
1

Misuse of use cases

• Tim Korson: Object Magazine, May 98,
page 18

• Important for white-box testing:
Requirements are often expressed in the
form of use cases which are source of test
requirements

Bad example

• Large project

• Framework team asked application
developers: “send us your use cases”

• 12,386 use cases were received
– were too detailed and full of errors

– at wrong level of abstraction

2

Requirements should be
organized hierarchically

• Levels of abstraction are also needed for the
requirements: use cases need to be
organized into layers. Reasons:
– manage complexity of requirements

• top-level requirements should be expressed in no
more than 12 use cases

• a layer of use cases should have at most 5-10 times
the number of use cases of previous layer

Requirements should be
organized hierarchically

• Why layers of uses cases?
– Complete set of requirements for “testing” at

appropriate level of abstraction. Test domain,
application, architectural and detailed design
models.

3

Business requirements/
Development deliverables

Requirements Artifacts Development Artifacts

Business Requirements –first
few levels of use cases

Domain Models

Interface Specifications Application Models

Architectures

More details Detailed designs

Complete detailed
specifications

Source code

Use case layers

• Each level of use cases should be complete

• No new categories of requirements in lower
levels

• Develop use cases iteratively and
incrementally

4

Hierarchical classification and
functional decomposition

• Are different!

• Use case 1.1 is not the first step of use case
1.

• Use case 1.1 is a specific, more detailed, use
case within the category of use cases
defined by use case 1

Business requirements/ Interface
specifications

• Keep them separate.

• First express business requirements in
interface-neutral terms

• First level of requirements should not jump
directly to interface specifications,
otherwise
– harder to identify other interfaces

– designers not prompted to add extensibility

5

Example

• “deposit coin”

• Is interface binding for “accept payment”

• Could consider other interface bindings,
such as electronic cash

Design and use cases

• Do not derive designs directly from use
cases

• Use cases stop at the system interface
boundary. Use cases describe sequences
that actors follow in using the system

• Use cases never specify what steps the
system takes internally to respond to a
stimulus

6

Architecture

• A software system is a specific instantiation
of an architecture customized to satisfy a
specific set of requirements. Architecture
was chosen because of
– standard domain relationships

– other system requirements: time, space,
reliability, extendability, etc.

 and not so much because of functional reqs

Architecture instantiation

• Instantiation of an architecture to implement
a set of functional requirements is
documented by object interaction diagrams,
and not by use cases

• www.software-architects.com

