
1

Verifiable Programming

• Reason about imperative sequential
programs such as Java programs

• Imperative program
– defines state space

• defined by collection of typed program variables

• are coordinate axis of state space

– pattern of actions operating in state space

View of imperative programming

• State space
– program variables x1,x2, … xn

– Cartesian product of the variable types T1, T2,
… ,Tn (each type stands for the associated
value set)

– one state: n-tuple of values

2

View of imperative programming

• Actions performed
– change current state by assigning new values to

program variables

– assignment statement x:=e
• evaluate expression e; old value of x is lost

• e may have free variables; value of x depends on
current state

View of imperative programming

• Program execution: sequence of actions A1,
A2, A3, … causing transitions through a
sequence of states s1,s2,… possibly
terminating in a final state sn.

• Initial state s1 represents input data and
final state sn represents the results

3

View of imperative programming

• Conditions satisfied after each action

• Special case: assignment statements Si only

P0 PnPn-1P2P1

S1 SnS2

Pi express properties of the states possible at the ith stage

Sloppy use: Interlude

• Terms like condition, requirement, assertion
and relation are often sloppy in a technical
sense. Formulas or predicates (functions
with range BOOL)

• Formula x<2y: which predicate?

4

Sloppy use: Interlude

• Formula x<2y: which predicate?

yxxyp

yxxyzp

yxyp

yxxp

2

2

2

2

1

4

3

2

<•≡
<•≡

<•≡
<•≡

λ
λ
λ
λ

Sloppy use: Interlude

• Formula x<2y: which predicate?

yxxyp

fpvpyxxyzp

xpyxyp

yvvpyxxp

2

)45()2,5(),2,5(2

)4()2(2

)2()(2

1

144

33

22

<•≡
=<==<•≡

<=<•≡
<=<•≡

λ
λ
λ
λ

5

Sloppy use: Interlude

x
ePepgivesPxp =•≡)(λ

x is a list of distinct variables and e is a corresponding
list of expressions.

Sloppy use: Interlude

When we use the term predicate for a formula P,
we mean

Px •λ
where x stands for the list of all
program variables.

We assume that functions have never hidden
arguments as, for instance

)2()(2 22 yvvpyxxp <=<•≡ λ

nxxx ,,, 21 K

6

Sloppy use: Interlude

We assume that functions have never hidden
arguments as, for instance

)2()(2 22 yvvpyxxp <=<•≡ λ

The value of an expression e can depend on, at most,
the free variables in e.

Definitions

...,

),,,(
,,,
,,,

21

21

21
holdsPeiPiff

Psatisfies
n

n

xxxx

n

K
L

L

ρσσρ

ρσσσ =

7

Definitions

}{ xPP ρσ •≈

Predicate P as a set of states.

Definitions

More later.

8

Flow charts

• May be generalized to arbitrary flow charts
with branchings and cycles whose arcs are
annotated with state predicates.

P0 PnPn-1P2P1

S1 SnS2

Flow charts

• Arcs: represent sets of states

• Nodes: represent state transitions

• Only nodes are important for execution but
state predicates are of fundamental
importance to understand programs and to
reason about them

9

Flow chart-based verification
• 50 year anniversary

• J. von Neumann and H.H. Goldstine 1947
– assertion boxes

– operation boxes

• Robert Floyd (1967): 20 years later

• A predicate P associated with an arc A is
intended to signify that the state satisfies P
whenever control passes along A.

x,y := m,n

q,r := x/y, x mod y

r= 0

x,y=y,r

YES

NO

00:0 >∧≥ nmP

00:1 >=∧≥= nymxP

),gcd(),gcd(0:2 nmyxyrryqxP =∧<≤∧+∗=

),gcd(:3 nmyP =
),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

),gcd(),gcd(00:5 nmyxyxP =∧>∧>

5P

10

x,y := m,n

q,r := x/y, x mod y

r= 0

x,y=y,r

YES

NO

00:0 >∧≥ nmP

00:1 >=∧≥= nymxP

),gcd(),gcd(0:2 nmyxyrryqxP =∧<≤∧+∗=

),gcd(:3 nmyP =
),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

),gcd(),gcd(00:5 nmyxyxP =∧>∧>

5P

x,y|25,15|15,10|10,5

q,r|1,10| 1,5| 2,0

gcd(25,15)

Proof approach: Induction

• Show that assertion on each arc is satisfied
whenever control reaches that arc, provided
P0 holds initially.

• For each node in the graph and every pair of
incoming and outgoing arcs a1,a2 we prove
that if the assertion on a1 holds before the
operation, then the assertion on a2 holds
after the operation.

11

Proof approach: Induction

• As a result of these proofs the theorem
follows by induction on the number of
operations performed.

