Automatic Verification of
Industrial Designs

» Based on two papers in: Workshop on
Industrial-Strength Formal Specification
Techniques, 1995, Boca Raton, Florida,
| EEE Computer Society
— Automatic Verification of Industrial Designs,

pages 88-96
— Timing Analysis of Industrial Real-Time
Systems, pages 97-107

4/21/98 Testing/Spring 98

Successful forma methods
In industry

» Forma methods are mathematical
techniques that have been used in the
specification and verification of computer
systems.

» Want to know: Are we building the product
correctly? = Verification (Different from:
are we building the right product (=
Validation)).

4/21/98 Testing/Spring 98

The Meaning of Formal: from
Weak to Strong Formal Methods

» Pierre Wolper: International Journal on
Software Tools for Technology Transfer.

* Nov. 3, 1997

4/21/98 Testing/Spring 98 3

Abstract

» What makes formal methods “formal” ?

» Weak and strong ways of being formal:
strong means. formality exploitable and
exploited in software tools.

4/21/98 Testing/Spring 98 4

| ntroduction

 Bring to software development the rigor of
mathematical reasoning.

» Formal methods = applied mathematics of
software engineering

o Series of criteriathat methods should satisfy
in order to be formal

4/21/98 Testing/Spring 98 5

Formal methods and syntax

 Start with ahigh-level description =
specification of the intended behavior.
 Choice of notation for expressing
specification
— English not suitable for formal methods
because of ambiguity.

4/21/98 Testing/Spring 98 6

Criterion 1

» Decidable syntax: A language has a
decidable syntax if its sentences are
recognizable algorithmically. A
specification language must have a
decidable syntax.

» Weak requirement: satisfied by all formal

methods.

4/21/98

Testing/Spring 98

Forma M ethods and Semantics

» Not only syntax needs to be formal, also
meaning of language.
 In genera, the semanticsfor alanguageis

given as a mapping from that language to
another, usually ssimpler formalism.

» Semantics of aprogram: set of possible
execution sequences.

4/21/98

Testing/Spring 98

Forma M ethods and Semantics

* When is such a mapping formal?
» Tempting: mapping must be computablein
the Turing sense. Too strong.

* |stoo strong: Would imply: semantics of
first-order arithmetic is not formal.

» Need something not computable, yet
precise.

4/21/98 Testing/Spring 98

Criterion 2

« Formal semantics. A language has aformal
semantics if deciding semantical questions
for thislanguage (e.g. equivalence of
sentences) is proven to fall within the
arithmetical or the analytical hierarchy.

» Also aweak requirement satisfied by most
languages that claim to be formal.

4/21/98 Testing/Spring 98

10

Need third criterion

» Want tool support

» Should require little or no human
intervention (otherwise it will not be used)

e Ok if tool sometimes does not terminate

4/21/98 Testing/Spring 98 11

Criterion 3

» Semantical Computational Support: A
formal method provides semantical
computational support if it allows software
tools for checking semantical properties of
specifications.

» More fuzzy than first two. But it helps to
distinguish formal methods.

4/21/98 Testing/Spring 98 12

Classifying Formal Methods

» Weak formal methods

— specification only formal methods

— tool support for syntax checking only

— write equations of a physical system
 Strong formal methods

— tool supported semantical analysis

— with software package to solve equations

4/21/98 Testing/Spring 98 13

A Strong Formal Method

* Model Checking (semantical questions are
actually decidable but might have high
complexity)

» Model checking without a model

4/21/98 Testing/Spring 98 14

M ore motivation for model
checking

* |SSTA 1998 (March), Model Checking
Without a Model:An Analysis of the Heart-
Beat Monitor of aTelephone Switch using
Veri Soft, by 3 researchers from Lucent and

Bell Labs.

Microsoft PowerPoint
Presentation

4/21/98 Testing/Spring 98 15

Formal methods

« Many different specification languages and
proof techniques.

» Some are difficult to apply since computers
are not good at proving theorems (they need
alot of human help)

» Exception: Symbolic Model Checking: Fast,
based on OBDD techniques (Ordered
Binary Decision Diagrams).

4/21/98 Testing/Spring 98 16

Symbolic Model Checking

e Determine correctness of finite state
systems.

» Developed at Harvard and later at CMU by
Clarke/Emerson/Sistla

» Specifications are written asformulasin a
propositional temporal logic.

