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Current view of AP

• Use benefits of finite automata at class
graph level to specify traversals as partial
programs

• Use visitors to decorate traversals

• Use adjusters to organize traversals and
visitors
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New forces

• Mitch’s traversal automata

• Mendelzon’s graph patterns, WebSQL,
WebOQL, schema-free data model

• Smaragdakis’ suggestions on strategies
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Theory of Traversals

• Influence: SIAM J. Comput. paper by
Alberto Mendelzon and Peter Wood:
Finding Regular Simple Paths in Graph
Databases, 24:6 pages 1235-1258, 1995
– Conference version: VLDB 1989
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History

• Relational model: simple for users and
mathematicians. Query languages
(relational calculus and relational algebra)
not expressive enough (transitive closure of
a binary relation not expressible).

• More expressive query languages: Datalog
(Ullman) and G+ (Cruz, Mendelzon, Wood)
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G+

• based on graph traversals
– Database is a directed labeled graph

(corresponding to an object graph in our model)

– Queries are graph patterns expressed using
regular expressions: A graph pattern is a
labeled graph:

• node labels are constants to be matched with db

• edges are labeled with regular expressions

    (corresponding to our strategies)
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Example: Pattern Graph

• Is there a way to go from Section 3.1 to
section 5.2 and then to the conclusion
without reading any node more than once?
(focus on simple paths). G = hypertext
document. Pattern Graph:

Sec3.1 Sec5.2 Concl
link+ link+
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Abstract problem

• REGULAR SIMPLE PATH:
– Instance: Regular expression R and graph G.

– Question: Is there a directed simple path p in G
satisfying R, where the concatenation of edge
labels comprising p is in the language denoted
by R.

• Surprise: REGULAR SIMPLE PATH is
NP-complete
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Abstract problem:

• FIXED REGULAR SIMPLE PATH (R):
– Instance: Regular expression R and graph G.

– Question: Is there a directed simple path p in G
satisfying R, where the concatenation of edge
labels comprising p is in the language denoted
by R.

• Surprise: FIXED REGULAR SIMPLE
PATH(R)  is NP-complete for R = (00)*
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Related problem

• PATH VIA NODE
– Instance: Directed graph G=(N,E), and nodes

x,y,m in N.

– Question: Is there a directed simple path from x
to y via m?

• PATH VIA NODE is NP-complete
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Abstract problem

• REGULAR PATH:
– Instance: Regular expression R and graph G.

– Question: Is there a directed  path p in G
satisfying R, where the concatenation of edge
labels comprising p is in the language denoted
by R.

• REGULAR PATH is in P.
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Proof 1

• Given graph G along with nodes x and y in
G, we can view G as an NDFA with initial
state x and final state y. Construct the
intersection graph I of G and an NDFA M
accepting L(R). There is a path from x to y
satisfying R if there is a path in I from
(x,s0) to (y,sf), for s0 the start state of M
and some final state sf in M.
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Proof 1

• All this can be done in polynomial time by
Hunt, Rosenkrantz and Szymanski, 1976.
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Proof 2, using Tarjan 1981

• Tarjan provides a polynomial algorithm for
constructing a regular expression Rxy which
represents the set of all paths between two
nodes x and y of a given graph.

• Is there a path between x and y satisfying R:
– construct Rxy

– determine whether intersection of L(R) and
L(Rxy) is nonempty using NDFAs.
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Connections, Implications

• Toronto approach has only graph patterns
(similar to strategies) and database graphs
(similar to object graphs). No knowledge
about structure of database graphs; i.e., no
schema = class graph. Well, they use cycle
constraints.

• Toronto paper contains useful facts to better
understand traversals and their limitations.
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Structure-shyness in Toronto
approach

• pattern graph gives topology of navigation

• _* (underscore matches any edge label)

Company Salary

_*

Pattern graph

Company Salary

Strategy graph
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Structure-shyness in Toronto
approach

• Bypassing

Company Salary
(all but subsidiaries)*

Pattern graph

Company Salary

Strategy graph

bypassing ->*,subsidiaries,*
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Structure-shyness in Toronto
approach

• Toronto approach uses regular expressions
– positive and negative

– may be confusing: pattern graph positive

• Strategy graphs use constraint maps
– negative: what we want to avoid.

