Misuse of use cases

» Tim Korson: Object Magazine, May 98,
page 18

 Important for white-box testing:
Requirements are often expressed in the
form of use cases which are source of test
requirements

Bad example

» Large project
» Framework team asked application
developers. “send us your use cases’

e 12,386 use cases were received
— were too detailed and full of errors
— at wrong level of abstraction




Requirements should be
organized hierarchically

» Levelsof abstraction are also needed for the
requirements:. use cases need to be
organized into layers. Reasons.

— manage complexity of requirements

* top-level requirements should be expressed in no
more than 12 use cases

* alayer of use cases should have at most 5-10 times
the number of use cases of previous layer

Requirements should be
organized hierarchically

» Why layers of uses cases?

— Complete set of requirements for “testing” at
appropriate level of abstraction. Test domain,
application, architectural and detailed design
models.




Business requirements/
Development deliverables

Requirements Artifacts Development Artifacts

Business Requirements —first | Domain Models
few levels of use cases

Interface Specifications Application Models

Architectures

More details Detailed designs
Complete detailed Source code
specifications

Use case layers

» Each level of use cases should be complete

» No new categories of requirementsin lower
levels

» Develop use casesiteratively and
incrementally




Hierarchical classification and
functional decomposition

e Aredifferent!

o Usecase 1l.1isnot thefirst step of use case
1.

o Usecase 1.1 isaspecific, more detailed, use
case within the category of use cases
defined by use case 1

Business requirements/ Interface
specifications
o Keep them separate.

 First express business requirementsin
interface-neutral terms

» First level of requirements should not jump
directly to interface specifications,
otherwise
— harder to identify other interfaces
— designers not prompted to add extensibility




Example

* “deposit coin”
* |sinterface binding for “accept payment”

» Could consider other interface bindings,
such as electronic cash

Design and use cases

» Do not derive designs directly from use
cases

» Use cases stop at the system interface
boundary. Use cases describe sequences
that actors follow in using the system

» Use cases never specify what steps the
system takes internally to respond to a
stimulus




Architecture

A software system is a specific instantiation
of an architecture customized to satisfy a
specific set of requirements. Architecture
was chosen because of

— standard domain relationships
— other system requirements: time, space,
reliability, extendability, etc.

and not so much because of functional regs

Architecture instantiation

* |nstantiation of an architecture to implement
a set of functional requirementsis
documented by object interaction diagrams,
and not by use cases

e Www.software-architects.com