» Temporal logic: expressing ordering of
events without introducing time explicitly

4/21/98 Testing/Spring 98 17

Temporal Logic

A kind of modal logic. Originsin Aristotle
and medieval logicians. Studied many
modes of truth.

» Modal logic includes propositional logic.
Embellished with operators to achieve
greater expressiveness.

» A particular temporal logic: CTL
(Computation Tree Logic)

4/21/98 Testing/Spring 98 18

Computation Tree Logic

» Used to express properties that will be
verified

« Computation trees are derived from the
state transition graphs

 State transition graphs unwound into an
Infinite tree rooted at initial state

4/21/98 Testing/Spring 98 19
SO
SO
S1

) < S2

S0 Sil
S1

structure S1 2 v g

computation tree for SO

4/21/98 Testing/Spring 98

20

Computation Tree Logic

o CTL formulas built from
— atomic propositions, where each proposition
corresponds to a variable in the model
— Boolean connectives

— Operators. Two parts
* path quantifier (A, E)
* temporal operator (F,G,X,U)

4/21/98 Testing/Spring 98 21

Computation Tree Logic

» Pathsin tree represent all possible
computations in model.

o CTL formulas refer to the computation tree

AG(reqimplies AF ack)

If the signal req is high then eventually ack will also be high

4/21/98 Testing/Spring 98 22

Computation Tree Logic

 path quantifier (A, E)

— A: truefor all paths from a given state

— E: true for some paths from a given state
 temporal operator (F,G,X,U)

— Ff (f holds sometime in the future) istrue of a
path if there exists a state in the path that
satisfiesf .

4/21/98 Testing/Spring 98 23

Computation Tree Logic

 temporal operator (F,G,X,U)

— Ff (f holds sometime in the future) istrue of a
path if there exists a state in the path that
satisfiesf .

— Example: EF(started and not ready): Itis
possible to get to a state where started holds but
ready does not hold.

4/21/98 Testing/Spring 98 24

Computation Tree Logic

 temporal operator (F,G,X,U)
— Gf (f holds globally) istrue of apath if f holds
for all statesin the path.
— Example: AG(req implies AF ack). It is always
the case that if the signal req is high then
eventually ack will also be high.

4/21/98 Testing/Spring 98 25

Computation Tree Logic

 temporal operator (F,G,X,U)
— Xf (f holdsin the next state) meansthat f is
true in the next state.

—f Uy (f holdsuntil y holds) is satisfied by a
path if y istruein some state in the path, and in
al preceding states, f holds.

— Example: AG(sendimplies AF[send U recv]). It isalways the
case that if send occurs, then eventually recv istrue, and until that
time, send must remain true.

4/21/98 Testing/Spring 98 26

Computation Tree Logic

AG EF restart: From any state it
IS possible to get to the restart state.

4/21/98 Testing/Spring 98 27

Computation Tree Logic

» Examples. Dark circle indicates that a
gpecification f istrue in corresponding
state. Light means false.

inevitable invariant

AFf EGf AGf

4/21/98 Testing/Spring 98 28

Computation Tree Logic

* Model to be verified: Finite state machine
(S,R,P), where Sisthefinite set of all
possible states, R abinary relationon S
which defines the possible transitions and P
assigns to each state the set of atomic
propositions true in that state.

 Can verify systems with more than 10'%°
states (1995).

4/21/98 Testing/Spring 98 29

Example: two-process mutual

N: noncritical region eXCI USi on
T: trying region
C: critical region 0

Note: itis
important to have
two (T1,T2)

4/21/98 Testing/Spring 98 30

Example: two-process mutual

N: noncritical region eXCI USi on
T: trying region

C: critical region 0

AF(C1) truein 1
EF(Cland C2) falsein O

4/21/98 Testing/Spring 98 31

Model checking algorithm

» Thereisan algorithm for determining
whether aCTL formulaf istruein state s of
astructure M = (§,R,P) which runsin time
O(length(f))* (card(S) + card(R)))

4/21/98 Testing/Spring 98 32

Computation Tree Logic:
Railway Interlocking Control

« Simple Interlocking Model
cel

4 Avoid derailments
B4 and train crashes
2 A 5 3

Track sections: 2,3,4,5
Control Signals: A,B,C

4/21/98 Testing/Spring 98 33

Computation Tree Logic:
Railway Interlocking Control
« Simple Interlocking Model

Inputs

C‘. 2T Onotranin?2
1 2 occupied by train
4 or broken
/, B4l
2 A ' 5 3 Finite State Machine
not shown

