
3/31/98 Testing/Spring 98 1

Software Testing

COM 3220

3/31/98 Testing/Spring 98 2

Three meanings of bug

• error: mistake made by a developer. Mostly
located in people’s head.

• fault: an error may lead to one or more
faults. Faults are located in text of program.

• failure: execution of faulty code may lead to
one or more failures. A failure occurs when
there is a difference between the results of
the correct and incorrect programs.

3/31/98 Testing/Spring 98 3

Failure detection

• Compare actual output to expected output.

• Expected output is from specification.

• Specification: any external, independent
description of the program, including user
documentation.

• Are often incomplete, incorrect, ambiguous
or contradictory. Specification may be
wrong, not the program!

3/31/98 Testing/Spring 98 4

Motivation

• Derive tests from both the specification and
the program.

• Derivation is done by ”predicting” likely
programmer errors or likely program faults.

• Use general rules, e.g., always test
boundary conditions.

3/31/98 Testing/Spring 98 5

Motivation

• Check for faults of omission: missed special
cases.

• Most common type of fault according to a
study by Glass.

• Experienced testers have a catalog of
programming cliches and associated errors
available. See Test Requirement Catalog
(low-level omissions).

3/31/98 Testing/Spring 98 6

Motivation

• First requirement of test design: Be
methodical. Three stages:
– Finding clues

• sources for test requirements

– Expanding them into test requirements
• useful sets of inputs that should be considered

– Writing test specifications
• exact inputs and expected outputs

3/31/98 Testing/Spring 98 7

Clues

• What needs testing? Collect from
specification, program, bug reports, etc.

• Create a checklist.

3/31/98 Testing/Spring 98 8

Test requirements

• Create a test requirement catalog

3/31/98 Testing/Spring 98 9

Test specifications

• Describes input and exact expected output.

3/31/98 Testing/Spring 98 10

Supplementary code inspections

• Some faults that testing is poor at detecting.

3/31/98 Testing/Spring 98 11

Test implementation

• Avoid having to write a lot of support code.

• It is better to test larger subsystems because
less support code needs to be written.

• Individual routines are exercised more.

• Testing the tests: test coverage as a crude
measure.

• During test design do not pay attention to
coverage criteria.

3/31/98 Testing/Spring 98 12

Test implementation

• During test design do not pay attention to
coverage criteria. Test requirements from
other sources should do that anyway.

• Complete subsystem testing will usually
result in high coverage.

• Treat missed branches as clues about
weaknesses in the test design.

3/31/98 Testing/Spring 98 13

Subsystem
Specification

Subsystem
Code

Catalogued
Past Experience

Clues and
Test Requirements

 Test Specifications

Implemented
Tests

Bug Reports

Program and
Specification

Changes
 Coverage

3/31/98 Testing/Spring 98 14

A broader view: dependability

•

Microsoft PowerPoint
Presentation

3/31/98 Testing/Spring 98 15

Application

• Graph algorithms:
– Depth-first traversal

– Finding all paths satisfying some restrictions.

• Happens to be be a subsystem of
Demeter/Java.

• You don’t have to know much about
Demeter. You will learn the minimal things
you need.

3/31/98 Testing/Spring 98 16

Use Java to write testing code

• You will need to write some Java code for
testing.

3/31/98 Testing/Spring 98 17

Subsystem
Specification

Subsystem
Code

Catalogued
Past Experience

Clues and
Test Requirements

 Test Specifications

Implemented
Tests

Bug Reports

Program and
Specification

Changes
 Coverage

Graph traversal Part of Demeter/Java

Use Java/Scope

3/31/98 Testing/Spring 98 18

What we want to test

• Given a directed acyclic graph G (no multi-
edges), traverse all paths from A via B to C.

• Given a directed acyclic graph G (no
multiedges), traverse all paths from A
bypassing B to C.

3/31/98 Testing/Spring 98 19

Notation for describing graphs

• A = B C D. // node A has three successors

• B = E. // node B has only one successor

• E = . // E has no successor

• This information is put into a file
program.cd.

• Two files program.beh are given. Contains
the traversal specification. Counts visits of
C.

3/31/98 Testing/Spring 98 20

How to call the program

• demjava test

• The program will print the paths it traversed
and print how often it visits C.

3/31/98 Testing/Spring 98 21

Clue list: from A via B to C

• What does program do if there is no path
from A via B to C?

• What if A or B or C do not appear in the
graph.

• Check that paths from A to C not going
through B are excluded: paths of length 1, 2
or 3.

3/31/98 Testing/Spring 98 22

Clue list:
From A bypassing B to C

• What does program do if there is no path
from A bypassing B to C?

• What if A or B or C do not appear in the
graph. Is it ok if B does not appear?

• Check that paths from A to C going through
B are excluded: paths of length 1, 2 or 3.

