Operating Systems and Systems
Programming
Professor: Tom Anderson

Lecture 1. Introduction

1.0 Main points:
Why study operating systems?
What is an operating system?
Principles of operating system design
History of operating systems

1.1 Why study operating systems?

Abstraction: OS is a wizard, providing illusion of infinite CPUs,
infinite memory, single worldwide computing, etc.

System Design: tradeoffs between performance and
simplicity, putting functionality in hardware vs. software, etc.

How computers work: "look under the hood" of computer
systems

Capstone: combines things from many other areas of
computer science -- languages, hardware, data structures,
algorithms

1.2 What is an operating system?

Definition: An operating system implements a virtual machine
that is (hopefully) easier to program than the raw hardware:

Application

Virtual Machine Interface
Operating System

1.2.1

1.2.2

Physical Machine Interface
Hardware

In some sense, OS is just a software engineering problem: how
do you convert what the hardware gives you into something
that the application programmers want?

For any OS area (file systems, virtual memory, networking, CPU
scheduling), begin by asking two questions:
what’s the hardware interface? (the physical reality)
what's the application interface? (the nicer abstraction)

Of course, should also ask why the interfaces look the way they
do, and whether it might be better to push more
responsibilities into applications or into hardware, or vice
versa.

Operating systems have two general functions:

1. Coordinator: allow multiple applications/users to work
together in efficient and fair ways (examples: concurrency,
memory protection, file systems, networking)

2. Standard services: provide standard facilities that
everyone needs (examples: standard libraries, windowing
systems)

What if you didn’t have an operating system?
source code -> compiler -> object code -> hardware
How do you get object code onto the hardware? How do you

print out the answer? Before OS's, used to have to toggle in
program in binary, and then read out answers from LED’s!

1.2.3 Simple OS: What if only one application at a time?

Examples. very early computers, early PC's, embedded
controllers (elevators, cars, Nintendos, ...)

Then OS is just a library of standard services. Examples:
standard device drivers, interrupt handlers, math libraries, etc.

1.2.3 More complex OS: what if share machine among
multiple applications?

Then OS must manage interactions between different
applications and different users, for all hardware resources:
CPU, physical memory, 1/O devices like disks and printers,
interrupts, etc.

Of course, the OS can still provide libraries of standard services.
1.2.4 Example of OS coordination: protection

Problem: How do different applications run on the same
machine at the same time, without stomping on each other?

Goal of protection:
Keep user programs from crashing OS
Keep user programs from crashing each other

1.2.4.1 Hardware support for protection
Hardware provides two things to help isolate a program’s
effects to within just that program:
address translation
dual mode operation

1.2.4.2 Address translation

Address space: literally, all the addresses a program can
touch. All the state that a program can affect or be affected by.

Restrict what a program can do by restricting what it can
touch!

Hardware translates every memory reference from virtual
addresses to phyiscal addresses; software sets up and manages
the mapping in the translation box.

. Physical
Virtua
Address Physi cal

Address Trandation
/ Box \ Memory

(MMU)

Dataread or write
(untranslated)

Address Translation in Modern Architectures
Two views of memory:
view from the CPU -- what program sees, virtual memory

view from memory -- physical memory

Translation box converts between the two views.

code data? code
stackl
data data
- codel
eap h
heapl P
prog 1 stack2 prog2
address heap2 addre$
space Space
OS code
OS data
OS heap
& stacks
physical
memory

Example of Address Translation

Translation helps implement protection because no way for
program to even talk about other program's addresses; no way
for them to touch operating system code or data.

Translation implemented by some form of table lookup (we'll
discuss various options for implementing the translation box
later). Separate table for each user address space.

1.2.4.3 Dual mode operation
Can application modify its own translation tables? If it could,

could get access to all of physical memory. Has to be restricted
somehow.

Dual-mode operation

when in the OS, can do anything (kernel-mode)

when in a user program, restricted to only touching that
program's memory (user-mode)

Hardware requires CPU to be in kernel-mode to modify

address translation tables.