Track sections: 2,3,4,5
Control Signals: A,B,C

4/21/98 Testing/Spring 98 34

Computation Tree Logic:
Railway Interlocking Control
« Simple Interlocking Model

SPEC
c4l AG!(SignalA=1 and
SignalB=1)
4 AG!(SignalA=1 and
B 4] SignalC=1)
AG(2T=0implies
2 AP 5 3 AX Signa A=0)

Track sections: 2,3,4,5 (O: unoccupied)
Control Signals: A,B,C(O:red, 1:green)

4/21/98 Testing/Spring 98 35

Output from checker

« Specification AG Si gnal A=1
and .) is false as
denonstrated by the foll ow ng
executi on sequence
—state 1.1
—state 1.2

» Gives counterexampleif thereis one.

4/21/98 Testing/Spring 98 36

Computation Tree Logic:
|mplementation: BDDs

 Binary Decision Diagrams
— A canonical representation for Boolean

formulas (canonical = in simplest or standard
form).

— Invented by Randal Bryant, now at CMU.

— Similar to abinary decision tree, but structureis
adag rather than atree. Allows nodes and
substructures to be shared.

4/21/98 Testing/Spring 98 37

Applications

» VLSl design

« Verification and equivalence checking of
sequential machines

 Finding a satisfying assignment for a
Boolean formula

» Checking whether two Boolean functions
areidentical

4/21/98 Testing/Spring 98 38

BDD Definition

« A BDD isadirected acyclic graph with two
terminal nodes (O-terminal, 1-terminal).
Each non-terminal node has an index to
identify an input variable of the Boolean
function and has two outgoing edges, called
the 0-edge and the 1-edge.

4/21/98 Testing/Spring 98 39

OBDD Definition

« A OBDD isaBDD where input variables
appear in afixed order in al paths of the
graph and no variable appears more than
once on apath.

4/21/98 Testing/Spring 98 40

Computation Tree Logic:
|mplementation: BDDs

* (x3and x2) or not x1 Binary decision tree

OBDD

4/21/98 Testing/Spring 98

Reduced ordered BDD: ROBBD

» Three reduction rules; reduced OBBD
— only two terminal nodes (TERMINAL)

— eliminate al the redundant nodes whose two
edges point to the same node (ELIMINATION)

— share al the equivalent subgraphs (MERGING)
« ROBDD: canonical form for fixed ordering

of variables.

— Important for equivalence checking

— BDD now means ROBDD

4/21/98 Testing/Spring 98 42

Reduced OBDD

» Definition;: An OBDD is called reduced if
none of the three reduction rules (Terminal
rule, Elimination rule, Merging rule) can be
applied.

» Leadsto systematic construction of BDDs
from binary decision trees. Terminal ruleis
applied first.

4/21/98 Testing/Spring 98 43

BDD reduction example

* (x3and x2) or not x1 Binary decision tree

OBDD X3

After TERMINAL

BDD reduction example

* (x3and x2) or not x1 Binary decision diagram

OBDD

4/21/98 Testing/Spring 98 45

ELIMINATION
BDD reduction example

* (x3and x2) or not x1 Binary decision diagram

OBDD

4/21/98 Testing/Spring 98 46

After ELIMINATION

BDD reduction example

* (x3and x2) or not x1 Binary decision diagram
OBDD
x3
0/
7o XA X2 O\

4/21/98 Testing/Spring 98

MERGING

BDD reduction example

* (x3and x2) or not x1 Binary decision diagram
OBDD
x3
O..
0,/
© 0 XA

4/21/98 Testing/Spring 98 48

After MERGING

BDD reduction example

* (x3and x2) or not x1 Binary decision diagram
OBDD X3
X3
0 XA X2
1 X1 S
1
4/21/98 Testing/Spring 98
MERGING

BDD reduction example

* (x3 and x2) or not x1 Binary decision diagram
OBDD x3
x3
O.. 0 0\1

0/

7o x& X2

................................... 0 1 X1

ey
1

4/21/98 Testing/Spring 98

BDD

* (x3and x2) o

OBDD

x3 O 1

After MERGING
reduction example

r not x1 Binary decision diagram

X2

Testing/Spring 98

BDD

* (x3and x2) o

OBDD

x3 O 1

X

0

ELIMINATION

reduction example

r not x1

Binary decision diagram

X2

Testing/Spring 98

After ELIMINATION
BDD reduction example

* (x3and x2) or not x1 Binary decision diagram

OBDD

x3 O .

