
4/21/98 Testing/Spring 98 1

Automatic Verification of
Industrial Designs

• Based on two papers in: Workshop on
Industrial-Strength Formal Specification
Techniques, 1995, Boca Raton, Florida,
IEEE Computer Society
– Automatic Verification of Industrial Designs,

pages 88-96

– Timing Analysis of Industrial Real-Time
Systems, pages 97-107

4/21/98 Testing/Spring 98 2

Successful formal methods
in industry

• Formal methods are mathematical
techniques that have been used in the
specification and verification of computer
systems.

• Want to know: Are we building the product
correctly? = Verification (Different from:
are we building the right product (=
Validation)).

4/21/98 Testing/Spring 98 3

The Meaning of Formal: from
Weak to Strong Formal Methods

• Pierre Wolper: International Journal on
Software Tools for Technology Transfer.

• Nov. 3, 1997

4/21/98 Testing/Spring 98 4

Abstract

• What makes formal methods “formal”?

• Weak and strong ways of being formal:
strong means: formality exploitable and
exploited in software tools.

4/21/98 Testing/Spring 98 5

Introduction

• Bring to software development the rigor of
mathematical reasoning.

• Formal methods = applied mathematics of
software engineering

• Series of criteria that methods should satisfy
in order to be formal

4/21/98 Testing/Spring 98 6

Formal methods and syntax

• Start with a high-level description =
specification of the intended behavior.

• Choice of notation for expressing
specification
– English not suitable for formal methods

because of ambiguity.

4/21/98 Testing/Spring 98 7

Criterion 1

• Decidable syntax: A language has a
decidable syntax if its sentences are
recognizable algorithmically. A
specification language must have a
decidable syntax.

• Weak requirement: satisfied by all formal
methods.

4/21/98 Testing/Spring 98 8

Formal Methods and Semantics

• Not only syntax needs to be formal, also
meaning of language.

• In general, the semantics for a language is
given as a mapping from that language to
another, usually simpler formalism.

• Semantics of a program: set of possible
execution sequences.

4/21/98 Testing/Spring 98 9

Formal Methods and Semantics

• When is such a mapping formal?

• Tempting: mapping must be computable in
the Turing sense. Too strong.

• Is too strong: Would imply: semantics of
first-order arithmetic is not formal.

• Need something not computable, yet
precise.

4/21/98 Testing/Spring 98 10

Criterion 2

• Formal semantics: A language has a formal
semantics if deciding semantical questions
for this language (e.g. equivalence of
sentences) is proven to fall within the
arithmetical or the analytical hierarchy.

• Also a weak requirement satisfied by most
languages that claim to be formal.

4/21/98 Testing/Spring 98 11

Need third criterion

• Want tool support

• Should require little or no human
intervention (otherwise it will not be used)

• Ok if tool sometimes does not terminate

4/21/98 Testing/Spring 98 12

Criterion 3

• Semantical Computational Support: A
formal method provides semantical
computational support if it allows software
tools for checking semantical properties of
specifications.

• More fuzzy than first two. But it helps to
distinguish formal methods.

4/21/98 Testing/Spring 98 13

Classifying Formal Methods

• Weak formal methods
– specification only formal methods

– tool support for syntax checking only

– write equations of a physical system

• Strong formal methods
– tool supported semantical analysis

– with software package to solve equations

4/21/98 Testing/Spring 98 14

A Strong Formal Method

• Model Checking (semantical questions are
actually decidable but might have high
complexity)

• Model checking without a model

4/21/98 Testing/Spring 98 15

More motivation for model
checking

• ISSTA 1998 (March), Model Checking
Without a Model:An Analysis of the Heart-
Beat Monitor of a Telephone Switch using
VeriSoft, by 3 researchers from Lucent and
Bell Labs.

Microsoft PowerPoint
Presentation

4/21/98 Testing/Spring 98 16

Formal methods

• Many different specification languages and
proof techniques.

• Some are difficult to apply since computers
are not good at proving theorems (they need
a lot of human help)

• Exception: Symbolic Model Checking: Fast,
based on OBDD techniques (Ordered
Binary Decision Diagrams).

4/21/98 Testing/Spring 98 17

Symbolic Model Checking

• Determine correctness of finite state
systems.

• Developed at Harvard and later at CMU by
Clarke/Emerson/Sistla

• Specifications are written as formulas in a
propositional temporal logic.

