
5/12/98 Specification/Testing/OCL 1

A Specification Language

UML: www.rational.com/uml

Model architecture

Object Constraint Language

5/12/98 Specification/Testing/OCL 2

Testing and OCL

• A class model is not enough for a precise
and unambiguous specification.

• Useful to express specifications, test
requirements and test specifications

• A useful notation to know: part of UML

5/12/98 Specification/Testing/OCL 3

The relative cost of correcting an
error increases over SDLC

1

10

100

1000

10000

Definition Analysis Design Code Maint.

Cost

5/12/98 Specification/Testing/OCL 4

How to prevent defects?

• More precise specifications. OCL helps.

• Start testing early, at design level: See
homework 2!!!

• Use walkthroughs and inspections

5/12/98 Specification/Testing/OCL 5

UML language architecture
• UML metamodel defines meaning of UML

models

• Defined in a metacircular manner, using a
subset of UML to specify itself

• UML metamodel bootstraps itself. Similar:
– compiler compiles itself

– grammar defines itself

– class dictionary defines itself

5/12/98 Specification/Testing/OCL 6

4 layer metamodel architecture

• UML metamodel one of the layers

• Why four layers?

• Proven architecture for complex models

• Validates core constructs by using them to
define themselves

5/12/98 Specification/Testing/OCL 7

Four layer architecture

• meta-metamodel
– language for specifying metamodels

• metamodel
– language for specifying models

• model
– language for specifying objects in some domain

• user objects

5/12/98 Specification/Testing/OCL 8

Four levels

• User Objects in running system
– check run-time constraints

• Model of System under design
– specify run-time constraints

• Meta-model
– specify constraints on use of constructs in model

• Meta-metamodel
– data interchange between modeling tools

5/12/98 Specification/Testing/OCL 9

Three layers

user object
OP

CL

CB

model
OL

metamodel
OB

TP

TL

TB

classes

objects

textsentence

class
dictionary

a class dictionary
for class
dictionaries

instance of

defines classes

B: metamodel
L: model
P: user objects

5/12/98 Specification/Testing/OCL 10

UML OCL

• Object Constraint Language
– allows you to define side effect-free constraints

for UML and other models

– used in UML to defined well-formedness rules
of the UML meta model (invariants for meta
model classes)

5/12/98 Specification/Testing/OCL 11

Why OCL

• It is a formal mathematical language

• Tend to be hard to use by average modelers

• OCL is intended for average modelers

• Developed as business modeling language
within IBM insurance division (has roots in
Syntropy method)

• OCL is a pure expression language (side
effect free)

5/12/98 Specification/Testing/OCL 12

Companies behind OCL

• Rational Software, Microsoft, Hewlett-
Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing,
IntelliCorp, i-Logix, IBM, ObjecTime,
Platinum Technology, Ptech, Taskon, Reich
Technologies, Softeam

5/12/98 Specification/Testing/OCL 13

Where to use OCL?

• Specify invariants for classes and types

• Specify pre- and post-conditions for
methods

• As a navigation language

• To specify constraints on operations

• Test requirements and specifications

5/12/98 Specification/Testing/OCL 14

OCL properties

• LL(1) language
– finally back to the Pascal days!

– Grammar provided uses EBNF syntax

• Parser generated by JavaCC

5/12/98 Specification/Testing/OCL 15

What is OCL?

• Predicate calculus for objects

• Traditional predicate calculus:
– individuals

– variables, predicate and function symbols

– terms (for all, Boolean connectives)

– axioms and the theories they define (group
theory, number theory, etc.)

• In OCL: individuals -> objects

5/12/98 Specification/Testing/OCL 16

Structured individuals

• some “structural” constraints imposed by
UML class diagram; further constraints can
be imposed by OCL expressions

• annotated UML class diagram defines
textual representation

5/12/98 Specification/Testing/OCL 17

Connection to model

• Self. Each OCL expression is written in the
context of an instance of a specific type.

 Company

 self.numberOfEmployees

 c : Company

 c.numberOfEmployees

5/12/98 Specification/Testing/OCL 18

Connection to model

• Invariants of a type. An OCL expression
stereotyped with <<invariant>>. An
invariant must be true for all instances of
the type at any time.