0 X

4/21/98 Testing/Spring 98

BDD reduction example for
exclusive-or function

Binary decision tree

x1A x2 A x3

exclusive-or
odd parity function

4/21/98 Testing/Spring 98 54

After TERMINAL

BDD reduction example

Binary decision tree

After applying terminal rule x1

X2

X3

1 0

4/21/98 Testing/Spring 98 55

MERGING

BDD reduction example

Binary decision tree

1 0

4/21/98 Testing/Spring 98 56

After MERGING

BDD reduction example

Binary decision tree

4/21/98 Testing/Spring 98 57

MERGING

BDD reduction example

Binary decision tree

4/21/98 Testing/Spring 98 58

After MERGING

BDD reduction example

Binary decision tree

4/21/98 Testing/Spring 98 59

Unigqueness

» With respect to each fixed variable order,
the reduced OBDD of a Boolean function f
IS determined uniquely.

» Representations of Boolean functions

— formulas, based on computation rules: not
unique

— BDDs, based on a decision process: unique if
reduced

4/21/98 Testing/Spring 98 60

Automatically recognizing
regularities efficiently

 Construction of BDDs from formulas. use
Shannon’ s expansion:
—f*g=xand (f(x=1) * g(x=1)) or
Ix and (f(x=0) * g(x=0))

4/21/98 Testing/Spring 98 61

Shannon expansion example

x1A x2 A x3

exclusive-or

odd parity function
x1A x2 A x3 =
x1 (LA x2A x3+
Ix1(0 A x2 A x3)

4/21/98 Testing/Spring 98 62

Shannon expansion example

Binary operation: + (or)

4/21/98 Testing/Spring 98

Unary and Binary Operations

» Negation: A BDD for not f: exchange O-
terminal and 1-terminal. No increase in
Sizel

4/21/98 Testing/Spring 98 64

x1

X2
x1 2
0 1 0 1
(x1 and x2) or x3 x1 and x2
0
X2 X3 X2 L
1
0 0 L

0 0

0 1 0 1

4/21/98 Testing/Spring 98 65

Binary operations

* Let the Boolean functionsfl and f2 be
represented by reduced OBDDs P1 and P2
with respect to the same variable ordering.
For each binary operation * the reduced
OBDD P of f1*f2 can be determined in time
O(size(P1) * size(P2)).

4/21/98 Testing/Spring 98 66

Size of BDDs

"g
n-input Boolean functions 2§2 ?
Require 2" bits in worst-case
Truth tables always require 2" bits

Many practical functions require much less
spacein BDD representation.

4/21/98 Testing/Spring 98 67

Regularities in Boolean functions

A Boolean function has high regularity if
for some variable ordering its BDD
(reduced ordered binary decision diagram)
Issmall compared to the size of the decision
tree.

A Boolean function has high regularity if
for some variable ordering many reduction
steps can be applied to its decision tree.

4/21/98 Testing/Spring 98 68

Regularities in Boolean functions

A Boolean function has high regularity if
for some variable ordering its BDD has a
Size comparable to the size of its formula
representation.

» What is then the benefit of going BDD?

— Unique representation: easy equality test.
— Finding a satisfying assignment is easy.

4/21/98 Testing/Spring 98 69

Why BDDs?

 Classic representations: truth tables,
digunctive normal forms, conjunctive
normal forms, general Boolean formulas,
net-list of gates.

 Testing whether two digunctive normal
forms, conjunctive normal forms, generd
Boolean formulas, or net-list of gates are
equivalent is co-NP complete. NOT GOOD

4/21/98 Testing/Spring 98 70

Regularities in Boolean functions

« Many practically occurring Boolean
functions have high regularity.

 Proper variable ordering can make
exponential difference.

» Some Boolean functions are not regular:
multiplication of two n-bit Boolean
numbers has exponential size BDD for
every variable ordering.

4/21/98 Testing/Spring 98 71

Regularities in Boolean functions

 Finding optimal variable order is NP-hard.
» Some good heuristics are available.

» Regularities and compact representations
are also important in other areas of
computer science.