• Temporal logic: expressing ordering of
events without introducing time explicitly

4/21/98 Testing/Spring 98 18

Temporal Logic

• A kind of modal logic. Origins in Aristotle
and medieval logicians. Studied many
modes of truth.

• Modal logic includes propositional logic.
Embellished with operators to achieve
greater expressiveness.

• A particular temporal logic: CTL
(Computation Tree Logic)

4/21/98 Testing/Spring 98 19

Computation Tree Logic

• Used to express properties that will be
verified

• Computation trees are derived from the
state transition graphs

• State transition graphs unwound into an
infinite tree rooted at initial state

4/21/98 Testing/Spring 98 20

a

b

b

c

a

c

S0

S0

S1

S2

S1

S1 S2

S2

S0

S1 S0structure

computation tree for S0

4/21/98 Testing/Spring 98 21

Computation Tree Logic

• CTL formulas built from
– atomic propositions, where each proposition

corresponds to a variable in the model

– Boolean connectives

– Operators. Two parts
• path quantifier (A, E)

• temporal operator (F,G,X,U)

4/21/98 Testing/Spring 98 22

Computation Tree Logic

• Paths in tree represent all possible
computations in model.

• CTL formulas refer to the computation tree

)(ackAFimpliesreqAG
If the signal req is high then eventually ack will also be high

4/21/98 Testing/Spring 98 23

Computation Tree Logic

• path quantifier (A, E)
– A: true for all paths from a given state

– E: true for some paths from a given state

• temporal operator (F,G,X,U)
– Fφ (φ holds sometime in the future) is true of a

path if there exists a state in the path that
satisfies φ.

4/21/98 Testing/Spring 98 24

Computation Tree Logic

• temporal operator (F,G,X,U)
– Fφ (φ holds sometime in the future) is true of a

path if there exists a state in the path that
satisfies φ.

– Example: EF(started and not ready): It is
possible to get to a state where started holds but
ready does not hold.

4/21/98 Testing/Spring 98 25

Computation Tree Logic

• temporal operator (F,G,X,U)
– Gφ (φ holds globally) is true of a path if φ holds

for all states in the path.

– Example: AG(req implies AF ack). It is always
the case that if the signal req is high then
eventually ack will also be high.

4/21/98 Testing/Spring 98 26

Computation Tree Logic

• temporal operator (F,G,X,U)
– Xφ (φ holds in the next state) means that φ is

true in the next state.

– φ Uψ (φ holds until ψ holds) is satisfied by a
path if ψ is true in some state in the path, and in
all preceding states, φ holds.

– Example: AG(send implies AF[send U recv]). It is always the
case that if send occurs, then eventually recv is true, and until that
time, send must remain true.

4/21/98 Testing/Spring 98 27

Computation Tree Logic

AG EF restart: From any state it
is possible to get to the restart state.

4/21/98 Testing/Spring 98 28

Computation Tree Logic

• Examples: Dark circle indicates that a
specification φ is true in corresponding
state. Light means false.

AFφ EGφ AGφ

inevitable invariant

4/21/98 Testing/Spring 98 29

Computation Tree Logic

• Model to be verified: Finite state machine
(S,R,P), where S is the finite set of all
possible states, R a binary relation on S
which defines the possible transitions and P
assigns to each state the set of atomic
propositions true in that state.

• Can verify systems with more than 10120

states (1995).

4/21/98 Testing/Spring 98 30

Example: two-process mutual
exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

Note: it is
important to have
two (T1,T2)

4/21/98 Testing/Spring 98 31

Example: two-process mutual
exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

AF(C1) true in 1
EF(C1 and C2) false in 0

4/21/98 Testing/Spring 98 32

Model checking algorithm

• There is an algorithm for determining
whether a CTL formula f is true in state s of
a structure M = (S,R,P) which runs in time
O(length(f))*(card(S) + card(R)))

4/21/98 Testing/Spring 98 33

Computation Tree Logic:
Railway Interlocking Control

• Simple Interlocking Model

A

B

C

2 5

4

3

Track sections: 2,3,4,5
Control Signals: A,B,C

Avoid derailments
and train crashes

4/21/98 Testing/Spring 98 34

Computation Tree Logic:
Railway Interlocking Control

• Simple Interlocking Model

A

B

C

2 5

4

3

Track sections: 2,3,4,5
Control Signals: A,B,C

Inputs
2T 0 no train in 2
 1 2 occupied by train
 or broken

Finite State Machine
not shown

4/21/98 Testing/Spring 98 35

Computation Tree Logic:
Railway Interlocking Control

• Simple Interlocking Model

A

B

C

2 5

4

3

Track sections: 2,3,4,5 (0: unoccupied)
Control Signals: A,B,C(0:red, 1:green)

