
1

4/21/98 Design by Contract 1

Design by contract

• Object-Oriented Software Construction by
Bertrand Meyer, Prentice Hall

• The presence of a precondition or
postcondition in a routine is viewed as a
contract.

4/21/98 Design by Contract 2

Rights and obligations

• Parties in the contract: class and clients

• require pre, ensure post with method r: If
you promise to call r with pre satisfied
then I, in return, promise to deliver a
final state in which post is satisfied.

• Contract: entails benefits and obligations for
both parties

2

4/21/98 Design by Contract 3

Rights and obligations

• Precondition binds clients

• Postcondition binds class

4/21/98 Design by Contract 4

Example

Contract for
push of class
Stack

Obligations Benefits

Client
Programmer

Only call push(x) on a
non-full stack

Get x added as new
stack top on return (top
yields x, nb_elements
increased by 1)

Class
Implementor

Make sure that x is put
on top of stack

No need to treat cases
in which the stack is
already full

3

4/21/98 Design by Contract 5

If precondition is not satisfied

• If client’s part of the contract is not
fulfilled, class can do what it pleases: return
any value, loop indefinitely, terminate in
some wild way.

• Advantage of convention: simplifies
significantly the programming style.

4/21/98 Design by Contract 6

Source of complexity

• Does data passed to a method satisfy
requirement for correct processing?

• Problem: no checking at all or: multiple
checking.

• Multiple checking: conceptual pollution:
redundancy; complicates maintenance

• Recommended approach: use preconditions

4

4/21/98 Design by Contract 7

Class invariants and class
correctness

• Preconditions and postconditions describe
properties of individual routines

• Need for global properties of instances
which must be preserved by all routines

• 0<=nb_elements; nb_elements<=max_size

• empty=(nb_elements=0);

4/21/98 Design by Contract 8

Class invariants and class
correctness

• A class invariant is an assertion appearing
in the invariant clause of the class.

• Must be satisfied by all instances of the
class at all “stable” times (instance in stable
state):
– on instance creation

– before and after every remote call to a routine
(may be violated during call)

5

4/21/98 Design by Contract 9

Class invariants and class
correctness

• A class invariant only applies to public
methods; private methods are not required
to maintain the invariant.

4/21/98 Design by Contract 10

Invariant Rule

• An assertion I is a correct class invariant for a class C iff
the following two conditions hold:

– The constructor of C, when applied to arguments
satisfying the constructor’s precondition in a state
where the attributes have their default values, yields a
state satisfying I.

– Every public method of the class, when applied to
arguments and a state satisfying both I and the
method’s precondition, yields a state satisfying I.

6

4/21/98 Design by Contract 11

Invariant Rule

• Precondition of a method may involve the initial
state and the arguments

• Postcondition of a method may only involve the
final state, the initial state (through old) and in the
case of a function, the returned value.

• The class invariant may only involve the state

4/21/98 Design by Contract 12

Invariant Rule

• The class invariant is implicitly added (anded) to
both the precondition and postcondition of every
exported routine

• Could do, in principle, without class invariants.
But they give valuable information.

• Class invariant acts as control on evolution of
class

• A class invariant applies to all contracts between a
method of the class and a client

7

4/21/98 Design by Contract 13

Definitions

• Class C

• INV class invariant

• method r: prer(xr) precondition; postr

postcondition

• xr: possible arguments of r

• Br: body of method r

• DefaultC: attributes have default values

4/21/98 Design by Contract 14

Correctness of a class

• A class C is said to be correct with respect
to its assertions if and only if
– For every public method r other than the

constructor and any set of valid arguments xr:
{INV and prer(xr)} Br {INV and postr}

– For any valid set of arguments xC to the
constructor:
{DefaultC and preC(xC) BC {INV}

8

4/21/98 Design by Contract 15

How to prove correctness

• A complex story

Verifiable Programming

• Reason about imperative sequential
programs such as Java programs

• Imperative program
– defines state space

• defined by collection of typed program variables

• are coordinate axis of state space

– pattern of actions operating in state space

4/21/98 Design by Contract 16

The End