4/21/98 Testing/Spring 98 72

Regularitiesin two areas of
computer science

» BDD for function f » Strategy for traversal
— often high regularity tingraph G
for functions occurring — often high regularity
in practice: BDD is for traversals occurring
small in practice: strategy is
— sometimes low small
regularity: BDD isbig — sometimes low
— benefit: excellent regularity: strategy is
algorithmic properties: big
equivalence, — benéfit: shorter, more
satisfiability, etc. easy flexible programs
4/21/98 Testing/Spring 98 73

Regularitiesin two areas of
computer science

» BDD for function f » Strategy for traversal
— non-compact tingraph G
representation: truth — non-compact
table representation: regular

expression describing
traversal (without
needing graph G)

4/21/98 Testing/Spring 98 74

Satisfying assignment

A path from root to 1-terminal. Can be
found in time proportional to the number of
input variables.

» Count number of satisfying assignmentsin
time proportional to the number of nodesin
the BDD.

4/21/98 Testing/Spring 98 75

Exercise

» WriteaBDD for the equality function for
n=3 Boolean variables.

4/21/98 Testing/Spring 98 76

Computation Tree Logic:
|mplementation: BDDs

 Binary Decision Diagrams

4/21/98

abecdresult
11 1
111 What is
0 111 Boolean
10111 formula?
All pathsto 1
Testing/Spring 98 7

Computation Tree Logic:
|mplementation: BDDs

 Binary Decision Diagrams

4/21/98

Given avariable ordering, the BDD
for aformulais unique.

There are efficient algorithms to
compute the BDD for not f and f or g
given the BDD of f and g.

Testing/Spring 98 78

Computation Tree Logic:
|mplementation: BDDs

 Binary Decision Diagrams

For the purpose of model checking

also need to compute BDD of restricted
formulas. Bryant describes an algorithm
for computing the BDD of arestricted
formula such as f, where v=0.

4/21/98 Testing/Spring 98 79

Summary BDDs

« Many applications in computer-aided
design

» Moral of the story: appropriate data
structures are very important for efficient
algorithms

» The difference can be exponential in size
for the currently best algorithms:
satisfiability

4/21/98 Testing/Spring 98 80

Summary BDDs

 BDDsdon't always provide a compact

representation (2 n-bit multiplier!). But they

work well in many cases.

« BDDsimprove the performance of many
design systems substantially.

* Now back to the CTL application of BDDs.

4/21/98 Testing/Spring 98 81

References

 EATCS bulletin: Survey and tutoria by
Christoph Meinel and Thorsten Theobald:
Ordered Binary Decision Diagrams and
Their Significance in Computer-Aided
Design of VLSI Circuits, pages 171-187,
year probably 1997, issue unknown.

4/21/98 Testing/Spring 98

82

References

« S. Minato, Binary Decision Diagrams and
Applicationsfor VLSI CAD, Kluwer
Academic Publisher, 1996.

4/21/98

Testing/Spring 98 83

Computation Tree Logic:
|mplementation: BDDs

» Binary Decision Diagrams. All Boolean
formulas are represented by BDDs. BDDs
built in a bottom-up manner.

— The set of atomic formulasis precisely the set

of state variables. (BDD for an atomic variable
= one BDD variable)

— Formulas are built from atomic formulas using

4/21/98

Boolean connectives. Allows CTL formulas.

Testing/Spring 98 84

Symbolic Model Checking

e Determine correctness of finite state
systems.

» Specifications are written asformulasin a
propositional temporal logic.

» Modelsto be checked are represented by
state transition graphs

 Verification is accomplished by an efficient
breadth-first search.

4/21/98 Testing/Spring 98 85

Symbolic Model Checking

» View transition system as model of logic.
 Verify whether specifications are satisfied
for model.
» Advantages:
— completely automatic

— provides counterexamples (execution trace
which shows why formulais not true)

— verify partially specified systems

4/21/98 Testing/Spring 98 86

Symbolic Model Checking

» Model checkers achieve great efficiency
through the use of symbolic implementation
techniques

* represent states and transitions through
Boolean formulasin BDD form

4/21/98 Testing/Spring 98 87

Symbolic Model Checking

» Representing the Model
— Labeled state-transition graph M.

— Use BDDs to represent graph and check
whether formula holds.