SPEC
AG!(SignalA=1 and
 SignalB=1)
AG!(SignalA=1 and
 SignalC=1)
AG(2T=0 implies
 AX SignalA=0)

4/21/98 Testing/Spring 98 36

Output from checker

• Specification AG(SignalA=1
and …) is false as
demonstrated by the following
execution sequence
– state 1.1

– state 1.2

– …

• Gives counterexample if there is one.

4/21/98 Testing/Spring 98 37

Computation Tree Logic:
Implementation: BDDs

• Binary Decision Diagrams
– A canonical representation for Boolean

formulas (canonical = in simplest or standard
form).

– Invented by Randal Bryant, now at CMU.

– Similar to a binary decision tree, but structure is
a dag rather than a tree. Allows nodes and
substructures to be shared.

4/21/98 Testing/Spring 98 38

Applications

• VLSI design

• Verification and equivalence checking of
sequential machines

• Finding a satisfying assignment for a
Boolean formula

• Checking whether two Boolean functions
are identical

4/21/98 Testing/Spring 98 39

BDD Definition

• A BDD is a directed acyclic graph with two
terminal nodes (0-terminal, 1-terminal).
Each non-terminal node has an index to
identify an input variable of the Boolean
function and has two outgoing edges, called
the 0-edge and the 1-edge.

4/21/98 Testing/Spring 98 40

OBDD Definition

• A OBDD is a BDD where input variables
appear in a fixed order in all paths of the
graph and no variable appears more than
once on a path.

4/21/98 Testing/Spring 98 41

Computation Tree Logic:
Implementation: BDDs

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1 1 1 1

Binary decision tree

OBDD x3

x2

x1

4/21/98 Testing/Spring 98 42

Reduced ordered BDD: ROBBD
• Three reduction rules: reduced OBBD

– only two terminal nodes (TERMINAL)

– eliminate all the redundant nodes whose two
edges point to the same node (ELIMINATION)

– share all the equivalent subgraphs (MERGING)

• ROBDD: canonical form for fixed ordering
of variables.
– Important for equivalence checking

– BDD now means ROBDD

4/21/98 Testing/Spring 98 43

Reduced OBDD

• Definition: An OBDD is called reduced if
none of the three reduction rules (Terminal
rule, Elimination rule, Merging rule) can be
applied.

• Leads to systematic construction of BDDs
from binary decision trees. Terminal rule is
applied first.

4/21/98 Testing/Spring 98 44

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1 1 1 1

Binary decision tree

OBDD x3

x2

x1

4/21/98 Testing/Spring 98 45

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1

Binary decision diagram

OBDD x3

x2

x1

0

After TERMINAL

4/21/98 Testing/Spring 98 46

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

ELIMINATION

4/21/98 Testing/Spring 98 47

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

After ELIMINATION

4/21/98 Testing/Spring 98 48

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

MERGING

4/21/98 Testing/Spring 98 49

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

After MERGING

4/21/98 Testing/Spring 98 50

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

MERGING

4/21/98 Testing/Spring 98 51

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

After MERGING

4/21/98 Testing/Spring 98 52

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 10

1 1

Binary decision diagram

OBDD x3

x2

x1

0

ELIMINATION

4/21/98 Testing/Spring 98 53

BDD reduction example

x2

x1

0 1

0
0

0
1

1

1

• (x3 and x2) or not x1

x3 1

1 1

Binary decision diagram

OBDD x3

x2

x1

0

After ELIMINATION

4/21/98 Testing/Spring 98 54

BDD reduction example for
exclusive-or function

01

1 1 1 1

Binary decision tree

x1

x2

x3

x1⊕ x2 ⊕ x3
exclusive-or
odd parity function

4/21/98 Testing/Spring 98 55

BDD reduction example

01

1

Binary decision tree

x1

x2

x3

0

After applying terminal rule

After TERMINAL

4/21/98 Testing/Spring 98 56

BDD reduction example

01

1

Binary decision tree

x1

x2

x3

0

MERGING

4/21/98 Testing/Spring 98 57

BDD reduction example

01

1

Binary decision tree

x1

x2

x3

0

After MERGING

4/21/98 Testing/Spring 98 58

BDD reduction example

01

1

Binary decision tree

x1

x2

x3

0

MERGING

4/21/98 Testing/Spring 98 59

BDD reduction example

01

1

Binary decision tree

x1

x2

x3

0

After MERGING

4/21/98 Testing/Spring 98 60

Uniqueness

• With respect to each fixed variable order,
the reduced OBDD of a Boolean function f
is determined uniquely.

