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A Specification Language

UML: www.rational.com/uml

Model architecture

Object Constraint Language
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Testing and OCL

• A class model is not enough for a precise
and unambiguous specification.

• Useful to express specifications, test
requirements and test specifications

• A useful notation to know: part of UML
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The relative cost of correcting an
error increases over SDLC
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How to prevent defects?

• More precise specifications. OCL helps.

• Start testing early, at design level: See
homework 2!!!

• Use walkthroughs and inspections
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UML language architecture
• UML metamodel defines meaning of UML

models

• Defined in a metacircular manner, using a
subset of UML to specify itself

• UML metamodel bootstraps itself. Similar:
– compiler compiles itself

– grammar defines itself

– class dictionary defines itself
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4 layer metamodel architecture

• UML metamodel one of the layers

• Why four layers?

• Proven architecture for complex models

• Validates core constructs by using them to
define themselves
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Four layer architecture

• meta-metamodel
– language for specifying metamodels

• metamodel
– language for specifying models

• model
– language for specifying objects in some domain

• user objects
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Four levels

• User Objects in running system
– check run-time constraints

• Model of System under design
– specify run-time constraints

• Meta-model
– specify constraints on use of constructs in model

• Meta-metamodel
– data interchange between modeling tools
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Three layers

user object
OP

CL

CB

model
OL

metamodel
OB

TP

TL

TB

classes

objects

textsentence

class
dictionary

a class dictionary
for class 
dictionaries

instance of

defines classes

B: metamodel
L: model
P: user objects
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UML OCL

• Object Constraint Language
– allows you to define side effect-free constraints

for UML and other models

– used in UML to defined well-formedness rules
of the UML meta model (invariants for meta
model classes)
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Why OCL

• It is a formal mathematical language

• Tend to be hard to use by average modelers

• OCL is intended for average modelers

• Developed as business modeling language
within IBM insurance division (has roots in
Syntropy method)

• OCL is a pure expression language (side
effect free)
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Companies behind OCL

• Rational Software, Microsoft, Hewlett-
Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing,
IntelliCorp, i-Logix, IBM, ObjecTime,
Platinum Technology, Ptech, Taskon, Reich
Technologies, Softeam
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Where to use OCL?

• Specify invariants for classes and types

• Specify pre- and post-conditions for
methods

• As a navigation language

• To specify constraints on operations

• Test requirements and specifications
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OCL properties

• LL(1) language
– finally back to the Pascal days!

– Grammar provided uses EBNF syntax

• Parser generated by JavaCC
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What is OCL?

• Predicate calculus for objects

• Traditional predicate calculus:
– individuals

– variables, predicate and function symbols

– terms (for all, Boolean connectives)

– axioms and the theories they define (group
theory, number theory, etc.)

• In OCL: individuals -> objects
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Structured individuals

• some “structural” constraints imposed by
UML class diagram; further constraints can
be imposed by OCL expressions

• annotated UML class diagram defines
textual representation
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Connection to model

• Self. Each OCL expression is written in the
context of an instance of a specific type.

    Company

    self.numberOfEmployees

    c : Company

    c.numberOfEmployees
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Connection to model

• Invariants of a type. An OCL expression
stereotyped with <<invariant>>. An
invariant must be true for all instances of
the type at any time.

   Person

   self.age >= 0



5/12/98 Specification/Testing/OCL 19

Example: UML class diagram
ClassGraph
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Note: we 
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thick 
arrow to
denote
inheritance.
UML uses an
open arrow.
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UML class diagram ClassGraph
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Example

• Number of concrete classes:
– ClassGraph self.entries->

       select(c:Entry|c.

    oclIsTypeOf(ClassDef))->

     collect(body)->

      select (b:Body|b.

       oclIsTypeOf(Concrete))

   ->size

-> collection op
select:subset
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Pre- and post-conditions

• constraints stereotyped with
<<precondition>> and <<postcondition>>

   for an operation or method. Example:
   Type::op(param1 : Type1 …):

    ReturnType

  pre: param1 …

  post: result = …
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Pre- and post-conditions

• Example: Post condition for insert operation:
    person.allInstances ->
forAll(p1, p2 | p1 <> p2
implies p1.id <> p2.id)
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Basic values and types
• Boolean   true, false

– and or xor not implies if-then-else

•  Integer 1 2 3    subtype of Real
– * + - / abs

•  Real     3.14
– * + - / floor

•  String    ‘To be or not to be’
– toUpper concat
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Basic values and types
• Collection

– Set subtype of Collection

– Sequence subtype of Collection

– Bag subtype of Collection

if element types conform to each other
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Types from the UML Model

• Each OCL expression lives in the context of
a UML model, a number of types/classes
and their features and associations and their
generalizations.