— Behavior determined by variables V

4/21/98 Testing/Spring 98 88

Symbolic Model Checking

» Representing the Model
— Behavior determined by variables V
e current state
— V' = Second copy of variables
* next state

4/21/98 Testing/Spring 98 89

Symbolic Model Checking

» Representing the Model: Relationship
between variables in the current state and
the next states is written as aformula using
V and V'. Boolean formula N representing
transition relation. Convert to BDD.

4/21/98 Testing/Spring 98 90

Computation Tree Logic

a

\ b 3/ \;
a b ‘/ b b

State transition graph and corresponding computation tree

Pathsin tree represent al possible computations

4/21/98 Testing/Spring 98

91

Computation Tree Logic

» Used to express properties that will be
verified

» Computation trees are derived from the
state transition graphs

 State transition graphs unwound into an
Infinite tree rooted at initial state

4/21/98 Testing/Spring 98

92

Design and synthesis of
synchronization skeletons

» Edmund Clarke and Allen Emerson, Logics
of Programs 1981, LNCS 131, page 52-71.

» Synthesize synchronization skeleton from a
temporal logic specification.

» Skeleton: detail irrelevant to
synchronization is suppressed.

4/21/98 Testing/Spring 98 93

Exercise

» Design afinite state machine with start state
sand final statet and prove that for all
transitions from sto t any encounter of state
y is preceded by encountering first state x.

» Run your model and specification with the
model checker on the CMU model checking
home page.

4/21/98 Testing/Spring 98 94

Application of CTL: Traversa
specificationsand CTL

* What are the connections, if any? How can
CTL ideas be used for traversals?

* F modal operator has flavor of structure-
shyness. “ When starting in state A
eventually we will get to state B” : sounds
like“from A to B”.

4/21/98 Testing/Spring 98 95

Result

Can use asubset of CTL to express graph
constraints corresponding to traversal
specifications.

Need to modify class graph so that every node
has an outgoing edge. CTL works with infinite
paths.

Model synthesis algorithm for CTL might be
useful for type checking adaptive programs.

4/21/98 Testing/Spring 98 96

CTL for defining path setsin a
graph

o Atomic variable for each state s
— strue: we arein state s
—sfalse: wearenotins
 Exists path from sto t: AG(s=>EF(t))

— if false: no path from sto t

— if true: describes set of state transitions leading
fromstot = path set fromstot

4/21/98 Testing/Spring 98 97

CTL for defining path setsin a
graph

* |ldea: expresstraversals with E quantifier.

» Quantifier claims existence of paths and
defines set of paths.

e CTL formulaboth as constraint and as
definer of a set of paths (all paths satisfying
constraint).

4/21/98 Testing/Spring 98 98

Problem: state transition relation must be total in CTL

A C
Make graph cyclic
Graph M
A C
Graph must satisfy: Fl D
M,A E E[(not F1 and not F2) U D] F2
From A bypassing { F1,F2} to D
4/21/98 Testing/Spring 98 99

CTL for defining path setsin a

graph
o Exist path from sto t: AG(s=>EF(t))

— if false: no path from sto t

— if true: describes set of state transitions leading
fromstot = path set fromstot

— thereisaso S0 involved: M,s0 £ AG(s=>EF(t))
—simpler: M,s £ EF(t)

4/21/98 Testing/Spring 98 100

CTL for defining path setsin a
graph

 Exists path from sbypassingytot:
AG(s=>EF(ly U 1))
— if sistrue then on some path eventually t istrue
and until that time y must be false.
—isaconstraint on graphs

— (given aset of CTL formulas, thereis an
algorithm to construct a model from formulas
(Clarke/Emerson 81)).

4/21/98 Testing/Spring 98 101

CTL for defining path setsin a
graph

 Exists path from sbypassingy tot:
—M,sEEF(y U t)

— on some path from s eventually t is true and
until that timey must be false.

— isaconstraint on graphs

4/21/98 Testing/Spring 98 102

CTL for defining path setsin a

graph
Exists path from stot: M,s £ EF(t)
Exists path fromt to u: M,t £ EF(u)

Exists path from sviat to u:

— M,s £ EF(t) and M.t £ EF(u)

Following is different: Exists path from s
viatto u:

— AG(s=>EF(t)) and AG(t=>EF(U))

4/21/98 Testing/Spring 98 103

End of expressing traversals with
CTL formulas

» An interesting connection between temporal
logic and compact representation of path
setsin graphs.