• Representations of Boolean functions
– formulas, based on computation rules: not

unique

– BDDs, based on a decision process: unique if
reduced

4/21/98 Testing/Spring 98 61

Automatically recognizing
regularities efficiently

• Construction of BDDs from formulas: use
Shannon’s expansion:
– f*g = x and (f(x=1) * g(x=1)) or

 !x and (f(x=0) * g(x=0))

4/21/98 Testing/Spring 98 62

Shannon expansion example

x1⊕ x2 ⊕ x3
exclusive-or
odd parity function
x1⊕ x2 ⊕ x3 =
x1 (1 ⊕ x2 ⊕ x3 +
!x1(0 ⊕ x2 ⊕ x3)

x2

x3

0 1

x2

x3

1 0

x1 x1

4/21/98 Testing/Spring 98 63

Shannon expansion example

01

1

Binary operation: + (or)

x1

x2

x3

0

x2

x3

0 1

x2

x3

1 0

x1 x1
+

=

4/21/98 Testing/Spring 98 64

Unary and Binary Operations

• Negation: A BDD for not f: exchange 0-
terminal and 1-terminal. No increase in
size!

4/21/98 Testing/Spring 98 65

0 1

x1

0 1

x2

x1 and x2

0

x2

x1 x2

0 1

x1

0

1

1

(x1 and x2) or x3

0

x2

0 1

x1

0

1

1

x3

1

0

4/21/98 Testing/Spring 98 66

Binary operations

• Let the Boolean functions f1 and f2 be
represented by reduced OBDDs P1 and P2
with respect to the same variable ordering.
For each binary operation * the reduced
OBDD P of f1*f2 can be determined in time
O(size(P1) * size(P2)).

4/21/98 Testing/Spring 98 67

Size of BDDs

• n-input Boolean functions

• Require 2n bits in worst-case

• Truth tables always require 2n bits

• Many practical functions require much less
space in BDD representation.

2 2

 n

4/21/98 Testing/Spring 98 68

Regularities in Boolean functions

• A Boolean function has high regularity if
for some variable ordering its BDD
(reduced ordered binary decision diagram)
is small compared to the size of the decision
tree.

• A Boolean function has high regularity if
for some variable ordering many reduction
steps can be applied to its decision tree.

4/21/98 Testing/Spring 98 69

Regularities in Boolean functions

• A Boolean function has high regularity if
for some variable ordering its BDD has a
size comparable to the size of its formula
representation.

• What is then the benefit of going BDD?
– Unique representation: easy equality test.

– Finding a satisfying assignment is easy.

4/21/98 Testing/Spring 98 70

Why BDDs?

• Classic representations: truth tables,
disjunctive normal forms, conjunctive
normal forms, general Boolean formulas,
net-list of gates.

• Testing whether two disjunctive normal
forms, conjunctive normal forms, general
Boolean formulas, or net-list of gates are
equivalent is co-NP complete. NOT GOOD

4/21/98 Testing/Spring 98 71

Regularities in Boolean functions

• Many practically occurring Boolean
functions have high regularity.

• Proper variable ordering can make
exponential difference.

• Some Boolean functions are not regular:
multiplication of two n-bit Boolean
numbers has exponential size BDD for
every variable ordering.

4/21/98 Testing/Spring 98 72

Regularities in Boolean functions

• Finding optimal variable order is NP-hard.

• Some good heuristics are available.

• Regularities and compact representations
are also important in other areas of
computer science.

4/21/98 Testing/Spring 98 73

Regularities in two areas of
computer science

• BDD for function f
– often high regularity

for functions occurring
in practice: BDD is
small

– sometimes low
regularity: BDD is big

– benefit: excellent
algorithmic properties:
equivalence,
satisfiability, etc. easy

• Strategy for traversal
t in graph G
– often high regularity

for traversals occurring
in practice: strategy is
small

– sometimes low
regularity: strategy is
big

– benefit: shorter, more
flexible programs

4/21/98 Testing/Spring 98 74

Regularities in two areas of
computer science

• BDD for function f
– non-compact

representation: truth
table

• Strategy for traversal
t in graph G
– non-compact

representation: regular
expression describing
traversal (without
needing graph G)

4/21/98 Testing/Spring 98 75

Satisfying assignment

• A path from root to 1-terminal. Can be
found in time proportional to the number of
input variables.