 Person

 self.age >= 0

5/12/98 Specification/Testing/OCL 19

Example: UML class diagram
ClassGraph

ClassGraph

EParse

BParse

ClassDef

Entry0..*

entries

Body

Part

ClassName

0..*

parts

Concrete Abstract

super

className

Note: we
use a
thick
arrow to
denote
inheritance.
UML uses an
open arrow.

5/12/98 Specification/Testing/OCL 20

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

number of
concrete classes

5/12/98 Specification/Testing/OCL 21

Example

• Number of concrete classes:
– ClassGraph self.entries->

 select(c:Entry|c.

 oclIsTypeOf(ClassDef))->

 collect(body)->

 select (b:Body|b.

 oclIsTypeOf(Concrete))

 ->size

-> collection op
select:subset

5/12/98 Specification/Testing/OCL 22

Pre- and post-conditions

• constraints stereotyped with
<<precondition>> and <<postcondition>>

 for an operation or method. Example:
 Type::op(param1 : Type1 …):

 ReturnType

 pre: param1 …

 post: result = …

5/12/98 Specification/Testing/OCL 23

Pre- and post-conditions

• Example: Post condition for insert operation:
 person.allInstances ->
forAll(p1, p2 | p1 <> p2
implies p1.id <> p2.id)

5/12/98 Specification/Testing/OCL 24

Basic values and types
• Boolean true, false

– and or xor not implies if-then-else

• Integer 1 2 3 subtype of Real
– * + - / abs

• Real 3.14
– * + - / floor

• String ‘To be or not to be’
– toUpper concat

5/12/98 Specification/Testing/OCL 25

Basic values and types
• Collection

– Set subtype of Collection

– Sequence subtype of Collection

– Bag subtype of Collection

if element types conform to each other

5/12/98 Specification/Testing/OCL 26

Types from the UML Model

• Each OCL expression lives in the context of
a UML model, a number of types/classes
and their features and associations and their
generalizations.

• All types/classes from the UML model are
types in OCL.

5/12/98 Specification/Testing/OCL 27

May5 1998

5/12/98 Specification/Testing/OCL 28

Type Conformance

• OCL is typed

• Type conformance rules for types in the
class diagram are simple:
– each type conforms to its supertype

– type conformance is transitive

5/12/98 Specification/Testing/OCL 29

Objects and properties

• The value of a property on an object that is
defined in a class diagram is specified by a
dot followed by the property name.

 Atype

 self.property

5/12/98 Specification/Testing/OCL 30

Properties

• an attribute

• an association end

• an operation with isQuery true

• a method with isQuery true

5/12/98 Specification/Testing/OCL 31

Properties

• an attribute
 Person self.age >= 0

 self.employer->size

• an association end
 Company

self.manager --type Person

self.employee--type Set(Person)

5/12/98 Specification/Testing/OCL 32

Properties

• an operation with isQuery true
 Person self.income(aDate)

 Company self.stockPrice()

5/12/98 Specification/Testing/OCL 33

Missing role names

• Whenever a role name is missing at one of
the ends of an association, the name of the
type at the association end, starting with a
lowercase character is used as role name. If
this results in an ambiguity, the role name is
mandatory

5/12/98 Specification/Testing/OCL 34

Navigation over associations

• Company self.manager

 object of type Person or Set(Person)
– used as Set(Person)

 self.manager->size -- result 1
– used as Person

 self.manager.age

5/12/98 Specification/Testing/OCL 35

OclType and OclAny

• All types in a UML model, or predefined
within UML have a type. This type is an
instance of the OCL type called OclType.

• OclType: meta type of all types. OclAny
supertype of all types. OclType : Class =
OclAny : Object (analogy to Java)

• Features of OclType: good for meta
programming.

5/12/98 Specification/Testing/OCL 36

Predefined OCL types

• OclType: type: instance of OclType
– type.name : String

– type.attributes:Set(String)

– type.associationEnds:Set(String)

– type.operations:Set(String)

– type.supertypes:Set(OclType)

– type.allSupertypes:Set(OclType)

– type.allInstances:Set(type)

5/12/98 Specification/Testing/OCL 37

Similarity: java.lang.Class

• instances of class Class represent classes and
interfaces in a way that can be read (but not
modified) by a running Java program

public final class Class{

 public String getName();

 public Class getSuperClass();

 public Class[] getInterfaces();

 ...

