Current view of AP

» Use benefits of finite automata at class
graph level to specify traversals as partial
programs

» Usevisitorsto decorate traversals

» Use adjusters to organize traversals and
visitors

4/2/98 Graph Patterns/ AOOS

New forces

 Mitch’straversa automata

» Mendelzon's graph patterns, WebSQL,
WebOQL, schema-free data model

» Smaragdakis suggestions on strategies

4/2/98 Graph Patterns/ AOOS

Theory of Traversals

* Influence: SIAM J. Comput. paper by
Alberto Mendel zon and Peter Wood:
Finding Regular Simple Pathsin Graph
Databases, 24.6 pages 1235-1258, 1995
— Conference version: VLDB 1989

4/2/98 Graph Patterns/ AOOS 3

History

» Relational model: smple for users and
mathematicians. Query languages
(relational calculus and relational algebra)
not expressive enough (transitive closure of
abinary relation not expressible).

* More expressive query languages: Datalog
(Ullman) and G+ (Cruz, Mendelzon, Wood)

4/2/98 Graph Patterns/ AOOS 4

G+

based on graph traversals
— Database is a directed |abeled graph
(corresponding to an object graph in our model)
— Queries are graph patterns expressed using
regular expressions: A graph patternisa
|abeled graph:
* node |labels are constants to be matched with db
* edges are labeled with regular expressions
(corresponding to our strategies)

4/2/98 Graph Patterns/ AOOS

Example: Pattern Graph

* |sthereaway to go from Section 3.1 to
section 5.2 and then to the conclusion
without reading any node more than once?

(focus on simple paths). G = hypertext
document. Pattern Graph:

4/2/98 Graph Patterns/ AOOS

Abstract problem

« REGULAR SIMPLE PATH:

— Instance: Regular expression R and graph G.

— Question: Isthere adirected ssmple pathpin G
satisfying R, where the concatenation of edge
labels comprising p isin the language denoted
by R.

o Surprise: REGULAR SIMPLE PATH is
NP-complete

4/2/98 Graph Patterns/ AOOS

Abstract problem:

» FIXED REGULAR SIMPLE PATH (R):

— Instance: Regular expression R and graph G.

— Question: Isthere adirected ssimplepathp in G
satisfying R, where the concatenation of edge
labels comprising p isin the language denoted
by R.

» Surprise: FIXED REGULAR SIMPLE
PATH(R) isNP-complete for R = (00)*

4/2/98 Graph Patterns/ AOOS

Related problem

« PATH VIA NODE

— Instance: Directed graph G=(N,E), and nodes
X,y,minN.

— Question: Isthere adirected simple path from x
toy viam?

 PATH VIA NODE is NP-complete

4/2/98 Graph Patterns/ AOOS 9

Abstract problem

« REGULAR PATH:

— Instance: Regular expression R and graph G.

— Question: Isthere adirected pathpin G
satisfying R, where the concatenation of edge
labels comprising p isin the language denoted
by R.

« REGULARPATH isinP.

4/2/98 Graph Patterns/ AOOS 10

Proof 1

» Given graph G along with nodesx and y in
G, we can view G asan NDFA with initial
state x and final state y. Construct the
intersection graph | of G and an NDFA M
accepting L(R). Thereisapath fromx toy
satisfying R if thereisapath in | from
(x,90) to (y,sf), for SO the start state of M
and somefinal state sf in M.

4/2/98 Graph Patterns/ AOOS

11

Proof 1

« All this can be done in polynomial time by
Hunt, Rosenkrantz and Szymanski, 1976.

4/2/98 Graph Patterns/ AOOS

12

Proof 2, using Tarjan 1981

» Tarjan provides a polynomial algorithm for
constructing aregular expression R, which
represents the set of all paths between two
nodes x and y of agiven graph.

* |sthere apath between x and y satisfying R:

— construct Ry,
— determine whether intersection of L(R) and
L(R,) is nonempty using NDFAs.

