
1

5/12/98 Mezini 1

Based on paper by Mira Mezini and Karl Lieberherr
appcs.ps in my ftp directory

5/12/98 Mezini 2

Object-oriented languages do not provide adequate constructs to capture
collaborations between several classes.

Has been recognized in different forms in the object-oriented community:

¶ OO accommodates the addition of new variants of data types better than
 procedural programming

 but, the opposite is true when new operations on existing data types are
 needed

· visitor pattern: the matter of concern -- definition of new operations on
 an existing object structure (aggregation is involved besides inheritance)

¸ several works complain the lack of constructs for expressing
 collaboration-based designs

2

5/12/98 Mezini 3

A methodology for decomposing object-oriented applications into a set
of classes and a set of collaborations.

Collaboration --
a distinct (relatively independent aspect of an application that involves several
participants, or roles

roles played by application classes

each class may play different roles in different collaborations

each role embodies a separate aspect of the overall class behavior

5/12/98 Mezini 4

Require to view oo applications in two different ways:

(a) in terms of participants or types involved
(b) in terms of the tasks or concerns of the design

3

5/12/98 Mezini 5

Require to view oo applications in two different ways:

(a) in terms of participants or types involved
(b) in terms of the tasks or concerns of the design

Not supported at the language level ==> gap between implementation and design

5/12/98 Mezini 6

Implications for Testing,
Verification and Validation

• Collaborations should be tested too, not just
classes

• Collaborations have own invariants

4

5/12/98 Mezini 7

Why do we need language constructs that capture collaborations:

unit of reuse is generally not a class, but a slice of behavior affecting
several classes

this is the core of application framework.s but:

“because frameworks are described with programming languages, it is
 hard for developers to learn the collaborative patterns of a framework
 by reading it … it might be better to improve oo languages so that they
 can express patterns of collaboration more clearly”

[R. Johnson, CACM, Sep. ‘97]

5/12/98 Mezini 8

Why do we need language constructs that capture collaborations:

single methods often make sense in a larger context

“oo technology can be a burden to the maintainer because
 functionality is often spread over several methods which must all
 be traced to get the "big picture".”

[Wilde at al., Software, Jan ‘93]

“object-oriented technology has not met its expectations when applied
 to real business applications and argues that this is partly due to the
 fact that there is no natural place where to put higher-level operations
 (such as business processes) which affect several objects. …
 if built into the classes involved, it is impossible to get
 an overview of the control flow. It is like reading a road map
 through a soda straw'’

 [Lauesen Software, April ‘98]

5

5/12/98 Mezini 9

 Requirements on the design:

¶ orthogonal to the standard object-oriented models -
not substitute, rather complement classes

· support a decomposition granularity that lies between classes and package
 modules

¸ support parameterization of collaborations with class graph information

¹ flexible composition mechanisms to support reusing existing collaborations to
 build more complex collaborations

5/12/98 Mezini 10

Implications for Testing,
Verification and Validation

• Parameterized collaborations allow for
reuse of testing information

• Compositions of collaborations allow for
reuse of testing information

6

5/12/98 Mezini 11

• example taken from Ian Holland’s thesis

• comes from the domain of order entry systems

• originated from an application system generator developed at IBM (‘70) called

Hardgoods Distributors Management Accounting System

goal: encode a generic design for order entry systems which could be
subsequently customized to produce an application meeting a customer’s
specific needs

• customer’s specific requirements were recorded using a questionnaire

• the installation guide supplied with the questionnaire described the options and
 the consequences associated with questions on the questionnaire

• we consider only the pricing component of this application generator

5/12/98 Mezini 12

LineItemParty

 PriceServerParty

 ItemParty

quantity

float basicPrice(ItemParty item)
Integer discount(ItemParty item,

Integer qty, Customer cust)

Float additionalCharges(Float unitPrice
Integer: qty)

Customer

 ChargerParty

Float cost(Integer qty, Float unitPrice,
ItemParty item)

 ChargerParty

Float cost(Integer qty, Float unitPrice,
ItemParty item)