Proof approach: Induction

• P1 and P5 imply

00:1 >=∧≥= nymxP

),gcd(),gcd(0:2 nmyxyrryqxP =∧<≤∧+∗=

),gcd(),gcd(00:5 nmyxyxP =∧>∧>

),gcd(),gcd(00 nmyxyx =∧>∧≥

• P1 implies P2. P5 implies P2.

12

Proof approach: Induction

• On the YES branch, we know x is a
multiple of y and therefore P3 follows.

),gcd(),gcd(0:2 nmyxyrryqxP =∧<≤∧+∗=

),gcd(:3 nmyP =

Proof approach: Induction

• On the NO branch, r is non-zero, which by
P2 gives 0<r in P4.

),gcd(),gcd(0:2 nmyxyrryqxP =∧<≤∧+∗=

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

13

Proof approach: Induction

• The simultaneous assignment x,y:=y,r
shows that what is true for y,r in P4 must
hold for x,y in P5. x>0 and y>0 is clear.

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

),gcd(),gcd(00:5 nmyxyxP =∧>∧>
• To justify gcd(x,y) = gcd(m,n): Crux

Proof approach: Induction

• Must show that P4 implies
gcd(y,r)=gcd(m,n). P4 gives x=q*y+r. If y
and r are evenly divisible by k, then so is x.

• F(x) = {k s.t. k divides x evenly}

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

)()()(xFrFyF ⊆∩

14

Proof approach: Induction

• P4 also gives r=x -q*y.

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

)()()(rFyFxF ⊆∩

Proof approach: Induction

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

)()()(rFyFxF ⊆∩

• Intersection on both sides with F(y)

)()()(xFrFyF ⊆∩

)()()()(yFxFrFyF ∩⊆∩
)()()()(yFrFyFxF ∩⊆∩

15

Proof approach: Induction

),gcd(),gcd(0*:4 nmyxyrryqxP =∧<<∧+=

)()()()(yFxFrFyF ∩⊆∩
)()()()(yFrFyFxF ∩⊆∩

)()()()(yFxFrFyF ∩⊇∩

)()()()(yFxFrFyF ∩=∩
gcd(y,r)=gcd(x,y) QED

Conditional correctness

• y=gcd(m,n) whenever the algorithm
terminates (control eventually reaches the
YES branch).

• Next prove termination: show that progress
toward a goal is being made. Show that y
decreases with each execution of the loop:
y:=r is the only assignment to y in loop.

16

Prove termination

• P4 asserts that r<y. y remains positive.
Thus the execution must stop.

External/internal documentation

• P0 and P3 together comprise the external
specification: What a user must know.

• The other assertions: internal
documentation: explain to a reader how and
why the algorithm works.

• Not all assertions are equally important: if
P2 is given, can easily find the others.

17

Loop invariant

• P2 is called a loop invariant: remains true
every time around the loop.

• Loop invariant provides essential and non-
obvious information.

• Note that most proof steps are trivial
mathematically.

Use program notation

const m,n : Int; {m >=0 and n>0}
var x,y : Int = m,n;
loop {const q : Int = x/y;}
 const r : Int = x mod y;
 {x=q*y+r and 0<=r<y and gcd(x,y)=gcd(m,n)}
while r != 0;
 x,y := y,r;
repeat
{y = gcd(m,n)}

18

Two important remarks about
Floyd/Hoare style verification

• Not applicable to life-size programs unless
one is very careful about program structure.
Consider only small part of total state space.

• State assertions should not be afterthoughts;
they belong to the program design phase.
Non-trivial invariants are difficult to come
up with.

Help during program design
phase

• Compute y for given x with relative
accuracy eps : Real > 0.

• Use iteration: y, z (current term), k

• plausible initializations:
– y:=0 or 1 or 1+x

– z:=1 or x

– k:=0 or 1

∑∞

=
==

0 !x

k
x

k
y xe

19

Help during program design
phase

• Plausible loop assignment statements
– y:=y+z or y+z*x/k or y+z*x/(k+1)

– z:=z*x/k or z*x/(k+1)

– k:=k+1

• 3*2*2*3*2 = 72 possible statement sets

∑∞

=
==

0 !x

k
x

k
y xe

Help during program design
phase

• Choose a good loop invariant first

• k=1

• y=1+x; z=x

• while abs(z) > = eps*y;
– k=k+1; z:=z*x/k; y:=y+z;

• repeat

!!
:

0 k
z

k
yI xxe

k

x

k
x =∧== ∑∞

=

20

Help during program design
phase/ignore rounding errors

• Const x, eps : Real; {eps > 0}

• var k : Int =1;

• var y,z : Real =1+x; x;

• loop
– while abs(z) > = eps*y;

– k:=k+1; z:=z*x/k; y:=y+z;

• repeat

}
!!

:{
0 k

z
k

yI xxe
k

x

k
x =∧== ∑∞

=

}*
!!

{
0

yeps
k

abs
k

y xxe
k

x

k
x <

∧== ∑∞

=