4/2/98 Graph Patterns/ AOOS 13

Connections, Implications

» Toronto approach has only graph patterns
(similar to strategies) and database graphs
(smilar to object graphs). No knowledge
about structure of database graphs; i.e., no
schema = class graph. Well, they use cycle
constraints.

» Toronto paper contains useful facts to better
understand traversals and their limitations.

4/2/98 Graph Patterns/ AOOS 14

Structure-shyness in Toronto
approach
* pattern graph gives topology of navigation
» * (underscore matches any edge label)

Pattern graph

o || =]

Strategy graph

_

4/2/98 Graph Patterns/ AOOS 15

Structure-shyness in Toronto

approach
» Bypassing
Pattern graph
Strategy graph

- bypassing ->* subsidiaries,* -

4/2/98 Graph Patterns/ AOOS 16

Structure-shyness in Toronto
approach

» Toronto approach uses regular expressions
— positive and negative
— may be confusing: pattern graph positive
 Strategy graphs use constraint maps
— negative: what we want to avoid.
— leave it open how to specify maps
— could use regular expressions to specify
constraint map

4/2/98 Graph Patterns/ AOOS 17

Toronto approach

» Shows how to deal with structure-shyness
without schema = class graph.

 Proposes uniform automata-based approach to
AP also suggested byY annis Smaragdakis
— all graphs correspond to finite automata: class,
strategy, traversal and object graphs
— Algorithm 1: intersection of two automata.
— Algorithm 2: intersection of traversal graph and
object graph.

4/2/98 Graph Patterns/ AOOS 18

What is still new in strategies

* uses schema = class graph = constraints on
object graphs. Provides compilation
algorithm. Deals with abstract classes and
subclass edges. Three level model.

» Model has same expressiveness as graph
patterns.
— Can specify constraint maps using regular
expressions. eliminate edges not contained in
any path defined by regular expression

4/2/98 Graph Patterns/ AOOS 19

What isrole of graph in graph
patterns?

(A _+B _+C _+)* notcorrect
c A(+B_+C_+A)
* put node names also in paths

A source and target

Ink+ _:any edge, any node
Ink+

4/2/98 Graph Patterns/ AOOS 20

10

Regular expressions only

» Can we express any graph pattern or
strategy graph as aregular expression?

4/2/98 Graph Patterns/ AOOS

21

John Lamping’ s proposal

operator regular expression

[A.B] A.any* B Strategies are shorter
through Ink any*.Ink.any*

bypassing Ink not(any*.Ink.any*)

through C any*.C.any*

bypassing C not(any*.C.any*)

dljoin d2 [d1].[d2] /] join point twice!

dlmerge d2 [d1]\cup[d2]

not d1 not([d1])

only-through A,b,B A.b.B

4/2/98 Graph Patterns/ AOOS

22

11

The following to be improved

» Traversal automata for strategy graphs

4/2/98 Graph Patterns/ AOOS

23

Ordering of edgesin strategies

A qO actions before [A,B] and before [A,C], for example

traverseto B q1

traverseto C g2

traverseto B g3
A g4

traverse el g5

0 at

g2

4/2/98 Graph Patterns/ AOOS

, A_+B
A _+C

t' A +B

(e7:3

a5

only-through
->Ael*

24

12

Regular expressions
o define path sets

» but we want to define traversals with
specific orderings of path sets

4/2/98 Graph Patterns/ AOOS

25

Traversal automata

» Allow usto control ordering and
sequencing of traversals (and when to call
Vvisit operations)

» Control can be based on

— edgesin class graph
— edges in strategy graph (new refinement)

4/2/98 Graph Patterns/ AOOS

26

13

Traversal Automata

ClassValuedVarl Statel
traverse relationValuedVarl State2
traverse to ClassVauedVar2 State3 following constraint1
traverseto ClassVauedVar3 State4 following constraint2

When a class graph is given, the traversal automaton is expanded into:
Classl Statel
traverse relationl State2

traverse relation2 Statel // at target switch to State3
traverse relation3 Statel // at target switch to State4

4/2/98 Graph Patterns/ AOOS 27

Better view

» Sofar, traversal automata were defined in
terms of class graphs.