• Count number of satisfying assignments in
time proportional to the number of nodes in
the BDD.

4/21/98 Testing/Spring 98 76

Exercise

• Write a BDD for the equality function for
n=3 Boolean variables.

4/21/98 Testing/Spring 98 77

Computation Tree Logic:
Implementation: BDDs

• Binary Decision Diagrams

a

b

c

d

0 1

0
0

0
0

1

1

1
1

a b c d result
1 1 1
 1 1 1
0 1 1 1
1 0 1 1 1

All paths to 1

What is
Boolean
formula?

4/21/98 Testing/Spring 98 78

Computation Tree Logic:
Implementation: BDDs

• Binary Decision Diagrams

a

b

c

d

0 1

0
0

0
0

1

1

1
1

Given a variable ordering, the BDD
for a formula is unique.
There are efficient algorithms to
compute the BDD for not f and f or g
given the BDD of f and g.

4/21/98 Testing/Spring 98 79

Computation Tree Logic:
Implementation: BDDs

• Binary Decision Diagrams

a

b

c

d

0 1

0
0

0
0

1

1

1
1

For the purpose of model checking
also need to compute BDD of restricted
formulas. Bryant describes an algorithm
for computing the BDD of a restricted
formula such as f, where v=0.

4/21/98 Testing/Spring 98 80

Summary BDDs

• Many applications in computer-aided
design

• Moral of the story: appropriate data
structures are very important for efficient
algorithms

• The difference can be exponential in size
for the currently best algorithms:
satisfiability

4/21/98 Testing/Spring 98 81

Summary BDDs

• BDDs don’t always provide a compact
representation (2 n-bit multiplier!). But they
work well in many cases.

• BDDs improve the performance of many
design systems substantially.

• Now back to the CTL application of BDDs.

4/21/98 Testing/Spring 98 82

References

• EATCS bulletin: Survey and tutorial by
Christoph Meinel and Thorsten Theobald:
Ordered Binary Decision Diagrams and
Their Significance in Computer-Aided
Design of VLSI Circuits, pages 171-187,
year probably 1997, issue unknown.

4/21/98 Testing/Spring 98 83

References

• S. Minato, Binary Decision Diagrams and
Applications for VLSI CAD, Kluwer
Academic Publisher, 1996.

4/21/98 Testing/Spring 98 84

Computation Tree Logic:
Implementation: BDDs

• Binary Decision Diagrams: All Boolean
formulas are represented by BDDs. BDDs
built in a bottom-up manner.
– The set of atomic formulas is precisely the set

of state variables. (BDD for an atomic variable
= one BDD variable)

– Formulas are built from atomic formulas using
Boolean connectives. Allows CTL formulas.

4/21/98 Testing/Spring 98 85

Symbolic Model Checking

• Determine correctness of finite state
systems.

• Specifications are written as formulas in a
propositional temporal logic.

• Models to be checked are represented by
state transition graphs

• Verification is accomplished by an efficient
breadth-first search.

4/21/98 Testing/Spring 98 86

Symbolic Model Checking

• View transition system as model of logic.

• Verify whether specifications are satisfied
for model.

• Advantages:
– completely automatic

– provides counterexamples (execution trace
which shows why formula is not true)

– verify partially specified systems

4/21/98 Testing/Spring 98 87

Symbolic Model Checking

• Model checkers achieve great efficiency
through the use of symbolic implementation
techniques

• represent states and transitions through
Boolean formulas in BDD form

4/21/98 Testing/Spring 98 88

Symbolic Model Checking

• Representing the Model
– Labeled state-transition graph M.

– Use BDDs to represent graph and check
whether formula holds.