• All types/classes from the UML model are
types in OCL.
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Type Conformance

• OCL is typed

• Type conformance rules for types in the
class diagram are simple:
– each type conforms to its supertype

– type conformance is transitive
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Objects and properties

• The value of a property on an object that is
defined in a class diagram is specified by a
dot followed by the property name.

    Atype

      self.property
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Properties

• an attribute

• an association end

• an operation with isQuery true

• a method with isQuery true
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Properties

• an attribute
   Person self.age >= 0

                    self.employer->size

• an association end
   Company

self.manager --type Person

self.employee--type Set(Person)
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Properties

• an operation with isQuery true
   Person self.income(aDate)

   Company self.stockPrice()
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Missing role names

• Whenever a role name is missing at one of
the ends of an association, the name of the
type at the association end, starting with a
lowercase character is used as role name. If
this results in an ambiguity, the role name is
mandatory
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Navigation over associations

• Company self.manager

   object of type Person or Set(Person)
– used as Set(Person)

  self.manager->size -- result 1
– used as Person

 self.manager.age
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OclType and OclAny

• All types in a UML model, or predefined
within UML have a type. This type is an
instance of the OCL type called OclType.

• OclType: meta type of all types. OclAny
supertype of all types. OclType : Class =
OclAny : Object  (analogy to Java)

• Features of OclType: good for meta
programming.
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Predefined OCL types

• OclType:  type: instance of OclType
– type.name : String

– type.attributes:Set(String)

– type.associationEnds:Set(String)

– type.operations:Set(String)

– type.supertypes:Set(OclType)

– type.allSupertypes:Set(OclType)

– type.allInstances:Set(type)
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Similarity: java.lang.Class

• instances of class Class represent classes and
interfaces in a way that can be read (but not
modified) by a running Java program

public final class Class{

  public String getName();

  public Class getSuperClass();

  public Class[] getInterfaces();

  ...
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Predefined OCL types

• OclAny:  supertype of all types in the
model.   object: instance of OclAny
– object=(object2:OclAny)

– object<>(object2:OclAny):Boolean

– object.oclType:OclType

– object.oclIsKindOf(type:OclType)
: Boolean
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Similarity: java.lang.Object

• All objects, including arrays, implement the
methods of this class

public class Object {

  public final Class getClass();

  public boolean

    equals(Object obj);

  ...
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Predefined features on all objects
(OclAny)

• Type of an object
oclType : OclType

    Feature oclType results in type of an object

• Direct type
oclIsTypeOf(t:OclType):Boolean

• Direct or super type
oclIsKindOf(t:OclType):Boolean
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Examples

• Person

    self.oclType

    results in Person
• Person

  self.oclIsTypeOf(Person)--true

 self.oclIsTypeOf(Company)--false
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Predefined features on types

• Two kinds of properties
– on instances of classes

– on types/classes themselves

• Most important predefined feature on each
type: allInstances

 Person.allInstances ->
forAll(p1, p2 | p1 <> p2
implies p1.id <> p2.id)
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Collections

• Navigation will most often result in a
collection.

• Collection predefined

• Large number of predefined operations
• Collection(X) :

     Set(X)|Sequence(X)|Bag(X).

• Specifiable by a literal
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Collection type conformance

• Collection(X) is a subtype of OclAny.

• Rules (only 3 collection specific)
– T1 conforms to T2 if T1=T2.

– T1 conforms to T2 when T1 is a subtype of T2.

– Collection(T1) conforms to Collection(T2) if
T1 conforms to T2

– conformance is transitive
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Previous value in post-conditions

• Pre- and post-conditions on operations and
methods
– the value of a property at the start of the

operation or method

– the value of a property upon completion of the
operation or method
•Person::birthdayHappens()

        post: age = age@pre + 1
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Collection Operations

• Select and reject operations
– collection->select(boolean-expr)

  Company

  self.employee->select(age > 50)

– collection->select

  (v|boolean-expr-with-v)

  Company self.employee->select

     (p|p.age > 50)
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Collection Operations

• Select and reject operations
– collection->select

  (v:Type|boolean-expr-with-v)

Company self.employee->select

 (p:Person|p.age > 50)
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Select syntax

• Define a subset
– collection->select

  (v:Type|boolean-expr-with-v)

– collection->select

  (v|boolean-expr-with-v)

– collection->select

  (boolean-expr)
refer to
parts

refer to
entire
object

type
redundancy
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Reject syntax

• Define a subset
– collection->reject

  (v:Type|boolean-expr-with-v)

– collection->reject

  (v|boolean-expr-with-v)

– collection->reject

  (boolean-expr)

• Instead negate expression
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Collect syntax

– collection->collect

  (v:Type|expr-with-v)