» Now we define them in terms of strategy
graphs: Need to give names to edges. Edge
names are abbreviations of constraints
associated with edge.

4/2/98 Graph Patterns/ AOOS 28

14

New kind of strategy graph:
looks like a class graph

bl

>

cl
C -
bl=bypassing ->* x,* A,B,C: class valued variables
b2=only-through ->A ,b,B x,b: relation-valued variables

c1=no restriction

4/2/98 Graph Patterns/ AOOS

29

Strategic Traversal Automata

A Statel traverse bl State2
traverse b2 State3
traverse cl State4
traverse bl State5

B State? traverse d1 Stateb

State5 //nothing

When a class graph is given, the strategic

traversal automaton is expanded into

atraversal automaton for the class graph.

Benefits: can use standard traversal automata, promotes parts-free

programming.

4/2/98 Graph Patterns/ AOOS

30

15

New role of strategies

» Define blueprint for traversal automata.
 Strategic traversal automaton defines afew
default traversal automata:
— DFS, class graph order (what we use now)
— DFS, strategy graph order
— BFS, class graph order
— BFS, strategy graph order

4/2/98 Graph Patterns/ AOOS 31

What is new?

» Traversal automata are expressed in terms
of class-valued and relation-valued
variables.

» Detailed traversals are expressed at higher
level: at strategy graph level

« Strategy graphs now have the structure of
class graphs with concrete classes only and
all partsrequired.

4/2/98 Graph Patterns/ AOOS 32

16

Expansion

» Given aclass graph, trandlate a strategic
traversal automaton to atraversal automaton
— write traversal graph astraversal automaton and
expand it following information in strategic
traversal automaton.
* reorder traversals
* add more traversals

4/2/98 Graph Patterns/ AOOS 33

Evolution

» Graphs (object graphs), need to traverse,
know about their structure (class graph),
formulate traversals at class graph level
using PL. Has flavor of traversal automata.
| mplementation:

— state-less: leads to exponential size code
— with state: becomes efficient

4/2/98 Graph Patterns/ AOOS 34

17

Evolution (continued)

* Instead of using PL, use strategies:
abstraction of class graph using regular
expressions over class graph. We lose some
of the flexibility of the traversal automata
solution: strategies define only certain
default traversals.

 Solution: use strategic traversal automata to
gain flexibility.

4/2/98 Graph Patterns/ AOOS 35

a

Intersection of NDFA issimilar
to traversal graph construction

b

- —l

ola3 ola4 g2a4

Intersection of two DFAs

4/2/98 Graph Patterns/ AOOS 36

18

Traversal Graph Construction

sl gl g2 g3 t1
any any

g6 q7 12

o
>l
|
R

Im oo
"oow

g0 w>

A C D
fromAviaCtoD
s1,s2 gl,06 92,06 03,7 t1t2

A B C D

4/2/98 Graph Patterns/ AOOS 37

Integrated view of algorithms 1
and 2: for path existence

» Both are similar to the intersection of two
NDFASs

— Algorithm 1. NDFA for strategy graph and

NDFA for class graph: resultsin NDFA for
traversal graph.

— Algorithm 2: NDFA for traversal graph and
NDFA for object graph: resultsin NDFA which
tells us whether there is a non-empty traversal

4/2/98 Graph Patterns/ AOOS 38

19

Recall: Intersection of NDFAS

« AnNDFA isa5-tuples M=(SA,d,p0,F), S
finite set of states, A isinput alphabet, disa
state transition function which maps Ax(S
union epsilon) to the set of subsetsof S pOis

theinitial state, and F isthe set of final states.

4/2/98 Graph Patterns/ AOOS 39

Recall: Intersection of NDFAS

 M1=(S1,A,d1,p0,F1) and
M2=(2,A,d2,0,F2).

 The NDFA for M1 intersect M2 is
|=(SIxX,A,d,(p0,90),F1xF2), wherefor ain
A, (p2,02) ind((pl,91),a) if and only if p2in
d1(pl,a) and g2 in d2(ql,a).

