
1

Lecture 6

OCL

Use cases: managing requirements

Testing

Reusable Software

Object-Based Software

Object-Oriented Software

Collaborations

Testing Object-Based Software:
chapter 21

• OO without inheritance and virtual
functions

• classes with data and function members

• pre- and post-conditions for methods, class
invariants (design by contract: book is not
precise here!)

2

Subsystem Size and Test
Implementation

• Class: smallest reasonable subsystem
– testing methods in isolation: would require

stubs

– but we are looking for interaction errors

– class too small a test unit

Groups of classes

• Often designed to work together

• Test them together

• Often have their own collective invariant

• Three classes
– Object_to_be_displayed, Visual_representation,

• Invariant
– any object to be displayed has at most one

keyboard controllers

• Makes no sense to test in isolation

Testing a group of methods of a

• Will often still test group of classes since
methods use other classes

• Create pairs of sequences which are
supposed to give same object
– example: o1 and o2 should be the same

4

Class Requirement Catalog
(21.3)

• Integration requirements should be listed
once and for all in a class requirement
catalog for “important” classes

Organization of class requirement
catalog

• Object use requirements

• State machine requirements

• Member function requirements

5

Organization of class requirement
catalog

from class invariant: useful independent of
member function called

if class has state machine or statechart

• Member function requirements
– preconditions,

• Collaborations of objects

Object-Oriented Software 1:
Inheritance (chapter 22)

• Inheritance structure of object-oriented
software leads to inheritance structure in
test design documents
– Class A => Extended Class A1

– A test requirements => A1 test requirements

– A test specifications => A1 test specifications

6

What needs to be retested in
subclasses?

• Code which was tested in superclass, does it
need to be retested in subclass?

• Example:
class Refrigerator {
 public:

void set_desired_t(int t);
int get_t();
void calibrate();

 private
int t;}

What needs to be retested in
subclasses?

• set_desired_t allows the temperature to be
between 5 and 20 degrees C. calibrate() puts
the actual refrigerator through several cooling
cycles and uses sensor readings to calibrate the
cooling unit

class Refrigerator {
 public:

void set_desired_t(int t);
int get_t();
void calibrate();

 private
int t;}

7

What needs to be in
subclasses?

 allows the temperature to be
between -5 and 20 degrees C. calibrate() is
unchanged: do we have to retest calibrate? YES!

class Refrigerator {

void set_desired_t(int
int get_t();

 private
int

What needs to be retested in
subclasses?

• Assume that calibrate works by dividing sensor
 In the improved

refrigerator we might get a division by zero error

code. HAVE TO RETEST ALSO INHERITED,
UNCHANGED CODE.

8

Test requirement checklist for
subclass

• B inherits from A
class A {
public:

virtual void member1();
virtual void member2();

protected:
Count count1;
Count count2;}

class B : public A {
public:

void member1();
void member2()

protected:
Count count3;}

Test requirement checklist for
subclass

• To test B, create three test requirement
checklists, one for each member function.

• Member1 and member2 are new code, their
checklist must be complete

• Member 2 is unchanged: contains
requirements that tests interactions with
member1 and member3

9

What is gained?

• New checklist for B contains only
requirements for new code and inherited
code affected by the change: might require
much less work than testing B from scratch

Reuse tests for superclass

Tests for A may satisfy some of the new test
requirements: saving test specifications

Can be a cheap way to exercise B thoroughly

10

Design for Testability

• Implementation of concrete class must obey
constraints described by its abstract
superclass.
– Constraint checks

• self-check functions

– Trace checks
• check effects of a sequence of operations

Constraint check

Are all cardinality constraints satisfied?

–

• Self-check functions are also very useful
during debugging: Demeter/C++

11

Trace checks

• Check effect of sequences of operations
– Constant traces

• o.f().g().h() does not change o

– Equivalent traces
• o.f().g().h() = o.a().b().c()

– Simulation traces
• design simulated objects (ATM customer)

– generate tests from use cases

» use random generation

Testing collaborations

• Problem: tangled with other code

• White-box testing needs to recover the
collaborations from the tangled code

• Identify roles played by the classes

• Same abstract collaboration may be present
several times. Develop tests for abstract
collaboration and adapt them

12

Testing collaborations

• Testing as an opportunity to improve the
design

• How to describe the improved the design
which is used to develop the test
requirements and the test specifications

• This is a common theme: have to develop a
model of the software under test

Testing collaborations

• Finding the abstract collaborations
– Identify participants

• important
– they do real work

• unimportant
– they are only used as transmitters of control and

information

13

Modeling collaborations

• Write down group of collaborating classes

• Separate code for pure navigation through
classes from code which does interesting
work

• Write test requirements for navigation
– does code go to right objects in correct order?

• Write test requirements for interesting code

Modeling collaborations

• Do similar collaborations occur for similar
sets of collaborating classes? They may
have completely different names and
different detailed connections but the
connectivity relationships at a suitable level
of abstraction are identical

• Study paper on modeling collaborations