– collection->collect

  (v|expr-with-v)

– collection->collect

  (expr)

• Creates a bag
self.empl->collect(bdate)->asSet

Build new 
colletion
by applying
expression
to elements
of old
collection
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Shorthand for Collect

• Because navigation through many objects is
very common, there is a shorthand  notation
for collect that makes OCL expressions more
readable. Both are correct:
– self.employee ->
collect(birthdate.year)

– self.employee.birthdate.year
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ForAll operation

• All elements satisfy Boolean expression
– collection->forAll

  (v:Type|boolean-expr-with-v)

– collection->forAll

  (v|boolean-expr-with-v)

– collection->forAll

  (boolean-expr)
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Exists operation

• At least one element satisfies Boolean
expression
– collection->exists

  (v:Type|boolean-expr-with-v)

– collection->exists

  (v|boolean-expr-with-v)

– collection->exists

  (boolean-expr)
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Predefined OCL types

• Integer, Real, String, Boolean

• OclExpression, OclType, OclAny

• OclType
– all types defined in a model have type OclType

– allows access to the meta-level of the model
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Predefined OCL types

• OclType:  type: instance of OclType
– type.name : String

– type.attributes:Set(String)

– type.associationEnds:Set(String)

– type.operations:Set(String)

– type.supertypes:Set(OclType)

– type.allSupertypes:Set(OclType)

– type.allInstances:Set(type)
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Predefined OCL types

• OclAny:  supertype of all types in the
model.   object: instance of OclAny
– object=(object2:OclAny)

– object<>(object2:OclAny):Boolean

– object.oclType:OclType

– object.oclIsKindOf(type:OclType)
: Boolean
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Applications

• Number of class definitions:
–  ClassGraph self.entries->size wrong

–  ClassGraph self.entries->

        select(c:Entry|c.

     oclIsTypeOf(ClassDef))->size

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries
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Applications

• Number of class definitions: What about
using strategies to define collections?
–   ClassGraph self.{to ClassDef}

  ->size

ClassGraph

EParse

BParse
ClassDef

Entry0..*

entries
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Improve OCL: make adaptive

• OCL stresses the importance of collections

• Collections are best specified adaptively

• A strategy SS = (S, B, s, t) with source s and
target set t and name map N for class graph
G defines a collection of objects contained
in a N(s)-object. The collection type CT is
the union of N(t1) for t1 in t.
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Improve OCL

• The collection consists of CT-objects
reached during the traversal of the N(s)
object following strategy SS.
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Properties

• In OCL
– an attribute

– an association end

– an operation with isQuery true

– a method with isQuery true

• Add for adaptive OCL
– a strategy { … } with a single source
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UML class diagram ClassGraph
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ClassGraph -- concrete classes
  self.{to Concrete}->size
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Applications

• Number of concrete classes:
– ClassGraph self.entries->

       select(c:Entry|c.

    oclIsTypeOf(ClassDef))->

     collect(body)->

      select (b:Body|b.

       oclIsTypeOf(Concrete))

   ->size
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ClassGraph self.entries->
       select(c:Entry|c.

    oclIsTypeOf(ClassDef))->

     collect(body)->

      select (b:Body|b.

       oclIsTypeOf(Concrete))

->size -- count concrete classes

ClassGraph -- count concrete classes
  self.{to Concrete}->size

Which one is easier to write?
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UML class diagram ClassGraph
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Applications

• Terminal buffer rule
ClassGraph self.{to ClassDef}

  ->forAll(r|r.termBProp())

ClassDef Boolean termBProp(){

  partCNs=self.{via Part to ClassName};

  result=if (partCNs->size)>1 then

     (partCNs->intersection(predefCNs))

             -> isEmpty

         else true endif}
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UML class diagram ClassGraph
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UML class diagram ClassGraph
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UML class diagram ClassGraph
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Applications

• Class graph is flat
ClassGraph

  self.{to Abstract}->

    forAll(a|a.parts->size=0)
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UML class diagram ClassGraph
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UML class diagram ClassGraph
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Applications

• Abstract superclass rule
ClassGraph

  superCls =

    self.{through->*,super,* to ClassName};

  self.{to ClassDef}->

    forAll(c|

      if (superCls->includes(c.className))

      then c.{to Abstract}->size=1

      else true

      endif)
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UML class diagram ClassGraph
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UML class diagram ClassGraph
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Conclusions

• OCL is a suitable language for expressing
object properties, class invariants and
method pre- and post-conditions. (needs
capability to define functions and auxiliary
variables).

• OCL is NOT a good language for
navigation but can be made into one by
adding strategies.
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Further information

• www.rational.com contains latest
information about UML, specifically OCL.

• www.ics.uci.edu/pub/arch/uml