4/2/98 Graph Patterns/ AOOS 40

20

Graph Layers

graph layers G1, G2, ... ,Gn

Gi isan abstraction of Gi+1

Can embed Gi in Gi+1

Pathsin Gi existin Gi+1 in expanded form
Gi determines traversalsin Gi+1
Hierarchy of graph refinements

Use traversal automaton if necessary

4/2/98 Graph Patterns/ AOOS 41

Gl
Gs
Gs
Gz
Gz
Gl
4/2/98 . Graph Patterns/ AOOS 42

21

Current way of AP

4/2/98 Graph Patterns/ AOOS 43

Better way of AP

G

-

Ké 6.\;\‘0

s5
s6, s7 shield sl through s5 from changesto G

4/2/98 Graph Patterns/ AOOS 44

22

Hierarchical development of

strategies
G - s2=[A,B]
A B
s3=[A,C]
| s4=[A,B,D]
. 5 - s5=[A,C,D]
sl=[A,D] bypassing ...
@ G
C D \

sl

6 o®

2 3 A 5
4/2/98 Graph Patterns/ AOOS

45

Layered strategies

« dtrategies of theform (-> A {B,C,D}
bypassing ...) reduce the graph size and
result is still agraph.

» Should strategies at inner nodes be of this
form?

4/2/98 Graph Patterns/ AOOS

46

23

“New” view of strategy graphs

» So far we mapped strategy graphs into class
graphs.

* Why not map them into object graphs?

» The purpose of strategy graphsisto express
algorithmsin a structure-shy way.

* |n some cases better achieved by mapping
strategies into object graphs.

4/2/98 Graph Patterns/ AOOS 47

Some surprises along the way

» Extend strategies with regular expressions
on edges

» EXxpressthat certain paths are not allowed to
exist

4/2/98 Graph Patterns/ AOOS 48

24

Nearest Common Ancestor

parent : mother | father

Person Mother Mother

mother i
Person mother Family
Father
father
hildl .
Childiess Persan Childless
D parent
4/2/98 Graph Patterns/ AOOS 49

Strategy graph

A A, P1 ... P4: class Person

p = x* parent x*
X = anything but parent

P3

OR with symmetric version

P1

A = nearest_common_ancestor(P1,P2)

4/2/98 Graph Patterns/ AOOS 50

25

Strategy graph: symmetric

A A, P1 ... P4: class Person

p =Xx* parent x*
X = anything but parent

P1

A = nearest_common_ancestor(P1,P2)

4/2/98 Graph Patterns/ AOOS 51

Strategy graphs have changed

» Constraints are regular expressions
» Nodes are mapped to objects

 Also express relationships which are not
allowed to exist

4/2/98 Graph Patterns/ AOOS 52

26

|mplementation

« Pattern matching for graphs

» When pattern matches, execute code.
Pattern matching visitor

» Need to do search for desired pattern

4/2/98 Graph Patterns/ AOOS 53

Law of Demeter/client

client

C

member_function

cals
client
C
member_variable
M, F: Method aCCesses
C: Class
OR
V: Variable
\%
4/2/98 Graph Patterns/ AOOS 54

27

Law of Demeter/supplier

client
supplier
M: Method
C: Class
4/2/98 Graph Patterns/ AOOS 55

Law of Demeter/argument class

argument_class

M
takes argument_class
type C1
\Y,
member_function
C1, C: Class c
M: Method
V: Variable
OR
4/2/98 Graph Patterns/ AOOS 56

28

Law of Demeter (simplified)

All suppliers must be preferred

B, C: Class
preferred_supplier M: Method
M
member_variable_class preferred_supplier
B supplier
> argument_class
member_function
OR
4/2/98 Graph Patterns/ AOOS

57

Law of Demeter

constructor_class:

M calls a constructor of class B B: Class
M: Method

preferred_supplier
B supplier

>

constructor_class

OR

4/2/98 Graph Patterns/ AOOS

58

29

Other example of negation

acquaintance

>
supplier
C1 g
argument_class

>

member_variable_class

member_function

4/2/98 Graph Patterns/ AOOS 59

GraphLog

 Visua query language for the Hy+
visualization system
— M. Consens, Master Thesis, 1989, Ph.D. 1995
— M.Consens, A. Mendelzon: SIGMOD ‘90

» Query processing: trandate queries and data
into logic programs for execution by
—LDL
— CORAL

4/2/98 Graph Patterns/ AOOS 60

30

GraphLog

« Many databases can be naturally viewed as
graphs.