5/12/98 Specification/Testing/OCL 38

Predefined OCL types

• OclAny: supertype of all types in the
model. object: instance of OclAny
– object=(object2:OclAny)

– object<>(object2:OclAny):Boolean

– object.oclType:OclType

– object.oclIsKindOf(type:OclType)
: Boolean

5/12/98 Specification/Testing/OCL 39

Similarity: java.lang.Object

• All objects, including arrays, implement the
methods of this class

public class Object {

 public final Class getClass();

 public boolean

 equals(Object obj);

 ...

5/12/98 Specification/Testing/OCL 40

Predefined features on all objects
(OclAny)

• Type of an object
oclType : OclType

 Feature oclType results in type of an object

• Direct type
oclIsTypeOf(t:OclType):Boolean

• Direct or super type
oclIsKindOf(t:OclType):Boolean

5/12/98 Specification/Testing/OCL 41

Examples

• Person

 self.oclType

 results in Person
• Person

 self.oclIsTypeOf(Person)--true

 self.oclIsTypeOf(Company)--false

5/12/98 Specification/Testing/OCL 42

Predefined features on types

• Two kinds of properties
– on instances of classes

– on types/classes themselves

• Most important predefined feature on each
type: allInstances

 Person.allInstances ->
forAll(p1, p2 | p1 <> p2
implies p1.id <> p2.id)

5/12/98 Specification/Testing/OCL 43

Collections

• Navigation will most often result in a
collection.

• Collection predefined

• Large number of predefined operations
• Collection(X) :

 Set(X)|Sequence(X)|Bag(X).

• Specifiable by a literal

5/12/98 Specification/Testing/OCL 44

Collection type conformance

• Collection(X) is a subtype of OclAny.

• Rules (only 3 collection specific)
– T1 conforms to T2 if T1=T2.

– T1 conforms to T2 when T1 is a subtype of T2.

– Collection(T1) conforms to Collection(T2) if
T1 conforms to T2

– conformance is transitive

5/12/98 Specification/Testing/OCL 45

Previous value in post-conditions

• Pre- and post-conditions on operations and
methods
– the value of a property at the start of the

operation or method

– the value of a property upon completion of the
operation or method
•Person::birthdayHappens()

 post: age = age@pre + 1

5/12/98 Specification/Testing/OCL 46

Collection Operations

• Select and reject operations
– collection->select(boolean-expr)

 Company

 self.employee->select(age > 50)

– collection->select

 (v|boolean-expr-with-v)

 Company self.employee->select

 (p|p.age > 50)

5/12/98 Specification/Testing/OCL 47

Collection Operations

• Select and reject operations
– collection->select

 (v:Type|boolean-expr-with-v)

Company self.employee->select

 (p:Person|p.age > 50)

5/12/98 Specification/Testing/OCL 48

Select syntax

• Define a subset
– collection->select

 (v:Type|boolean-expr-with-v)

– collection->select

 (v|boolean-expr-with-v)

– collection->select

 (boolean-expr)
refer to
parts

refer to
entire
object

type
redundancy

5/12/98 Specification/Testing/OCL 49

Reject syntax

• Define a subset
– collection->reject

 (v:Type|boolean-expr-with-v)

– collection->reject

 (v|boolean-expr-with-v)

– collection->reject

 (boolean-expr)

• Instead negate expression

5/12/98 Specification/Testing/OCL 50

Collect syntax

– collection->collect

 (v:Type|expr-with-v)

– collection->collect

 (v|expr-with-v)

– collection->collect

 (expr)

• Creates a bag
self.empl->collect(bdate)->asSet

Build new
colletion
by applying
expression
to elements
of old
collection

5/12/98 Specification/Testing/OCL 51

Shorthand for Collect

• Because navigation through many objects is
very common, there is a shorthand notation
for collect that makes OCL expressions more
readable. Both are correct:
– self.employee ->
collect(birthdate.year)

– self.employee.birthdate.year

5/12/98 Specification/Testing/OCL 52

ForAll operation

• All elements satisfy Boolean expression
– collection->forAll

 (v:Type|boolean-expr-with-v)

– collection->forAll

 (v|boolean-expr-with-v)

– collection->forAll

 (boolean-expr)

5/12/98 Specification/Testing/OCL 53

Exists operation

• At least one element satisfies Boolean
expression
– collection->exists

 (v:Type|boolean-expr-with-v)

– collection->exists

 (v|boolean-expr-with-v)

– collection->exists

 (boolean-expr)

