Software Testing

COM 3220

3/31/98 Testing/Spring 98 1

Three meanings of bug

« error: mistake made by a developer. Mostly
located in peopl€’ s head.

o fault: an error may lead to one or more
faults. Faults are located in text of program.

« failure: execution of faulty code may lead to
one or more failures. A failure occurs when
there is a difference between the results of
the correct and incorrect programs.

3/31/98 Testing/Spring 98 2

Failure detection

Compare actual output to expected outpui.
Expected output is from specification.
Specification: any external, independent
description of the program, including user
documentation.

Are often incomplete, incorrect, ambiguous
or contradictory. Specification may be
wrong, not the program!

3/31/98 Testing/Spring 98

Motivation

» Derive tests from both the specification and
the program.

» Derivation isdone by "predicting” likely
programmer errors or likely program faults.

» Use generd rules, e.g., always test
boundary conditions.

3/31/98 Testing/Spring 98

Motivation

» Check for faults of omission: missed special
cases.

» Most common type of fault according to a
study by Glass.

» Experienced testers have a catalog of
programming cliches and associated errors
available. See Test Requirement Catalog
(low-level omissions).

3/31/98 Testing/Spring 98

Motivation

 First requirement of test design: Be
methodical. Three stages:
— Finding clues
* sources for test requirements
— Expanding them into test requirements
» useful sets of inputs that should be considered
— Writing test specifications
* exact inputs and expected outputs

3/31/98 Testing/Spring 98 6

Clues
» What needs testing? Collect from

specification, program, bug reports, etc.
» Create achecklist.

3/31/98 Testing/Spring 98

Test requirements

» Create atest requirement catalog

3/31/98 Testing/Spring 98

Test specifications

» Describes input and exact expected output.

3/31/98 Testing/Spring 98 9

Supplementary code inspections

» Some faults that testing is poor at detecting.

3/31/98 Testing/Spring 98 10

Test implementation

» Avoid having to write alot of support code.

o |t is better to test larger subsystems because
less support code needs to be written.

e Individual routines are exercised more.

» Testing the tests: test coverage as a crude
measure.

» During test design do not pay attention to
coverage criteria.

3/31/98 Testing/Spring 98 11

Test implementation

» During test design do not pay attention to
coverage criteria. Test requirements from
other sources should do that anyway.

» Complete subsystem testing will usually
result in high coverage.

 Treat missed branches as clues about
weaknesses in the test design.

3/31/98 Testing/Spring 98 12

3/31/98 Testing/Spring 98 13

A broader view: dependability

il

Microsoft PowerPoint
Presentation

3/31/98 Testing/Spring 98 14

Application

» Graph agorithms:
— Depth-first traversal
— Finding al paths satisfying some restrictions.

» Happensto be be a subsystem of
Demeter/Java.

* You don't have to know much about
Demeter. Y ou will learn the minimal things
you need.

3/31/98 Testing/Spring 98 15

Use Javato write testing code

e You will need to write some Java code for
testing.

3/31/98 Testing/Spring 98 16

Graph traversal Part of Demeter/Java

3/31/98 Testing/Spring 98 17

What we want to test

» Given adirected acyclic graph G (no multi-
edges), traverse all pathsfrom A viaB to C.

» Given adirected acyclic graph G (no
multiedges), traverse all paths from A
bypassing B to C.

3/31/98 Testing/Spring 98 18

Notation for describing graphs

A =B CD.// node A has three successors
B = E. // node B has only one successor
E = . // E has no successor

Thisinformation is put into afile
program.cd.

Two files program.beh are given. Contains
the traversal specification. Counts visits of
C.

3/31/98 Testing/Spring 98 19

How to call the program

» demjavatest

» The program will print the pathsit traversed
and print how often it visits C.

3/31/98 Testing/Spring 98 20

Cluelist: from A viaBto C

» What does program do if thereis no path
from A viaB to C?

 What if A or B or C do not appear in the
graph.

» Check that paths from A to C not going

through B are excluded: paths of length 1, 2
or 3.

3/31/98 Testing/Spring 98 21

Cluelist:
From A bypassing B to C
» What does program do if thereis no path
from A bypassing B to C?

 What if A or B or C do not appear in the
graph. Isit ok if B does not appear?

» Check that paths from A to C going through
B are excluded: paths of length 1, 2 or 3.

