
1

Specification Patterns

• Early taxonomy for property specifications
– safety properties: nothing bad will ever happen

– liveness properties: something good will
eventually happen

Property Patterns

Property Patterns

Occurrence

Absence

Universality

Existence

Order Compound

Precedence Response

2

Relationships

• Note that a Precedence property is like a
converse of a Response property. Precedence
says that some cause precedes each effect, and
Response says that some effect follows each
cause. They are not equivalent, because
Response allows effects to occur without
causes (Precedence similarly allows causes to
occur without subsequent effects).

Occurrence Patterns

• Absence: A given state/event does not
occur within a scope. Also known as Never.

• Existence: A given state/event must occur
within a scope. This pattern is also known
as Future and Eventuality. A variant:
Bounded Existence: exactly k times, at
least k times, at most k times.

3

Occurrence Patterns

• Universality: A given state/event occurs
throughout a scope. Also known as
Globally, Always, Henceforth.

Ordering Patterns

• Precedence: A given state/event must
always be preceded by a state/event Q
within a scope.

• Response: A state/event P must always be
followed by a state/event Q within a scope.
Also known as Follows and Leads-to. A
mixture of Existence and Precedence.

4

Some background

• A scope is the extent of a program’s
execution over which a formula must hold.
There are five basic kinds of scopes: global,
before, after, between, after-until.

Some background

• scope
– global (the entire program execution),

– before (the execution up to a given state),

– after (the execution after a given state)

– between (any part of the execution from one
given state to another given state)

– after-until (like between even if the second state
does not occur)

5

Some background

• A scope itself should be interpreted as
optional; if the scope delimiters are not
present in an execution then the
specification will be true.

Global

Before Q

After Q

Between Q and R

State Sequence

Q R Q Q R

Four Formula Scopes

6

Specification Pattern System

• Precedence Property Pattern: S precedes P.
P is the consequent and S is the enabling
state/event.
– Globally

• A[!P U (S | AG(!P))]: for all paths, P does not hold
until S holds or P will never hold

Precedence: Traversal
application

• For all traversals which start at an X-object,
any visit to a P-object is preceded by a visit
to an S-object.

• P uses information produced in S.

7

Specification Pattern System

• Precedence Property Pattern: S precedes P.
P is the consequent and S is the enabling
state/event.
– Before R

• A[!P U (S | R | AG(!P) | AG(!R))]: for all paths, P
does not hold until S holds or R holds or P will
never hold or R will never hold. When P holds S
must have been true earlier if R has not happened.

Precedence: Traversal
application

• For all traversals which start at an X-object,
any visit to a P-object is preceded by a visit
to an S-object provided no R-object has
been visited.

• P uses information produced in S or R.

8

Specification Pattern System

• Precedence Property Pattern: S precedes P.
P is the consequent and S is the enabling
state/event.
– After Q

• A[!Q U (AG(!Q) | (Q & A[!P U (S | AG(!P))]))] :
for all paths, Q does not hold until Q never holds or
Q holds and for all paths P does not hold until S
holds or P will never hold.

Precedence: Traversal
application

• For all traversals which start at an X-object,
any visit to a P-object is preceded by a visit
to an S-object provided a Q-object has been
visited first.

• Q-object initializes information used by S-
object and P-object. S-object computes
information used by P-object.

9

CTL formulas for Absence

• P is false
– Globally: AG(!P)

CTL formulas for Absence

• P is false
– Before R: A[!P U (R or AG(!R))]

– P is false until R holds or until R will never hold

10

Absence: Traversal application

• For all traversals which start at an X-object,
there can be no visit to a P-object while R is
false (e.g., before an R-object is visited).

• While R is false, P can not participate in
collaboration.

CTL formulas for Absence

• P is false
– After Q: AG(Q => AG(!P))

– For all paths the following condition holds at
every state: If Q holds at a state then for all paths
from that state !P holds globally.

11

Absence: Traversal application

• For all traversals which start at an X-object,
after visiting a Q-object we will never visit
a P-object.

CTL formulas for Absence

• P is false
– Between Q and R: A G(Q => A[!P U (R or A

G (!R))])

– Globally, if Q holds at a state s then P is false
until R holds or R is false globally from s.

12

CTL formulas for Response

• S responds to P: (P is the cause, S the effect)
– AFTER Q: AG(Q=>AG(P=>AF(S))) :

Globally, if Q holds, then if P holds, eventually S
will hold.

CTL formulas for Response

• S responds to P: (P is the cause, S the effect)
– GLOBALLY : AG(P=>AF(S)): Globally, if P holds

then S will eventually hold.

13

CTL formulas for Response

• S responds to P: (P is the cause, S the effect)
– BEFORE R: A[(P=>A[!R U ((S and !R) or

AG(!R))]) U (R or AG(!R))]

– Amazing how complex it is to express BEFORE.

– Until R holds or R never holds, if P holds then for
all paths until (S and !R) holds or R never holds,
not R holds.

1-2 Response Chain Property
Pattern

• Intent: To describe a relationship between a
stimulus event (P) and a sequence of two
response events (S,T) in which the
occurrence of the stimulus event must be
followed by an occurrence of the sequence
of response events within the scope.

14

1-2 Response Chain Property
Pattern

• S,T responds to P:
– Globally

• AG(P -> AF(S & AX(AF(T))))

– Before R
• A[(P -> A[!R U (S & !R & A[!R U T])]) U (R |

AG(!R))]

– After Q
• AG(Q -> AG(P -> AF(S & AX(AF(T)))))