– Behavior determined by variables V

vvV n 10
,,

−= K ',,'
10 vvV n−=′ K

4/21/98 Testing/Spring 98 89

Symbolic Model Checking

• Representing the Model
– Behavior determined by variables V

• current state

– V’ = Second copy of variables
• next state

vvV n 10
,,

−= K ',,'
10 vvV n−=′ K

4/21/98 Testing/Spring 98 90

Symbolic Model Checking

• Representing the Model: Relationship
between variables in the current state and
the next states is written as a formula using
V and V’. Boolean formula N representing
transition relation. Convert to BDD.

vvV n 10
,,

−= K ',,'
10 vvV n−=′ K

4/21/98 Testing/Spring 98 91

Computation Tree Logic

s1 s2

State transition graph and corresponding computation tree
Paths in tree represent all possible computations

a

a

a

a

b

b

b

b

bb

ba

4/21/98 Testing/Spring 98 92

Computation Tree Logic

• Used to express properties that will be
verified

• Computation trees are derived from the
state transition graphs

• State transition graphs unwound into an
infinite tree rooted at initial state

4/21/98 Testing/Spring 98 93

Design and synthesis of
synchronization skeletons

• Edmund Clarke and Allen Emerson, Logics
of Programs 1981, LNCS 131, page 52-71.

• Synthesize synchronization skeleton from a
temporal logic specification.

• Skeleton: detail irrelevant to
synchronization is suppressed.

4/21/98 Testing/Spring 98 94

Exercise

• Design a finite state machine with start state
s and final state t and prove that for all
transitions from s to t any encounter of state
y is preceded by encountering first state x.

• Run your model and specification with the
model checker on the CMU model checking
home page.

4/21/98 Testing/Spring 98 95

Application of CTL: Traversal
specifications and CTL

• What are the connections, if any? How can
CTL ideas be used for traversals?

• F modal operator has flavor of structure-
shyness. “When starting in state A
eventually we will get to state B”: sounds
like “from A to B”.

4/21/98 Testing/Spring 98 96

Result

• Can use a subset of CTL to express graph
constraints corresponding to traversal
specifications.

• Need to modify class graph so that every node
has an outgoing edge. CTL works with infinite
paths.

• Model synthesis algorithm for CTL might be
useful for type checking adaptive programs.

4/21/98 Testing/Spring 98 97

CTL for defining path sets in a
graph

• Atomic variable for each state s
– s true: we are in state s

– s false: we are not in s

• Exists path from s to t: AG(s=>EF(t))
– if false: no path from s to t

– if true: describes set of state transitions leading
from s to t = path set from s to t

4/21/98 Testing/Spring 98 98

CTL for defining path sets in a
graph

• Idea: express traversals with E quantifier.

• Quantifier claims existence of paths and
defines set of paths.

• CTL formula both as constraint and as
definer of a set of paths (all paths satisfying
constraint).

4/21/98 Testing/Spring 98 99

A

D

C

A

D

C

F1

F2

Make graph cyclic
Graph M

B

B

M,A Æ E[(not F1 and not F2) U D]
From A bypassing {F1,F2} to D

Graph must satisfy:

Problem: state transition relation must be total in CTL

4/21/98 Testing/Spring 98 100

CTL for defining path sets in a
graph

• Exist path from s to t: AG(s=>EF(t))
– if false: no path from s to t

– if true: describes set of state transitions leading
from s to t = path set from s to t

– there is also s0 involved: M,s0 Æ AG(s=>EF(t))

– simpler: M,s Æ EF(t)

4/21/98 Testing/Spring 98 101

CTL for defining path sets in a
graph

• Exists path from s bypassing y to t :
AG(s=>EF(!y U t))
– if s is true then on some path eventually t is true

and until that time y must be false.

– is a constraint on graphs

– (given a set of CTL formulas, there is an
algorithm to construct a model from formulas
(Clarke/Emerson 81)).

4/21/98 Testing/Spring 98 102

CTL for defining path sets in a
graph

• Exists path from s bypassing y to t :
– M,s Æ EF(!y U t)

– on some path from s eventually t is true and
until that time y must be false.

– is a constraint on graphs

4/21/98 Testing/Spring 98 103

CTL for defining path sets in a
graph

• Exists path from s to t: M,s Æ EF(t)

• Exists path from t to u: M,t Æ EF(u)

• Exists path from s via t to u:
– M,s Æ EF(t) and M,t Æ EF(u)

• Following is different: Exists path from s
via t to u:
– AG(s=>EF(t)) and AG(t=>EF(u))

4/21/98 Testing/Spring 98 104

End of expressing traversals with
CTL formulas

• An interesting connection between temporal
logic and compact representation of path
sets in graphs.