– leave it open how to specify maps

– could use regular expressions to specify
constraint map
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Toronto approach

• Shows how to deal with structure-shyness
without schema = class graph.

• Proposes uniform automata-based approach to
AP also suggested byYannis Smaragdakis
– all graphs correspond to finite automata: class,

strategy, traversal and object graphs

– Algorithm 1: intersection of two automata.

– Algorithm 2: intersection of  traversal graph and
object graph.
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What is still new in strategies

• uses schema = class graph = constraints on
object graphs. Provides compilation
algorithm. Deals with abstract classes and
subclass edges. Three level model.

• Model has same expressiveness as graph
patterns.
– Can specify constraint maps using regular

expressions: eliminate edges not contained in
any path defined by regular expression
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What is role of graph in graph
patterns?

• (A _+ B _+ C _+)*   not correct

• A (_+ B _+ C _+ A)*

• put node names also in paths

A

C

B

lnk+

lnk+

lnk+

A source and target

_:any edge, any node
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Regular expressions only

• Can we express any graph pattern or
strategy graph as a regular expression?
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John Lamping’s proposal

operator regular expression

[A,B] A.any*.B
through lnk any*.lnk.any*
bypassing lnk not(any*.lnk.any*)
through C any*.C.any*
bypassing C not(any*.C.any*)
d1 join d2 [d1].[d2] // join point twice!
d1merge d2 [d1]\cup[d2]
not d1 not([d1])
only-through A,b,B A.b.B

Strategies are shorter
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The following to be improved

• Traversal automata for strategy graphs
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Ordering of edges in strategies

1

A
B

C
2

A q0
  traverse to B q1
  traverse to C q2
  traverse to B q3
A q4
  traverse e1 q5

q0
q1

q2

A _+ B
A _+ C
A _+ B

actions before [A,B] and before [A,C], for example

+

B q3

3

Aq4

q5

1

only-through
-> A,e1,*

+
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Regular expressions

• define path sets

• but we want to define traversals with
specific orderings of path sets
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Traversal automata

• Allow us to control ordering and
sequencing of traversals (and when to call
visit operations)

• Control can be based on
– edges in class graph

– edges in strategy graph (new refinement)
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Traversal Automata

ClassValuedVar1 State1
  traverse relationValuedVar1 State2
  traverse to ClassValuedVar2 State3 following constraint1
  traverse to  ClassValuedVar3 State4 following constraint2

When a class graph  is given, the traversal automaton is expanded into:

Class1 State1
  traverse relation1 State2
  traverse relation2 State1  // at target switch to State3 
  traverse relation3 State1  // at target switch to State4
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Better view

• So far, traversal automata were defined in
terms of class graphs.

• Now we define them in terms of strategy
graphs: Need to give names to edges. Edge
names are abbreviations of constraints
associated with edge.
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New kind of strategy graph:
looks like a class graph

A B

C

b1

c1

b1=bypassing ->*,x,*
b2=only-through ->A,b,B
c1=no restriction

b2

A,B,C: class valued variables
x,b: relation-valued variables

D
d1
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Strategic Traversal Automata

A State1 traverse b1 State2
               traverse b2 State3
               traverse c1 State4 
               traverse b1 State5
B State2 traverse d1 State5  
    State5 //nothing

When a class graph  is given, the strategic
traversal automaton is expanded into
a traversal automaton for the class graph.

Benefits: can use standard traversal automata, promotes parts-free
programming.
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New role of strategies

• Define blueprint for traversal automata.

• Strategic traversal automaton defines a few
default traversal automata:
– DFS, class graph order (what we use now)

– DFS, strategy graph order

– BFS, class graph order

– BFS, strategy graph order
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What is new?

