Design by contract

» Object-Oriented Software Construction by
Bertrand Meyer, Prentice Hall

» The presence of a precondition or
postcondition in aroutine is viewed as a
contract.

4/21/98 Design by Contract 1

Rights and obligations

» Partiesin the contract; class and clients

* require pre, ensure post with method r: | f
you promiseto call r with pre satisfied
then I, in return, promiseto deliver a
final statein which post is satisfied.

 Contract: entails benefits and obligations for
both parties

4/21/98 Design by Contract 2

Rights and obligations

» Precondition binds clients
» Postcondition binds class

4/21/98

Design by Contract

Example

Contract for |Obligations |Benefits
push of class
Stack
i Only call push(x) ona | Get x added as new
CI lent non-full stack stack top on return (top
Programmer yieldsx, nb_elements
increased by 1)
Make surethat xisput | No need to treat cases
CI ass on top of stack in which the stack is
| mplementor already full

4/21/98

Design by Contract

If precondition is not satisfied

o |If client’s part of the contract is not
fulfilled, class can do what it pleases. return
any value, loop indefinitely, terminate in
some wild way.

» Advantage of convention: smplifies
significantly the programming style.

4/21/98 Design by Contract 5

Source of complexity

» Does data passed to a method satisfy
requirement for correct processing?

» Problem: no checking at all or: multiple
checking.

» Multiple checking: conceptual pollution:
redundancy; complicates maintenance

» Recommended approach: use preconditions

4/21/98 Design by Contract 6

Class invariants and class

correctness
Preconditions and postconditions describe
properties of individual routines

Need for global properties of instances
which must be preserved by all routines

O<=nb_elements; nb_elements<=max_size
empty=(nb_elements=0);

4/21/98 Design by Contract

Class invariants and class
correctness

» A classinvariant is an assertion appearing
in the invariant clause of the class.

» Must be satisfied by all instances of the
class at all “stable” times (instance in stable
state):

— on instance creation

— before and after every remote call to aroutine
(may be violated during call)

4/21/98 Design by Contract

Class invariants and class
correctness

» A classinvariant only appliesto public
methods; private methods are not required
to maintain the invariant.

4/21/98 Design by Contract 9

Invariant Rule

e Anassertion | isacorrect classinvariant for aclass C iff
the following two conditions hold:

— The constructor of C, when applied to arguments
satisfying the constructor’ s precondition in a state
where the attributes have their default values, yields a
state satisfying I.

— Every public method of the class, when applied to
arguments and a state satisfying both | and the
method’ s precondition, yields a state satisfying I.

4/21/98 Design by Contract 10

Invariant Rule

* Precondition of a method may involve the initial
state and the arguments

* Postcondition of a method may only involve the
final state, theinitial state (through old) and in the
case of afunction, the returned value.

* Theclassinvariant may only involve the state

4/21/98 Design by Contract 11

Invariant Rule

* Theclassinvariant isimplicitly added (anded) to
both the precondition and postcondition of every
exported routine

» Could do, in principle, without class invariants.
But they give valuable information.

¢ Classinvariant acts as control on evolution of
class

» A classinvariant appliesto all contracts between a
method of the class and a client

4/21/98 Design by Contract 12

Definitions

e ClassC
e [NV classinvariant

» method r: pre.(x,) precondition; post,
postcondition

* X, possible arguments of r
* B,: body of method r
 Default.: attributes have default values

4/21/98 Design by Contract

13

Correctness of aclass

» A class Cissaid to be correct with respect
toitsassertionsif and only if
— For every public method r other than the

constructor and any set of valid arguments x:
{INV and pre,(x,)} B, {INV and post,}

— For any valid set of arguments X to the
constructor:
{ Default and pre(Xc) B¢ {INV}

4/21/98 Design by Contract

14

How to prove correctness
« A complex story

Verifiable Programming

« Reason about imperative sequential
programs such as Java programs
« Imperative program
— defines state space
« defined by collection of typed program variables
« are coordinate axis of state space
— pattern of actions operating in state space

4/21/98 Design by Contract 15
4/21/98 Design by Contract 16