4/21/98 Testing/Spring 98 105

Next: a more precise definition of
CTL

• CTL very useful for verifying finite state
systems

4/21/98 Testing/Spring 98 106

Definition of CTL

• Formulas
– Every atomic proposition p in AP (atomic

propositions) is a CTL formula.

– If f1 and f2 are CTL formulas, then so are not
f1, f1 and f2, f1 or f2, AXf1, EXf1,A[f1 U f2],
E[f1 U f2].

– X next-time operator

– U until operator

4/21/98 Testing/Spring 98 107

Definition of CTL

• Formulas
– AXf1: f1 holds in every immediate successor

of the current program state

– EXf1: f1 holds in some immediate successor of
the current program state

4/21/98 Testing/Spring 98 108

Definition of CTL

• Formulas
– A[f1 U f2] : for every computation path there

exists an initial prefix such that f2 holds at the
last state of the prefix and f1 holds at all other
states along the prefix.

– E[f1 U f2] : for some computation path there
exists an initial prefix such that f2 holds at the
last state of the prefix and f1 holds at all other
states along the prefix.

4/21/98 Testing/Spring 98 109

Semantics of CTL

• With respect to a labeled state transition
graph. A CTL structure is a triple M =
(S,R,P) where
– S a finite set of states

– R is a binary relation on S (R⊆S×S) which
must be total: ∀x∈S∃y∈S[(x,y) ∈R]

– P: S →2AP assigns to each state the set of
atomic propositions true in that state

4/21/98 Testing/Spring 98 110

Semantics of CTL

• A path is an infinite sequence of states
(s0,s1, …) such that for all i [(si, si+1) ∈R].

• For any structure M=(S,R,P) and state s0 in
S, there is an infinite computation tree with
root labeled s0 such that s →t is an arc in
the tree iff (s,t) ∈R.

4/21/98 Testing/Spring 98 111

a

b

b

c

a

c

S0

S0

S1

S2

S1

S1 S2

S2

S0

S1 S0structure

computation tree for S0

4/21/98 Testing/Spring 98 112

Semantics of CTL

• M,s0Æ f means that formula f holds at state
s0 in structure M.

• When M is understood: s0Æ f

• Inductive definition for Æ
– s0 Æ p iff p ∈ P(s0)

– s0 Æ not p iff not(s0 Æ p)

– s0 Æ f1 and f2 iff s0 Æ f1 and s0 Æ f2

4/21/98 Testing/Spring 98 113

Semantics of CTL

• Inductive definition for Æ
– s0 Æ AX f1 iff for all states t such that (s0,t)∈R,

t Æ f1

– s0 Æ EX f1 iff for some state t such that
(s0,t)∈R, t Æ f1

4/21/98 Testing/Spring 98 114

Semantics of CTL

• Inductive definition for Æ
– s0 Æ A[f1 U f2] iff for all paths (s0,s1,…), ∃ i

[i>=0 and si Æ f2 and ∀ j[0<=j<i => sj Æ f1]]

– s0 Æ E[f1 U f2] iff for some path (s0,s1,…), ∃ i
[i>=0 and si Æ f2 and ∀ j[0<=j<i => sj Æ f1]]

4/21/98 Testing/Spring 98 115

Abbreviations

• AE(f) = A[True U f]
– intuition: f holds sometime in the future along

every path from s0: f is inevitable.

– True: true in all states

• EF(f) = E[True U f]
– intuition: there is some path from s0 that leads

to a state at which f holds: f potentially holds.

4/21/98 Testing/Spring 98 116

Abbreviations

• EG(f) = not AF[not f]
– intuition: there is some path from s0 on which

formula f holds at every state.

• AG(f) = not EF[not f]
– intuition: on all paths from s0 formula f holds

at every state.

4/21/98 Testing/Spring 98 117

Computation Tree Logic

• Examples: Dark circle indicates that a
specification φ is true in corresponding
state. Light means false.

AFφ EGφ AGφ

inevitable invariant

4/21/98 Testing/Spring 98 118

Example: two-process mutual
exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

4/21/98 Testing/Spring 98 119

Example: two-process mutual
exclusion

N1 N2

N1 C2T1 T2T1 T2C1 N2

N1 T2T1 N2

T1 C2C1 T2

N: noncritical region
T: trying region
C: critical region 0

1

AF(C1) true in 1
EF(C1 and C2) false in 0

4/21/98 Testing/Spring 98 120

Expressing deadlock

• AG(no_next_state => finished)

• no_next_state = AX False

• False is false in all states

• AG(AX False => finished)