• Traversal automata are expressed in terms
of class-valued and relation-valued
variables.

• Detailed traversals are expressed at higher
level: at strategy graph level

• Strategy graphs now have the structure of
class graphs with concrete classes only and
all parts required.
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Expansion

• Given a class graph, translate a strategic
traversal automaton to a traversal automaton
– write traversal graph as traversal automaton and

expand it following information in strategic
traversal automaton.

• reorder traversals

• add more traversals
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Evolution

• Graphs (object graphs), need to traverse,
know about their structure (class graph),
formulate traversals at class graph level
using PL. Has flavor of traversal automata.
Implementation:
– state-less: leads to exponential size code

– with state: becomes efficient
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Evolution (continued)

• Instead of using PL, use strategies:
abstraction of class graph using regular
expressions over class graph. We lose some
of the flexibility of the traversal automata
solution: strategies define only certain
default traversals.

• Solution: use strategic traversal automata to
gain flexibility.
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Intersection of NDFA is similar
to traversal graph construction

q4

b

b
q2q1

a

q3
a

q1q3 q1q4 q2q4

a b

Intersection of two DFAs
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Traversal Graph Construction
s1 q1 q2 q3 t1

A B C D

D

s2 q6 q7 t2

A C D

any any

from A via C to D

s1,s2 q1,q6 q2,q6 q3,q7 t1,t2

A B C D

A=B D.
B=C.
C=D.
D=. 
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Integrated view of algorithms 1
and 2: for path existence

• Both are similar to the intersection of two
NDFAs
– Algorithm 1: NDFA for strategy graph and

NDFA for class graph: results in NDFA for
traversal graph.

– Algorithm 2: NDFA for traversal graph and
NDFA for object graph: results in NDFA which
tells us whether there is a non-empty traversal
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Recall: Intersection of NDFAs

• An NDFA is a 5-tuple: M=(S,A,d,p0,F), S
finite set of states, A is input alphabet, d is a
state transition function which maps Ax(S
union epsilon) to the set of subsets of S, p0 is
the initial state, and F is the set of final states.
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Recall: Intersection of NDFAs

• M1=(S1,A,d1,p0,F1) and
M2=(S2,A,d2,q0,F2).

• The NDFA for M1 intersect M2 is
I=(S1xS2,A,d,(p0,q0),F1xF2), where for a in
A, (p2,q2) in d((p1,q1),a) if and only if p2 in
d1(p1,a) and q2 in d2(q1,a).
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Graph Layers

graph layers G1, G2, … ,Gn
Gi is an abstraction of Gi+1
Can embed Gi in Gi+1
Paths in Gi exist in Gi+1 in expanded form
Gi determines traversals in Gi+1
Hierarchy of graph refinements

Use traversal automaton if necessary
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Hierarchy

G3

G1

G2

G1

G2

G3
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Current way of AP
G

s1
s3s2 s5s4
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Better way of AP
G

s1
s3s2 s5s4

s7s6

s6, s7 shield s1 through s5 from changes to G
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Hierarchical development of
strategies

A B

C D

s2=[A,B]

s3=[A,C]

s4=[A,B,D]

s5=[A,C,D]

G

s1= [A,D] bypassing ...
G

s1

s2 s3 s4 s5
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Layered strategies

• strategies of the form (-> A {B,C,D}
bypassing ...) reduce the graph size and
result is still a graph.

• Should strategies at inner nodes be of this
form?
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“New” view of strategy graphs

• So far we mapped strategy graphs into class
graphs.

• Why not map them into object graphs?

• The purpose of strategy graphs is to express
algorithms in a structure-shy way.