7

5/12/98 Mezini 13

lineItem:
 LineItemParty

pricer:
 PriceServerParty

item: ItemParty

price() 1: basicPrice (item)
2: discount(item, qty,cust)

3: additionalCharges(unitPr, qty)

 ch: ChargerParty ChargerParty ChargerParty

3.1: ch=next() 3.2: cost(qty,unitPr,item)

additionalCharges(…){
 Integer total;
 forall ch in charges{
 total = total + ch.cost(…)}
 return total}

price() {
 basicPr = pricer.basicPrice(item);
 discount = pricer.discount(item, qty, cust);
 unitPr = basicPr - (discount * basicPr);
 quotePr = uniPr + item.additionalCharges(unitPr, qty);
 return quotePr;}

5/12/98 Mezini 14

design is fairly simple

complexity is a problem with this application generator’s component, though:

• the pricing component is described in nearly twenty pages of the
 installation guide

• the complexity results from numerous, and arbitrary, pricing schemes in
 use by industry and by the representation of these schemes in the system

8

5/12/98 Mezini 15

The price of an item may depend on:

• the type of the customer (government, educational, regular, cash, etc.),

• the time of the year (high/low demand season,

• whether cost-plus or discounting applies

• whether prior price negotiated prices involved,

• extra charges for th items such as taxes, deposits or surcharges

• … etc.

5/12/98 Mezini 16

 Requirements on the design:

¸ support parameterization of collaborations with class graph information

ä Generic specification of the collaboration with respect to the class
 structure it will be applied to. This serves two
 purposes: (a) allow the same component to be used with several different
 concrete applications, and (b) allow a collaborative component
 to be mapped in different ways, i.e. with different class-to-participant
 mappings, into the same class structure.

ä Loose coupling of behavior to structure to make collaborative
 components robust under changing class structures and thus better support
 maintenance

9

5/12/98 Mezini 17

¹ flexible composition mechanisms to support reusing existing collaborations to
 build more complex collaborations. Why?

5/12/98 18

¹ flexible composition mechanisms to support reusing existing collaborations to
 build more complex collaborations. Why?

 Loose coupling among collaborations in the sense that their definition do

 The aim is to facilitate putting the same components into several

ä A composition mechanism that maintains the ``encapsulation'' and

 other components. The aim is to avoid name conflicts and allow
 simultaneous execution of several collaborations even if these may

10

5/12/98 Mezini 19

APPC Pricing

 Interface-to-Class-Structure

 Interface-to-Class-Structure:
s1 = from lineItem: LineItemParty to item: ItemParty to charges: ChargesParty;
s2 = from lineItem: LineItemParty to pricer: PricerParty;
s3 = from lineItem: LineItemParty to customer: Customer;

PricerParty [
Float basicPrice(ItemParty item);
Integer discount(ItemParty item, Integer qty, Customer: customer);]

ChargesPart [
Float cost(Integer qty, Float unitP, ItemParty: item);]

5/12/98 Mezini 20

APPC Pricing
 Behavior
 LineItemParty {

public Float price (Integer qty){
Float basicPrice, unitPrice;
Integer discount;
basicPrice = pricer.basicPrice();
discount = pricer.discount(item, qty, customer);
unitPrice = basicPrice - (discount * basicPrice);
return (unitprice + additionalCharges(unitPrice, qty)); }

Float additionalCharges(float unitP, Integer qty) {

Interger total = 0;
during s1 {

 ChargesParty{total += cost(qty, unitP, item); }
return total;} }

}
 }

5/12/98 Mezini

Appl.cd

 HWProduct: <price> float <salePrice> float <taxes> {Tax} <discountTable> Table
 Tax: <percentage> float;
 Quote: <prod> HWProduct <quanttity> Integer <cust> Customer;
 Customer: <name> String …;

5/12/98 Mezini 22

Appl.beh

 class HWProduct {
 float salePrice() {return salePrice};
 float saleDiscount(Integer qty Customer c) {return 0};
 float regular-price() {return price};
 float regDiscount(HWProduct prod Integer qty Customer c)