Want to isolate each address space so its behavior can't do any
harm, except to itself.

Application
User mode

Standard library

Portable OS layer
Kernel mode

Machine-dependent CSlayer

Hardware
Typical UNIX Operating System Structure

Remember: don’t need boundary between kernel and
application if system is dedicated to a single application.

Also, want OS to be portable, so put in a layer that abstracts out
differences between different hardware architectures.

Project in this course, Nachos, is to build the portable OS kernel.
We've built a simulation environment to surround the portable
OS -- to simulate the hardware and machine-dependent layer
(interrupts, etc.), and the execution of user programs running
on top.

But to the code you write, simulator is exactly the same as if
you were running on real hardware, and in fact, someone in
West Virginia has ported Nachos to run native on an Xx86.

So why use a simulator instead of real hardware? To make
debugging easier! In fact, most commercial OS's are now run
first on a simulator, before being put on the real hardware.

1.3 Operating Systems Principles
Throughout the course, you'll see four common themes
recurring over and over:

OS as illusionist -- make hardware limitations go away. OS
provides illusion of dedicated machine with infinite memory

and infinite processors.

OS as government -- protect users from each other and
allocate resources efficiently and fairly.

OS as complex system -- keeping things simple is key to
getting it to work.

OS as history teacher -- learn from past to predict the
future.

Meta-principle: OS design tradeoffs change as
technology changes.

1.4 History of Operating Systems. Change!

Typical

academic computer

in 1981 and 1996

1981 1996 factor
SPECint (MIPS) 1 400 400
$/SPECint $100K $50 2000
DRAM capacity 128KB 64MB 500
disk capacity 10 MB 4GB 400
net bandwidth 9600 b/s 155 Mb/s 15000
address bits 16 64 4
users/mach. 10s <=1 0.1

What does this mean?
Techniques have to vary over time, adapt to changing

tradeoffs.

1.4.1 History Phase 1: hardware expensive, humans cheap

When computers cost millions of $'s, optimize for more efficient
use of the hardware!

1. User at console: one user at a time.

library.

OS as subroutine

2. Batch monitor: load program, run, print.

No protection: what if batch program had a bug and wrote over
batch monitor?

3. Data channels, interrupts: overlap of 1/0 and
computation.

DMA -- direct memory access for 1/0O devices. OS requests 1/0,
goes back to computing, gets interrupt when /O device has
finished.

4. Memory protection + relocation.

Multiprogramming: several programs run at the same time;
users share the system.

Multiprogramming benefits:
1. Small jobs not delayed by large jobs

2. More overlap between 1/0 and CPU

Multiprogramming requires memory protection to keep bugs in
one program from crashing the system or corrupting other
programs.

Bad news. OS must manage all these interactions between
programs. Each step seems logical, but at some point, fall off
cliff -- just gets too complicated.

Multics: announced in 1963 -> ran in 1969

OS 360 released with 1000 bugs.

UNIX based on Multics, but simplified so they could get it to
work!

1.4.2 History, Phase 2: hardware cheap, humans expensive
5. Interactive timesharing: Use cheap terminals to let
multiple users interact with the system at the same time.
Sacrifice CPU time to get better response time for users.

Problem: thrashing -- performance falls off a cliff as you add
users.

1.4.3 History, Phase 3: hardware very cheap, humans very

expensive
6. Personal computing - Computers are cheap, so give
everyone a computer. Initially, OS became subroutine library
again, but since then, have added back in memory protection,
multiprogramming, etc.

1.4.3 History, Phase 4: Distributed systems
Networking: allow different machines to share resources
easily.

1.5 Summary

Point of change isn't: look how stupid batch processing is.
It was right for the tradeoffs of the time -- but not anymore.

Point is: have to change with changing technology.
Situation today is much like it was in the late 60's. OS's today
are enormous, complex things:

small OS -- 100K lines

big OS -- 10M lines

100-1000 people-years

NT under development for the last 7 years, still doesn't work
very well.

Key aspect of this course -- understand OS's, so we can simplify
them!