• In some cases better achieved by mapping
strategies into object graphs.
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Some surprises along the way

• Extend strategies with regular expressions
on edges

• Express that certain paths are not allowed to
exist
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Nearest Common Ancestor

Person Mother

Father

Childless

mother

father

parent : mother | father

Person
Mother

Father

Childless

mother

father

Family

parent

Person
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Strategy graph

p*

p = x* parent x*
x = anything but parent

p*

p p

P1 P2

P3 P4

A

A = nearest_common_ancestor(P1,P2)

p*

OR with symmetric version

A, P1 … P4: class Person
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Strategy graph: symmetric

p*

p = x* parent x*
x = anything but parent

p*

p p

P1 P2

P3 P4

A

A = nearest_common_ancestor(P1,P2)

p*

A, P1 … P4: class Person
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Strategy graphs have changed

• Constraints are regular expressions

• Nodes are mapped to objects

• Also express relationships which are not
allowed to exist
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Implementation

• Pattern matching for graphs

• When pattern matches, execute code.
Pattern matching visitor

• Need to do search for desired pattern
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Law of Demeter/client

M
client

calls
member_function

M
client

accesses

member_variable

C

C

F

V

M, F: Method
C: Class
V: Variable

OR
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Law of Demeter/supplier

M

client

C

supplier

M: Method
C: Class
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Law of Demeter/argument class

C1

argument_class

M

C V

sub_class* takes

type C1

argument_class

M

C

sub_class*

member_function
C1, C: Class
M: Method
V: Variable

OR
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Law of Demeter (simplified)

B

preferred_supplier

M

C

member_variable_class

member_function

supplier

B

preferred_supplier

Msupplier
argument_class

B, C: Class
M: Method

OR

All suppliers must be preferred
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Law of Demeter

preferred_supplier

Msupplier

constructor_class

B: Class
M: Method

OR

B

constructor_class:
M calls a constructor of class B
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Other example of negation
 acquaintance

supplier

argument_class

member_function

member_variable_class

C1

C2

M
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GraphLog

• Visual query language for the Hy+
visualization system
– M. Consens, Master Thesis, 1989, Ph.D. 1995

– M.Consens, A. Mendelzon: SIGMOD ‘90

• Query processing: translate queries and data
into logic programs for execution by
– LDL

– CORAL
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GraphLog

• Many databases can be naturally viewed as
graphs.

• Even a relational db: can be represented by
a directed multigraph having an edge
labeled r(c1,…,ck) from a node labeled
(a1,…,ai) to a node labeled (b1,…,bj)
corresponding to each tuple
(a1,…,ai,b1,…,bj,c1,…ck) of relation r.
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Recursive query with negation

tc-contains(D,F) <- contains(D,F).

tc-contains(D,F) <- tc-contains(D,E),
contains(E,F).

disk-util-excl-disk1(D,SUM(S)) <-

  tc-contains(D,F), size(F,S), not
resides-on(F,disk1).

D SUM(S)
disk-util-excl-disk1contains+

resides-on

disk1

F

S
size

small case: constant (disk1)
upper case: variable (D)
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Logic Programs

• p,q predicate symbols

• atom: p(X1,…,Xn) or X=Y

• literal: positive or negative atom
• Horn clauses P <- A,B,C
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Complexity

• queries expressible in GraphLog are exactly
those which are evaluable in non-
deterministic logarithmic space in the size
of the database.
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Differences: Graph Patterns/
Strategies

• straight-line strategies are easily expressible
as graph patterns

• but cyclic strategies are not expressible as
graph patterns. If a graph pattern is cyclic,
then also the matching objects must be
cyclic.
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Differences: Graph Patterns/
Strategies

• On the other hand: cyclic graph patterns are
not expressible as strategy graphs

• But cyclic graph patterns have problems
with path summarization
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Duplication

• Graph patterns duplicate information
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Traversal dependent roles

Person

Status

SingleMarried

Brothers

Sisters

Person

Married

spouse:
Person

Sisters Brothers

sisters_in_law:
Person

brothers_in_law:
Person

1

2

3a

4a

3b4b

Class graph with super-imposed 
strategy graph

Strategy graph

bypassing
exists
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Traversal dependent roles