3/31/98 Testing/Spring 98 22

Test specifications:
FromA viaBtoC

A=CB X.
A=CB. gzc X
B=C. :
X=C.
A cal
A=B A
B=C.
C=.
B
B
(3
(3
1visit 2 visits
1visit
3/31/98 Testing/Spring 98 23

Test specifications:
FromA viaBtoC

xpm-<>
Wwodn I
0O 0OwWO
X w

X

-<

3/31/98 Testing/Spring 98 24

Test specifications:
From A bypassing B to C

A=CBXY.
Y=B.

2 visits

3/31/98 Testing/Spring 98 25

Fundamental Assumptions of
Subsystem Testing

* Most errors are not very creative.
Methodological checklist-based approaches
will have a high payoff.

 Faults of omission, those caused by afailure
to anticipate specia cases, are the most
important and most difficult type.

 Specification faults, especialy omissions,
are more dangerous than code faults.

3/31/98 Testing/Spring 98 26

Fundamental Assumptions of
Subsystem Testing

» At every stage of testing, mistakes are
inevitable. Later stages should compensate
for them.

» Code coverage is a good approximate
measure of test quality. Must be used with
extreme care.

3/31/98 Testing/Spring 98 27

A summary of subsystem testing

 Build the test requirement checklist
— Find clues
— Expand cluesinto test requirements
» Design thetests
— Combine requirements into tests
— Check tests for common testing mistakes

 Supplement testing with code inspections

3/31/98 Testing/Spring 98 28

A summary of subsystem testing

* Implement test support code
 Implement tests
» Evaluate and improve tests
— use code coverage tool
— find undertested or missing clues
— find more test requirements
— write more test requirements

3/31/98 Testing/Spring 98 29

3/31/98 Testing/Spring 98 30

Test strategies

» asystematic method used to select and/or

generate tests to be included in atest suite.

o effective: likely to reveal bugs
e Kinds
— behavioral = black-box = functiona

— structural = white-box = glass-box testing
— hybrid

3/31/98 Testing/Spring 98

31

Testing strategies

 behavioral = black-box = functiona
— based on requirements

o structural = white-box = glass-box testing
— based on program (coverages)

* hybrid

— use combination

3/31/98 Testing/Spring 98

32

Classification of bugs

* unit/component bugs
* integration bugs
» system bugs

3/31/98 Testing/Spring 98

33

Generic Testing Principles

Define the graph

Design node-cover tests (tests that confirm
that the nodes are there)

Design edge-cover tests (that confirm all
required links and no more)

Design loop tests

3/31/98 Testing/Spring 98

Generic Testing Principles:
Example

 Define the graph
— UML classdiagram
» Design node-cover tests (tests that confirm
that the nodes are there)
— Build at least one object of each class
» Design edge-cover tests (that confirm all
required links)
— use each inheritance edge and association

3/31/98 Testing/Spring 98

35

Generic Testing Principles:
Example

 Define the graph
— Finite state machine
» Design node-cover tests (tests that confirm
that the nodes are there)
— Use each state at least once
» Design edge-cover tests (that confirm all
required links)
— use each state transition at least once

3/31/98 Testing/Spring 98

36

3/31/98 Testing/Spring 98

37

Quality factors

» Correctness
— conform to specification
« Maintainability
— ease with which software can be changed
* corrective: error fixing

 adaptive: requirement changes MAJORITY
* perfective: improve system

« Portability

3/31/98 Testing/Spring 98

38

Quality factors

Testability

— how easy to test? Are requirements clear?
Usability

— effort required to learn and operate system
Reliability: mean-time between failures
Efficiency: use of resources

Integrity, Security

3/31/98 Testing/Spring 98

39

Quality factors

» Reusability
* Interoperability

» Write Quality Manual to address those
Issues

3/31/98 Testing/Spring 98

40

| SO 9000 Series of Standards
(5 years old)
» How can customers judge the competence
of a software developer?

» Adopted by 130 countries.

» 1SO 9001: Quality Systems - Model for
Quality Assurance in Design, Development,
Production, Installation and Servicing.
(genera design)

3/31/98 Testing/Spring 98 41

| SO 9000 Series of Standards
(5 years old)

 1SO 9000-3 Guidelines for the Application
of 1SO 9001 to the Development, Supply
and Maintenance of Software.

 |SO 9004-2 Quality Management and
Quality System Elements

3/31/98 Testing/Spring 98 42

The end

3/31/98 Testing/Spring 98 43

Test coverage tool

» For example: For each traversal, which
fraction of traversal methods are used?

How often is each adaptive method called?
Define global countersin Main class.

Use aspect language to instrument code.
Generate code.

Testing tool development.

3/31/98 Testing/Spring 98 44

Course ideas

Advanced OO systems devel ops testing tools for
testing class?

Test UML graphical editor.

3/31/98 Testing/Spring 98

45