» Even arelationa db: can be represented by
adirected multigraph having an edge
labeled r(cl,...,ck) from anode |abeled
(al,...,a) to anode labeled (bl,...,b))
corresponding to each tuple
(al,...,a,bl,...,bj,cl,...ck) of relationrr.

4/2/98 Graph Patterns/ AOOS 61

small case: constant (disk1)
upper case: variable (D)

Recursive query with negation

tc-contains(D, F) <- contains(D,F).

tc-contains(D F) <- tc-contains(D, E),
contains(E, F).

di sk-util-excl-disk1(D, SUMS)) <-
tc-contains(D, F), size(F,S), not
resi des-on(F, di skl).

qSk-util-excl-di Ski). SUM(S)
si ze
. S

Graph Patterns/ AOOS 62

_ cont ai ns+ D
diskl

resi des-on
4/2/98

31

L ogic Programs

p,q predicate symbols

atom: p(X1,...,Xn) or X=Y
literal: positive or negative atom
HornclausesP <- A B, C

4/2/98 Graph Patterns/ AOOS 63

Complexity

 queriesexpressiblein GraphLog are exactly
those which are evaluable in non-
deterministic logarithmic space in the size
of the database.

4/2/98 Graph Patterns/ AOOS 64

32

4/2/98 Graph Patterns/ AOOS 65

Differences. Graph Patterns/
Strategies

o straight-line strategies are easily expressible
as graph patterns

* but cyclic strategies are not expressible as
graph patterns. If agraph pattern is cyclic,
then also the matching objects must be
cyclic.

4/2/98 Graph Patterns/ AOOS 66

33

Differences. Graph Patterns/
Strategies

» On the other hand: cyclic graph patterns are
not expressible as strategy graphs

» But cyclic graph patterns have problems
with path summarization

4/2/98 Graph Patterns/ AOOS 67

Duplication

» Graph patterns duplicate information

4/2/98 Graph Patterns/ AOOS 68

Traversal dependent roles

Class graph wi th super-inposed

strategy graph |Strat egy graph |

Per son 3a - Per son
Aa e - Brothers 4 bypassing vk
- """ exists Married

g |)
spouse:
Per son

St at us

1 - Si sters

. Brot hers
Al [] *
Marri ed Singl e -
sisters_in_|aw brothers_in_I aw
Per son Per son
4/2/98 Graph Patterns/ AOOS 69

Traversal dependent roles

|Graph pattern|

| Strategy graph |

- Per son
P1 P1 *by_passi ng vk
_t _t exists Marri ed
M1 M1 .
In Law spouse:
+ + - Per son
Spl Spl
+ + Sisters Brot her s
Ss Bs ¥
.+ .+ B
In In . . .
sisters_in_| aw brothers_in_I aw
Per son Per son
4/2/98 Graph Patterns/ AOOS 70

35

Strategies and graph patterns

ﬁ T (
B csvc 2 @
m. B a8y

- @

Al

P
le
@

D1

strategy graph strategy graph graph pattern
EXxpress graph patterns as
adaptive programs

* Not ageneral trandation?

4/2/98 Graph Patterns/ AOOS 72

36

small case: constant (disk1)
upper case: variable (D)

Recursive query with negation

tc-contains(D, F) <- contains(D,F).

tc-contains(D, F) <- tc-contains(D, E),
contains(E F).

di sk-util-excl-di sk1(D, SUMS)) <-
tc-contains(D F), size(F, S), not
resi des-on(F, di skl).

cont ai ns+ D' a1 Sk-ULTT-excl - di Sk1)‘ SUMES)
si ze
o
F

Graph Patterns/ AOOS 73

diskl

resi des-on
4/2/98

With AP

Directory = <contains> List(Directory) <files> List(File).
File = <residesOn> Di sk <size> Sjze.
Size = <s> int.