Person

Married

spouse:
Person

Sisters Brothers

sisters_in_law:
Person

brothers_in_law:
Person

Strategy graph

bypassing
exists

Graph pattern

P1

M1

Sp1

Ss

In

P1

M1

Sp1

Bs

In

In_Law

_+

_+

_+

_+

_+

_+

_+

_+



36

4/2/98 Graph Patterns/AOOS 71

Strategies and graph patterns

A

B C

DD

A1 A1

B1

D1

C1

D1

A

D

strategy graph strategy graph graph pattern

B C

=
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Express graph patterns as
adaptive programs

• Not a general translation?
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Recursive query with negation

tc-contains(D,F) <- contains(D,F).

tc-contains(D,F) <- tc-contains(D,E),
contains(E,F).

disk-util-excl-disk1(D,SUM(S)) <-

  tc-contains(D,F), size(F,S), not
resides-on(F,disk1).

D SUM(S)
disk-util-excl-disk1contains+

resides-on

disk1

F

S
size

small case: constant (disk1)
upper case: variable (D)
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With AP
Directory = <contains> List(Directory) <files> List(File).

File = <residesOn> Disk <size> Size.

Size = <s> int.

Disk = <diskName> Ident.

D SUM(S)
disk-util-excl-disk1contains+

resides-on

disk1

F

S
size

Directory File Size

Disk
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With AP
Directory = <contains> List(Directory) <files> List(File).

File = <residesOn> Disk <size> Size.

Size = <s> int.

Disk = <diskName> Ident.

Directory File

Size

Disk

Directory {
  int disk_util_excl_disk1() to {Disk,Size} {
    int total; Ident dn;
    init (@ total = 0; @)
    before Disk (@ dn = diskName)
    before Size (@ if !(dn.equal(“disk1”)) total += s;
    return (@ total @)
  }
}

1

2
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My current view

• Graph patterns work well for certain special
cases. They have similar structure-shy
properties as adaptive programs.

• But AP is more general and works in all
cases.

• Graph patterns do not have enough benefits
to warrant a special syntax?



39

4/2/98 Graph Patterns/AOOS 77

Variants of Graph Patterns
duration(_)+<D>

shortest_path(MIN(SUM(D)))

P1 P2

P3

parent+[G]parent+[G]

same-generation
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Questions

• What is the complexity of strategy
equivalence? substrategy checking?
– some algebraic identities:

D1*(D2+D3)=D1*D2+D1*D3
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Questions

• What is the complexity of traversal
equivalence? subtraversal checking?
– Relevant result: Determining whether a regular

expression over {0} does not denote 0* is NP-
complete. Hence, inequivalence of regular
expressions is NP-hard. (see Mendelzon)
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Need for intersection

• A=B.B=C.C=.&A=X.X=Y.Y=C.

• A=X.X=B.B=Y.Y=C.C=. or
A=X.X=Y.Y=B.B=C.C=. etc. would be
much longer
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Composition of adaptive
programs

• Two strategy graphs
– A=B.B=C.C=.

– A=X.X=Y.Y=C.

• Want to do both traverals in one:
– A=B.B=C.C=. & A=X.X=Y.Y=C.

– class graph: A=B.B=X.X=Y.Y=C.C=. yes

– class graph: A=B X.B=C.C=.X=Y.Y=C. no
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Succinct specification of path
sets in graphs

• strategy graph*

• traversal automaton

• strategic traversal automaton*

• graph pattern*

• regular expression with any*

• regular expression

*: not self-contained; needs class graph
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Regular expressions of two kinds

• Self-contained

• with respect to a graph A _* B means: take
any edge in the graph from A to B. This is
more constrained than an ordinary regular
expression.
– Can be extended into a self-contained regular

expression where details of graph are encoded
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Succinct specification of path
sets for families of graphs

• strategy graph

• strategic traversal automaton

• graph pattern
– regular expressions are using any*: any edge

– “any” is modulo a graph
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Slogan of Adaptive Programming

• Apply automata theory at software
architecture-level to control navigation
through software architectures.

• Why is automata theory good for structure-
shyness? Regular expressions allow
“wildcards:
– engine (subpart)* name

– engine       _*        name