5/12/98 Specification/Testing/OCL 54

Predefined OCL types

• Integer, Real, String, Boolean

• OclExpression, OclType, OclAny

• OclType
– all types defined in a model have type OclType

– allows access to the meta-level of the model

5/12/98 Specification/Testing/OCL 55

Predefined OCL types

• OclType: type: instance of OclType
– type.name : String

– type.attributes:Set(String)

– type.associationEnds:Set(String)

– type.operations:Set(String)

– type.supertypes:Set(OclType)

– type.allSupertypes:Set(OclType)

– type.allInstances:Set(type)

5/12/98 Specification/Testing/OCL 56

Predefined OCL types

• OclAny: supertype of all types in the
model. object: instance of OclAny
– object=(object2:OclAny)

– object<>(object2:OclAny):Boolean

– object.oclType:OclType

– object.oclIsKindOf(type:OclType)
: Boolean

5/12/98 Specification/Testing/OCL 57

Applications

• Number of class definitions:
– ClassGraph self.entries->size wrong

– ClassGraph self.entries->

 select(c:Entry|c.

 oclIsTypeOf(ClassDef))->size

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

5/12/98 Specification/Testing/OCL 58

Applications

• Number of class definitions: What about
using strategies to define collections?
– ClassGraph self.{to ClassDef}

 ->size

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

5/12/98 Specification/Testing/OCL 59

Improve OCL: make adaptive

• OCL stresses the importance of collections

• Collections are best specified adaptively

• A strategy SS = (S, B, s, t) with source s and
target set t and name map N for class graph
G defines a collection of objects contained
in a N(s)-object. The collection type CT is
the union of N(t1) for t1 in t.

5/12/98 Specification/Testing/OCL 60

Improve OCL

• The collection consists of CT-objects
reached during the traversal of the N(s)
object following strategy SS.

5/12/98 Specification/Testing/OCL 61

Properties

• In OCL
– an attribute

– an association end

– an operation with isQuery true

– a method with isQuery true

• Add for adaptive OCL
– a strategy { … } with a single source

5/12/98 Specification/Testing/OCL 62

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

ClassGraph -- concrete classes
 self.{to Concrete}->size

5/12/98 Specification/Testing/OCL 63

Applications

• Number of concrete classes:
– ClassGraph self.entries->

 select(c:Entry|c.

 oclIsTypeOf(ClassDef))->

 collect(body)->

 select (b:Body|b.

 oclIsTypeOf(Concrete))

 ->size

5/12/98 Specification/Testing/OCL 64

ClassGraph self.entries->
 select(c:Entry|c.

 oclIsTypeOf(ClassDef))->

 collect(body)->

 select (b:Body|b.

 oclIsTypeOf(Concrete))

->size -- count concrete classes

ClassGraph -- count concrete classes
 self.{to Concrete}->size

Which one is easier to write?

5/12/98 Specification/Testing/OCL 65

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 66

Applications

• Terminal buffer rule
ClassGraph self.{to ClassDef}

 ->forAll(r|r.termBProp())

ClassDef Boolean termBProp(){

 partCNs=self.{via Part to ClassName};

 result=if (partCNs->size)>1 then

 (partCNs->intersection(predefCNs))

 -> isEmpty

 else true endif}

5/12/98 Specification/Testing/OCL 67

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 68

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 69

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 70

Applications

• Class graph is flat
ClassGraph

 self.{to Abstract}->

 forAll(a|a.parts->size=0)

5/12/98 Specification/Testing/OCL 71

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 72

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 73

Applications

• Abstract superclass rule
ClassGraph

 superCls =

 self.{through->*,super,* to ClassName};

 self.{to ClassDef}->

 forAll(c|

 if (superCls->includes(c.className))

 then c.{to Abstract}->size=1

 else true

 endif)

5/12/98 Specification/Testing/OCL 74

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 75

UML class diagram ClassGraph

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries

Body

Part

ClassName
0..*

parts

Concrete Abstract

super

className

5/12/98 Specification/Testing/OCL 76

Conclusions

• OCL is a suitable language for expressing
object properties, class invariants and
method pre- and post-conditions. (needs
capability to define functions and auxiliary
variables).

• OCL is NOT a good language for
navigation but can be made into one by
adding strategies.

5/12/98 Specification/Testing/OCL 77

Further information

• www.rational.com contains latest
information about UML, specifically OCL.

• www.ics.uci.edu/pub/arch/uml

