Lecture 6

OCL
Use cases. managing requirements

Testing
Reusable Software
Object-Based Software
Object-Oriented Software
Collaborations

Testing Object-Based Software:
chapter 21
» OO without inheritance and virtual
functions
o classes with data and function members

 pre- and post-conditions for methods, class
invariants (design by contract: book is not
precise here!)




Subsystem Size and Test
| mplementation

 Class: smallest reasonable subsystem

— testing methods in isolation: would require
stubs

— but we are looking for interaction errors
— class too small atest unit

Groups of classes

 Often designed to work together
» Test them together
» Often have their own collective invariant




» Three classes
— Object_to_be displayed, Visual _representation,

 Invariant
— any object to be displayed has at most one

keyboard controllers
» Makes no senseto test in isolation

Testing a group of methods of a

» Will often still test group of classes since
methods use other classes

 Create pairs of sequenceswhich are
supposed to give same object

— example: 01 and 02 should be the same




Class Requirement Catalog
(21.3)

* Integration requirements should be listed
once and for all in aclass requirement
catalog for “important” classes

Organization of class requirement
catalog

» Object use requirements
 State machine requirements
» Member function requirements




Organization of class requirement
catalog

from class invariant: useful independent of
member function called

If class has state machine or statechart
» Member function requirements
— preconditions,
 Collaborations of objects

Object-Oriented Software 1.
Inheritance (chapter 22)

* Inheritance structure of object-oriented
software leads to inheritance structurein
test design documents

— Class A => Extended Class Al
— A test requirements => A1 test requirements
— A test specifications => A1 test specifications




What needs to be retested in
subclasses?

» Code which was tested in superclass, does it
need to be retested in subclass?

o Example:

class Refrigerator {
publi c:
void set_desired_t(int t);
int get_t();
void calibrate();
private
int t;}

What needs to be retested in
subclasses?

* set _desired_t alowsthetemperatureto be
between 5 and 20 degrees C. cal i br at e() puts
the actual refrigerator through several cooling
cycles and uses sensor readings to calibrate the
cooling unit

class Refrigerator {
public:
void set_desired_t(int t);
int get_t();
void calibrate();
private
int t;}




What needsto be N
subclasses?

allows the temperature to be
between -5 and 20 degreesC. cal i brat e() is

unchanged: do we have to retest calibrate? YES!
class Refrigerator {

voi d set_desired_t(int
int get_t();

private
int

What needs to be retested in
subclasses?

» Assume that calibrate works by dividing sensor
In the improved
refrigerator we might get adivision by zero error

code. HAVE TO RETEST ALSO INHERITED,
UNCHANGED CODE.




Test requirement checklist for

subclass
* B inheritsfrom A
class A {
public:

virtual void nenber1();
virtual void nenber2();
pr ot ect ed:
Count count1;
Count count2;}
class B : public A {
public:
voi d nenber 1();
voi d nmember 2()
pr ot ect ed:
Count count 3;}

Test requirement checklist for
subclass
» Totest B, create three test requirement

checklists, one for each member function.

 Memberl and member2 are new code, their
checklist must be complete

* Member 2 is unchanged: contains
requirements that tests interactions with
memberl and member3




What is gained?

» New checklist for B contains only
requirements for new code and inherited
code affected by the change: might require
much less work than testing B from scratch

Reuse tests for superclass

Testsfor A may satisfy some of the new test
requirements: saving test specifications
Can be a cheap way to exercise B thoroughly




Design for Testability

 Implementation of concrete class must obey
constraints described by its abstract
superclass.
— Constraint checks
» self-check functions

— Trace checks
» check effects of a sequence of operations

Constraint check

Are al cardinality constraints satisfied?

» Self-check functions are also very useful
during debugging: Demeter/C++

10



Trace checks

Check effect of sequences of operations

— Constant traces

* 0.f().g().h() does not change o
— Equivalent traces

* 0.f().90)-h() = 0.a).b().c()
— Simulation traces

* design simulated objects (ATM customer)
— generate tests from use cases
» use random generation

Testing collaborations

Problem: tangled with other code

White-box testing needs to recover the
collaborations from the tangled code

|dentify roles played by the classes

Same abstract collaboration may be present
several times. Develop tests for abstract
collaboration and adapt them

11



Testing collaborations

» Testing as an opportunity to improve the
design

» How to describe the improved the design
which is used to develop the test
requirements and the test specifications

» Thisisacommon theme: have to develop a
model of the software under test

Testing collaborations

 Finding the abstract collaborations

— ldentify participants
* important
— they do real work
* unimportant

— they are only used as transmitters of control and
information

12



Modeling collaborations

Write down group of collaborating classes

Separate code for pure navigation through
classes from code which does interesting
work
Write test requirements for navigation

— does code go to right objectsin correct order?

Write test requirements for interesting code

Modeling collaborations

Do similar collaborations occur for ssimilar
sets of collaborating classes? They may
have completely different names and
different detailed connections but the
connectivity relationships at a suitable level
of abstraction are identical

Study paper on modeling collaborations

13



