Midterm COM3220

- Open book/open notes
- Tuesday, April 28, 6pm - 7.30 pm

Question 3: 10 points
The BDD to the left is not reduced. Bring it to reduced form.

Question 4: 15 points
Which of the following formulas holds? Explain!
In state A: AF b
In state A: AF i

Some background

- The following questions involve a scope which is the extent of a programs execution over which a formula must hold. There are five basic kinds of scopes: global, before, after, between, after-until.

Some background

- scope
- global (the entire program execution),
- before (the execution up to a given state),
- after (the execution after a given state)
- between (any part of the execution from one given state to another given state)
- after-until (like between even if the second state does not occur)

Some background

- A scope itself should be interpreted as optional; if the scope delimiters are not present in an execution then the specification will be true.

Global

Before Q

After Q

Between Q and R
State Sequence

Four Formula Scopes

Question 5: Absence 2 points per unknown

- The purpose of the following CTL formulas is to describe a portion of a system's execution that is free of certain states.
- In the following you will have to find unknowns Y1, Y2, ... Those unknowns you should replace by identifiers and/or symbols to make the formula correct. Example: $\mathrm{Y} 1+3=8$. Solution: $\mathrm{Y} 1=5$

CTL formulas for Absence

- P is false
- Globally: Y1 Y2(!P)
- Before R: A[!Y3 U (Y4 or AG(!R))]
- After Q: Y5 G(Q Y6 AG(!P))
- Between Q and R : $\mathrm{Y} 7 \mathrm{G}(\mathrm{Q}=>\mathrm{A}[!\mathrm{P} \mathrm{U}$ (Y8 or Y9 Y10 (!R))])
- The next intentionally does not contain unknowns
- After Q until $\mathrm{R}: \mathrm{AG}(\mathrm{Q}=>!\mathrm{E}[!\mathrm{R} \mathbf{U}(\mathrm{P}$ and !R)])

Question 6: Response 5 points per unknown

- The purpose of the following CTL formulas is to describe cause-effect relationships between a pair of states. An occurrence of the first, the cause, must be followed by an occurrence of the second, the effect, within a defined portion of a system's execution.
- Find the three UNKNOWNs

CTL formulas for Response

- S responds to P : $(\mathrm{P}$ is the cause, S the effect)
- UNKNOWN2 Q: AG(Q=>AG(P=>AF(S)))
- UNKNOWN1: $\mathrm{AG}(\mathrm{P}=>\mathrm{AF}(\mathrm{S}))$
- UNKNOWN3 R: A[(P=>A[!R U ((S and !R) or $\mathrm{AG}(!\mathrm{R}))]) \mathbf{U}(\mathrm{R}$ or $\mathrm{AG}(!\mathrm{R}))]$
- Note: the three UNKNOWN are part of the explanation of the CTL formula. Each unknown is one word. Explain the formula for UNKNOWN3.

Question 7: Properties of assignment / 10 points

- Assume that the property $\left\{q^{*} y+x=a\right\}$ holds before we execute the two assignment statements: $\mathrm{x}:=\mathrm{x}-\mathrm{y}$; $\mathrm{q}:=\mathrm{q}+1$; Does the property still hold after execution of the two assignment statements? Explain your answer.

Question 8: Blackbox Testing: Topological Sorting

- Assume you have to test a program written for the following specification: Given a directed acyclic graph $G=(V, E)$ with n vertices, label the vertices from 1 to n such that, if v is labeled k , then all vertices that can be reached from v by a directed path are labeled with labels $>\mathrm{k}$.

What to do.

- Write test requirements and test specifications for this testing task. 30 points
- Outline an algorithm for implementing the specification. Any implications on your test requirements? 10 points