3/31/98 Testing/Spring 98 23

Test specifications:
From A via B to C

A

B

C

1 visit

A

B

C

1 visit

A

B

C

2 visits

X

A=B
B=C.
C=.

A=C B.
B=C.
C=.

A=C B X.
B=C X.
C=.
X=C.

3/31/98 Testing/Spring 98 24

Test specifications:
From A via B to C

A

B

C

4 visits

X

A=C B X Y.
Y=B.
B=C X.
C=.
X=C.

Y

3/31/98 Testing/Spring 98 25

Test specifications:
From A bypassing B to C

A

B

C

2 visits

X

A=C B X Y.
Y=B.
B=C X.
C=.
X=C.

Y

3/31/98 Testing/Spring 98 26

Fundamental Assumptions of
Subsystem Testing

• Most errors are not very creative.
Methodological checklist-based approaches
will have a high payoff.

• Faults of omission, those caused by a failure
to anticipate special cases, are the most
important and most difficult type.

• Specification faults, especially omissions,
are more dangerous than code faults.

3/31/98 Testing/Spring 98 27

Fundamental Assumptions of
Subsystem Testing

• At every stage of testing, mistakes are
inevitable. Later stages should compensate
for them.

• Code coverage is a good approximate
measure of test quality. Must be used with
extreme care.

3/31/98 Testing/Spring 98 28

A summary of subsystem testing

• Build the test requirement checklist
– Find clues

– Expand clues into test requirements

• Design the tests
– Combine requirements into tests

– Check tests for common testing mistakes

• Supplement testing with code inspections

3/31/98 Testing/Spring 98 29

A summary of subsystem testing

• Implement test support code

• Implement tests

• Evaluate and improve tests
– use code coverage tool

– find undertested or missing clues

– find more test requirements

– write more test requirements

3/31/98 Testing/Spring 98 30

3/31/98 Testing/Spring 98 31

Test strategies

• a systematic method used to select and/or
generate tests to be included in a test suite.

• effective: likely to reveal bugs

• Kinds
– behavioral = black-box = functional

– structural = white-box = glass-box testing

– hybrid

3/31/98 Testing/Spring 98 32

Testing strategies

• behavioral = black-box = functional
– based on requirements

• structural = white-box = glass-box testing
– based on program (coverages)

• hybrid
– use combination

3/31/98 Testing/Spring 98 33

Classification of bugs

• unit/component bugs

• integration bugs

• system bugs

3/31/98 Testing/Spring 98 34

Generic Testing Principles

• Define the graph

• Design node-cover tests (tests that confirm
that the nodes are there)

• Design edge-cover tests (that confirm all
required links and no more)

• Design loop tests

3/31/98 Testing/Spring 98 35

Generic Testing Principles:
Example

• Define the graph
– UML class diagram

• Design node-cover tests (tests that confirm
that the nodes are there)
– Build at least one object of each class

• Design edge-cover tests (that confirm all
required links)
– use each inheritance edge and association

3/31/98 Testing/Spring 98 36

Generic Testing Principles:
Example

• Define the graph
– Finite state machine

• Design node-cover tests (tests that confirm
that the nodes are there)
– Use each state at least once

• Design edge-cover tests (that confirm all
required links)
– use each state transition at least once

3/31/98 Testing/Spring 98 37

3/31/98 Testing/Spring 98 38

Quality factors

• Correctness
– conform to specification

• Maintainability
– ease with which software can be changed

• corrective: error fixing

• adaptive: requirement changes MAJORITY

• perfective: improve system

• Portability

3/31/98 Testing/Spring 98 39

Quality factors

• Testability
– how easy to test? Are requirements clear?

• Usability
– effort required to learn and operate system

• Reliability: mean-time between failures

• Efficiency: use of resources

• Integrity, Security

3/31/98 Testing/Spring 98 40

Quality factors

• Reusability

• Interoperability

• Write Quality Manual to address those
issues

3/31/98 Testing/Spring 98 41

ISO 9000 Series of Standards
(5 years old)

• How can customers judge the competence
of a software developer?

• Adopted by 130 countries.

• ISO 9001: Quality Systems - Model for
Quality Assurance in Design, Development,
Production, Installation and Servicing.
(general design)

3/31/98 Testing/Spring 98 42

ISO 9000 Series of Standards
(5 years old)

• ISO 9000-3 Guidelines for the Application
of ISO 9001 to the Development, Supply
and Maintenance of Software.

• ISO 9004-2 Quality Management and
Quality System Elements

3/31/98 Testing/Spring 98 43

The end

3/31/98 Testing/Spring 98 44

Test coverage tool

• For example: For each traversal, which
fraction of traversal methods are used?

• How often is each adaptive method called?

• Define global counters in Main class.

• Use aspect language to instrument code.
Generate code.

• Testing tool development.

3/31/98 Testing/Spring 98 45

Course ideas

Advanced OO systems develops testing tools for
testing class?

Test UML graphical editor.