{return discountTable.lookUp(qty)};
 }

 class Tax {
 float taxChange(Integer qty, float unitP HWProduct p) {unitPrice * percentage /100}}

 class Quote {
integer quantity() {return quantity};

 class Customer {
float negProdPrice(HWProduct p) {…};
float regProdDiscount(HWProduct p Integer qty Customer c) {…} }

12

5/12/98 Mezini 23

5/12/98 Mezini 24

Let us generate different pricing schemes out of the generic pricing component
specified by the pricing adjuster …

• Scheme 1: Regular Pricing

 each product has a base price which can be discounted depending on the number of the
 units ordered

• Scheme 2: Negotiated Pricing:

 A customer may have negotiated certain prices and discounts for particular items

13

5/12/98 Mezini 25

Scheme 1: Regular Price

Let see what this is supposed to generate:

Quote::+ {float regPrice() = Pricing with {
 LineItemParty = Quote;
 PriceParty = HWProduct

 [basicPrice = regPrice;
 discount = regDiscount;]

 ItemParty = HWProduct;
 ChargesParty = Tax

[cost = taxCharge]
 }
}

5/12/98 Mezini 26

class Quote {
 ….
 public regPrice() {

RegularPriceVisitor v = RegularPriceVisitor();
return {v.price (this);}

 ….
}

14

5/12/98 27

class RegularPriceVisitor {

 public price (Quote host) {
float basicPrice, quotePrice;
Integer discount;
Integer qty;
qty = host.quantity();
basicPrice = host.prod.regPrice();
discount = host.prod.regDiscount(host.prod, qty, host.customer);
unitPrice = basicPrice - (discount * basicPrice);
return (unitPrice +.additionalCharges(unitPrice, qty);
}

 private additionalCharges(float unitPrice, Integer qty)
{ float total = 0;
 for all tax in host.prod.taxes

total = total + tax.taxCharge(float unitPrice, Integer qty)
}

 }

5/12/98 Mezini 28

Scheme 2: Negotiated Price

Quote::+ {Float negPrice() = Pricing with {
 LineItemParty = Quote;
 PriceParty = Customer

 [basicPrice = negProdPrice;
 discount = negProdDiscount;]

 ItemParty = HWProduct; \\
 ChargesParty = Tax\\

 [cost = taxCharge]
 }
}

15

5/12/98 Mezini 29

APPC Marking {

 Interface
 s = from Graph to Adjacency to Vertex to Adjacency
 Behavior
 Adjacency {

bool marked = false;
myRole() {
 bool visited = marked;
 if (marked == false) { marked = true; next()};
 return visited;}

}
 }

5/12/98 Mezini 30

APPC Connectivity {

 Interface
s: from Graph to-stop Adjacency

 Behavior
Integer count = 0;
return count;
Adjacency {

myRole() {
 if (next() == false) { count += 1; } }

}
 }

16

5/12/98 Mezini 31

APPC DGCycleCheck {

 Interface
s = from Graph to Adjacency to Vertex to Adjacency

 Behavior
Stack stack = Stack new();
Adjacency {

myRole() {
if (stack.includes(this)) {

System.out.printIn(``cycle'' + stack.print) }
else { stack.add(this); }
next();
stack.remove(this); }

}
}

5/12/98 32

Want to do connectivity and cycle check simultaneously

17

5/12/98 Mezini 33

ConnectivityAndCycleCheck =
(Connectivity compose DGCycleCheck) (Marking)

s = Network via Adjacency through neighbors via Node through <-source
 to Adjacency

Network ::+ {connectivityAndCycleCheck()
= ConnectivityAndCycleCheck(s}

with {Network = Graph; Node = Vertex; }

5/12/98 Mezini 34

18

5/12/98 Mezini 35

Conclusions

• Collaborations are a natural abstraction for
designing systems

• Collaborations help with testing and
validation
– reuse of collaborations leads to reuse of testing

information
• parameterization with class graph information

• composition of components