4/21/98 Testing/Spring 98 104

Next: a more precise definition of
CTL

o CTL very useful for verifying finite state
systems

4/21/98 Testing/Spring 98 105

Definition of CTL

» Formulas
— Every atomic proposition p in AP (atomic
propositions) isa CTL formula.

—If f1and f2 are CTL formulas, then so are not
f1,fland f2, f1 or f2, AXf1l, EXf1,A[f1 U f2],
E[f1U f2].

— X next-time operator
— U until operator

4/21/98 Testing/Spring 98 106

Definition of CTL

e Formulas

— AXf1: f1 holds in every immediate successor
of the current program state

— EXf1: f1 holds in some immediate successor of
the current program state

4/21/98 Testing/Spring 98 107

Definition of CTL

e Formulas

— A[f1 U 2] : for every computation path there
exists an initial prefix such that f2 holds at the
last state of the prefix and f1 holds at all other
states along the prefix.

— E[f1 U 2] : for some computation path there
exists an initial prefix such that f2 holds at the
last state of the prefix and f1 holds at all other
states along the prefix.

4/21/98 Testing/Spring 98 108

Semantics of CTL

» With respect to alabeled state transition
graph. A CTL structureisatripleM =
(SR,P) where
— Safinite set of states
— Risabinary relation on S(Ri S’ S) which

must betotal: " xI S$yl F(x,y) | R]

— P: S® 2AP assignsto each state the set of
atomic propositions true in that state

4/21/98 Testing/Spring 98 109

Semantics of CTL

A pathisan infinite sequence of states
(s0,s1, ...) such that for al i [(si, si+1) T R].

 For any structure M=(S,R,P) and state SO in
S, thereis an infinite computation tree with
root labeled SO such that s® tisan arcin
thetreeiff (st) T R.

4/21/98 Testing/Spring 98 110

SO
S1
P o
S0 S1
S1
structure S1 2 v g
computation tree for SO
4/21/98 Testing/Spring 98 111

Semantics of CTL

 M,sOE f meansthat formulaf holds at state
S0 in structure M.

 When M isunderstood: O£ f

 Inductive definition for £
— 0K piff pT P(s0)
—SOEnot piff not(sO £ p)
—DEflandf2iff SOALf1 and SO £ 2

4/21/98 Testing/Spring 98 112

Semantics of CTL

* |nductive definition for £

— S0 £ AX f1iff for al statest such that (s0,t)i R,

tEfl

— 30 £ EX f1iff for some state t such that
(SO0 R, t £ 1

4/21/98 Testing/Spring 98

113

Semantics of CTL

* Inductive definition for £
— 5 £ A[f, U f,] iff for all paths (sy,S;,...), $1
[i>=0and s £f,and" j[O<=j<i => § &f]]
— 5 & E[f; U f,] iff for some path (s,,5;,...), $1
[i>=0and s £f,and" j[O<=j<i => § &f]]

4/21/98 Testing/Spring 98

114

Abbreviations

o AE(f) = A[True U f]
— intuition: f holds sometime in the future along
every path from s0: f isinevitable.
— True: truein al states
o EF(f) = E[True U f]
— intuition: there is some path from s0 that leads
to astate at which f holds: f potentially holds.

4/21/98 Testing/Spring 98 115

Abbreviations

« EG(f) = not AF[not f]
— intuition: there is some path from sO on which
formulaf holds at every state.

* AG(f) = not EF[not f]

— intuition: on all paths from sO formulaf holds
at every state.

4/21/98 Testing/Spring 98 116

Computation Tree Logic

» Examples. Dark circle indicates that a
gpecification f istrue in corresponding
state. Light means false.

j)\ inevitable j)\ j)\ invariant
AFf EGf AGf

4/21/98

Testing/Spring 98 117

Example: two-process mutual

N: noncritical region
T: trying region
C: critical region

4/21/98

exclusion
0

Testing/Spring 98 118

Example: two-process mutual

N: noncritical region eXCI USi on
T: trying region

C: critical region 0

AF(C1) truein 1
EF(Cland C2) falsein O

4/21/98 Testing/Spring 98 119

Expressing deadlock

AG(no_next_state => finished)
no_next_state=AX False
Faseisfdsein al states
AG(AX Fase => finished)

4/21/98 Testing/Spring 98 120