Di sk = <di skNanme> | dent. Di sk

Directory File Si ze

cont ai ns+ D' a1 Sk-ULTT-excl - di Sk1)‘ SUM(S)
diskl

size
L 3
F

resi des-on
4/2/98 Graph Patterns/ AOOS 74

37

With AP

Directory = <contains> List(Directory) <files> List(File).
File = <residesOn> Di sk <size> Size.

Size = <s> int. _
Di sk = <di skName> | dent. Di sk
1
N CER
. . 2
Directory File
Directory {
int disk_util_excl_diskl() to {D sk, Size} {
int total; |dent dn;
init (@total =0; @
before Disk (@dn = di skNane)
before Size (@if !(dn.equal (“diskl”)) total += s;
return (@total @
}
4/2/98} Graph Patterns AOOS 75

My current view

» Graph patterns work well for certain special
cases. They have similar structure-shy
properties as adaptive programs.

* But APismore general and worksin all
cases.

 Graph patterns do not have enough benefits
to warrant a special syntax?

4/2/98 Graph Patterns/ AOOS 76

38

Variants of Graph Patterns

duration(_)+<D>

C 0

shortest_path(M N(SUMD)))
. N
‘ same-generation

P1 P2

parent+[G]

4/2/98 Graph Patterns/ AOOS

7

Questions

» What isthe complexity of strategy
equivalence? substrategy checking?

— some algebraic identities:
D1*(D2+D3)=D1*D2+D1*D3

—C o <

4/2/98 Graph Patterns/ AOOS

78

39

Questions

» What isthe complexity of traversal
equivalence? subtraversal checking?
— Relevant result: Determining whether aregular
expression over {0} does not denote 0* is NP-

complete. Hence, inequivalence of regular
expressionsis NP-hard. (see Mendelzon)

4/2/98 Graph Patterns/ AOOS 79

Need for intersection

« A=B.B=C.C=.& A=X.X=Y.Y=C.

o A=X.X=B.B=Y.Y=C.C=.0r
A=X.X=Y.Y=B.B=C.C=. etc. would be
much longer

4/2/98 Graph Patterns/ AOOS 80

40

Composition of adaptive
programs

» Two strategy graphs
— A=B.B=C.C=.
— A=X.X=Y.Y=C.
» Want to do both traveralsin one:
— A=B.B=C.C=. & A=X.X=Y.Y=C.
— class graph: A=B.B=X.X=Y.Y=C.C=. yes
— class graph: A=B X.B=C.C=.X=Y.Y=C. no

4/2/98 Graph Patterns/ AOOS 81

Succinct specification of path
setsin graphs
strategy graph*
traversal automaton
strategic traversal automaton*
graph pattern*
regular expression with any*
regular expression

*: not self-contained; needs class graph

4/2/98 Graph Patterns/ AOOS 82

41

Regular expressions of two kinds

 Self-contained
« with respect to agraph A _* B means: take
any edge in the graph from A to B. Thisis
more constrained than an ordinary regular
expression.
— Can be extended into a self-contained regul ar
expression where details of graph are encoded

4/2/98 Graph Patterns/ AOOS 83

Succinct specification of path

sets for families of graphs
* strategy graph
o strategic traversal automaton
* graph pattern
— regular expressions are using any*: any edge
—“any” is modulo agraph

4/2/98 Graph Patterns/ AOOS 84

42

4/2/98 Graph Patterns/ AOOS 85

Slogan of Adaptive Programming

» Apply automatatheory at software
architecture-level to control navigation
through software architectures.

» Why is automata theory good for structure-
shyness? Regular expressions allow
“wildcards:

— engine (subpart)* name
—engine _* name

4/2/98 Graph Patterns/ AOOS 86

43

