
1

4/14/98 COM3220/Testing 1

PART 2:
Getting Going (chapter 10)

• Gradual adoption

• Current practice is changed little in each
step.

• First step: use coverage.

• If coverage is low: forget about coverage
while you improve testing.

4/14/98 COM3220/Testing 2

Improve test specifications

• Introduce test requirements? Not yet. First
gradually improve your tests
– enlist chance and variety

• don’t test features independently

• choose unforced values randomly

– Use the design checklists (appendix F)

– Move towards test requirements



2

4/14/98 COM3220/Testing 3

Improve test requirements

• Not too many test requirements to start

• Use user manual. If subsystem has a user
interface, use the test requirements catalog’s
parsing and syntax section. Read chapter 16
first.

• Next derive test requirements from
individual routines. Look at code, if no
external description of each method.

4/14/98 COM3220/Testing 4

Getting Good

• Become more efficient and more effective

• more efficient: write tests faster

• more effective: miss fewer clues and
requirements, use requirements to produce
better tests and use coverage information
correctly.

• How to improve effectiveness: attention to
feedback.



3

4/14/98 COM3220/Testing 5

Getting Good

• Sources of feedback: coverage, bug reports,
reflection on decisions

• Coverage: point to missed test requirements

• Bug reports: how could it have been
caught?

• Reflection: 174/175

4/14/98 COM3220/Testing 6

Subsystem Testing in Practice

• Chapter 12: Using more typical
specifications. Clues in part one: operations,
variables, preconditions, postconditions

• Real specifications o don’t contain
preconditions and postconditions: they need
to be discovered.

• What to do if no specification at all?



4

4/14/98 COM3220/Testing 7

Subsystem Testing in Practice

• What to do if no specification at all?
– Derive specification from code. Still useful.

4/14/98 COM3220/Testing 8

Working with large subsystems

• Can get too many test requirements. Should
not be more than 5 pages. Varies according
to complexity of requirements. Choose
subsets as follows.
– Derive all test requirements from the

subsystem’s external interface.

– Derive the test requirements from all internal
routines.



5

4/14/98 COM3220/Testing 9

Working with large subsystems

– Select a manageable group of test
requirements. One alf to 3/4 from internal
routines.

– Build test specifications. Stop when you
find yourself unable to satisfy more than
one or two unsatisfied requirements per
test. Merge them into new group.

4/14/98 COM3220/Testing 10

Working with large subsystems

– Implement tests, check coverage. Is
anything obvious missed that can be
included in next batch of tests?

– Repeat until all requirements are covered.

– Measure coverage of entire suite and
check for missed requirements



6

4/14/98 COM3220/Testing 11

Working with large subsystems

• The external interface requirements should
be used more often than the internal
requirements. They are more important.

• Routine Requirements: when generating
clues from a routine, tag them with the
routine’s name.

4/14/98 COM3220/Testing 12

Error Requirements in Larger
Subsystems

• From Part 1
– Every test satisfies exactly one ERROR test

requirement.

– Only the ERROR requirement’s count is
incremented. Non-ERROR requirements are
never considered satisfied by an error test
specification.

– (two assumptions: error checking leads to an
immediate exit. Error checking is first.)



7

4/14/98 COM3220/Testing 13

Error Requirements in Larger
Subsystems

• What if there is a lot of processing before
the error is detected.

• If error handling is high risk, each error
requirement should be covered more than
once.

4/14/98 COM3220/Testing 14

For each distinct error effect

• In a separate checklist, list each of the error
requirements that can cause that error effect

• Select all non-error requirements that may
be relevant

• Design error handling tests from the new
checklist. Every test spec. should satisfy
only one of the error reqs. and as many as
possible of the others.



8

4/14/98 COM3220/Testing 15

For each distinct error effect

• Finish when all of the requirements (of both
kinds) have been satisfied at least once.

• When error checklist is used up, the error
requirements can be marked as satisfied in
original checklist. Other requirements are
left unchanged. Must be satisfied in non-
error test

4/14/98 COM3220/Testing 16

Example

• Error checking for hw 2
– left recursion error

– requires cycle checking code

– There could be many errors in the cycle
checking code



9

4/14/98 COM3220/Testing 17

Dangers of large subsystems

• Routine test requirement. Sensitize; make
result visible.

4/14/98 COM3220/Testing 18

Options

• Test routine in isolation
– is expensive

• Ignore test requirement
– sometimes ok, can be dangerous if later routine

is assumed to be tested.

• Use test requirement in code inspection

• Preferred: modify subsystem to make it
testable. Use minidrivers



10

4/14/98 COM3220/Testing 19


