, seek to get header, seek back to data.

2. Fixed size, set when disk is formatted. Means maximum
number of files that can be created.

Why not put headers near data?
 + reliability: whatever happens to the disk, you can find all of
 the files

 + UNIX BSD 4.2 puts portion of the file header array on each
cylinder. For small directories, can fit all data, file headers, etc.
in same cylinder => no seeks!

 + file headers are much smaller than a whole block (a few
hundred bytes), so multiple file headers fetched from disk at
same time

Question: do you ever look at a file header without reading the
file? If not, put the file header as the first block of the file!

Turns out that fetching the file header is something like 4
times more common in UNIX than reading the file (ls, make).

18.3 Naming

18.3.1 Options
1. use index (ask users specify i-node number). Easier for
system, not as easy for users.

2. text name

3. icon

With icons or text, still have to map name -> index

18.3.2 Directories
Directory maps name -> file index (where to find file header)

Directory just a table of file name, file index pairs.

General idea: relation . Table associating things together.

Principle behind relational databases (invented here by
Stonebraker). Relations are useful because of associative match
-- look up based on content

For example: (employee name, salary, address, supervisor).
(flight, passenger, seat assignment, agent)
Directories just a special kind of a relation, connecting file name
to index (ditto with password file, caches, etc.)

Each directory is stored as a file, containing a list of "name",
index pairs.

But, only OS permitted to modify directory

Any program can read the directory file. This is how "ls"
works.

Problem: means hard to change file directory structure!

18.3.3 Directory Hierarchy
Directories organized into hierarchical structure

 /joe/abcde/file1
 ^ root
 ^ subdir joe
 ^subdir abcde

Top-level directory has pair: <joe, #>. joe has pair <abcde, #>,
etc.

How many disk I/O's to access first byte of file1?

1. Read in file header for root (always at fixed spot on disk).

2. Read in first data block for root.

3. Read in file header for joe

4. Read in first data block for joe.

5. Read in file header for abcde

6. Read in first data block for abcde.

7. Read in file header for file1

8. Read in first data block for file1

Current working directory: short cut for both user and
system. Each address space stores file index for current
directory. Allows user to specify relative filename, instead of
absolute path (if no "/").

Thus, to read first byte of file, just last 4 steps above.

How can this possibly be efficient? Caching!

