Midterm COM3220

- Open book/open notes
- Tuesday, April 28, 6pm - 7.30 pm

Question 3: 10 points
The BDD to the left is not reduced. Bring it to reduced form.

After ELIMINATION

After MERGING

Question 4: 15 points
Which of the following formulas hold? Explain!
In state A: AF b
In state A: AF i

Question 4: 15 points
Which of the following formulas hold? Explain!
In state A: AF b : TRUE
In state A: AF i

Question 4: 15 points
Which of the following formulas holds Explain!
In state A: AF b
In state A: AF i : FALSE

Question 4: 15 points
Which of the following formulas hold? Explain!
In state A: AF b
In state A: AF i
In state A: AF d : FALSE

Some background

- The following questions involve a scope which is the extent of a program's execution over which a formula must hold. There are five basic kinds of scopes: global, before, after, between, after-until.

Some background

- scope
- global (the entire program execution),
- before (the execution up to a given state),
- after (the execution after a given state)
- between (any part of the execution from one given state to another given state)
- after-until (like between even if the second state does not occur)

Some background

- A scope itself should be interpreted as optional; if the scope delimiters are not present in an execution then the specification will be true.

Global

Before Q
After Q

Between Q and R

State Sequence

Four Formula Scopes

Question 5: Absence 2 points per unknown

- The purpose of the following CTL formulas is to describe a portion of a system's execution that is free of certain states.
- In the following you will have to find unknowns Y1, Y2, ... Those unknowns you should replace by identifiers and/or symbols to make the formula correct. Example:
$\mathrm{Y} 1+3=8$. Solution: $\mathrm{Y} 1=5$

CTL formulas for Absence

- P is false
- Globally: Y1 Y2(!P)
- Before R: A[!Y3 U (Y4 or AG(!R))]
- After Q: Y5 G(Q Y6 AG(!P))
- Between Q and R : $\mathrm{Y} 7 \mathrm{G}(\mathrm{Q}=>\mathrm{A}[!\mathrm{P} \mathrm{U}(\mathrm{Y} 8$ or Y 9 Y10 (!R))])
- The next intentionally does not contain unknowns
- After Q until $\mathrm{R}: \mathrm{AG}(\mathrm{Q}=>!\mathrm{E}[!\mathrm{R} \mathbf{U}(\mathrm{P}$ and $!\mathrm{R})])$

CTL formulas for Absence

- P is false
- Globally: Y1 Y2(!P) AG(!P)
- Before R: A[!Y3 U (Y4 or AG(!R))]
- After Q: Y5 G(Q Y6 AG(!P))
- Between Q and R : $\mathrm{Y} 7 \mathrm{G}(\mathrm{Q}=>\mathrm{A}[!\mathrm{P} \mathrm{U}$ (Y8 or Y 9 Y10 (!R))])
- The next intentionally does not contain unknowns
- After Q until $\mathrm{R}: \mathrm{AG}(\mathrm{Q}=>!\mathrm{E}[!\mathrm{R} \mathbf{U}(\mathrm{P}$ and !R)])

CTL formulas for Absence

- P is false
- Before R: A[!Y3 U (Y4 or AG(!R))]
- Before R: A[!P U (R or AG(!R))]
- P is false until R holds or until R will never hold

CTL formulas for Absence

- P is false
- After Q: Y5 G(Q Y6 AG(!P))
- After Q: A G(Q => AG(!P))
- For all paths the following condition holds at every state: If \mathbf{Q} holds at a state then for all paths from that state $!P$ holds globally.

CTL formulas for Absence

- P is false
- Between Q and R: Y7 G(Q=>A[!P U (Y8 or Y9 Y10 (!R))]
- Between \mathbf{Q} and R: A G(Q=>A[!P U (R or A G (!R))]
- Globally, if \mathbf{Q} holds at a state s then \mathbf{P} is false until \mathbf{R} holds or \mathbf{R} is false globally from s.

Question 6: Response 5 points per unknown

- The purpose of the following CTL formulas is to describe cause-effect relationships between a pair of states. An occurrence of the first, the cause, must be followed by an occurrence of the second, the effect, within a defined portion of a system's execution.
- Find the three UNKNOWNs

CTL formulas for Response

- S responds to P : $(\mathrm{P}$ is the cause, S the effect)
- UNKNOWN2 $\mathrm{Q}: ~ \mathrm{AG}(\mathrm{Q}=>\mathrm{AG}(\mathrm{P}=>\mathrm{AF}(\mathrm{S})))$
- UNKNOWN1: AG(P=>AF(S))
- UNKNOWN3 R: A [(P=>A[!R U ((S and !R) or $\mathrm{AG}(!\mathrm{R}))]) \mathbf{U}(\mathrm{R}$ or $\mathrm{AG}(!\mathrm{R}))]$
- Note: the three UNKNOWN are part of the explanation of the CTL formula. Each unknown is one word. Explain the formula for UNKNOWN3.

CTL formulas for Response

- S responds to P : $(\mathrm{P}$ is the cause, S the effect)
- UNKNOWN2 Q: AG(Q=>AG(P=>AF(S)))
- AFTER $Q: A G(Q=>A G(P=>A F(S)))$: Globally, if Q holds, then if P holds, eventually S will hold.
- UNKNOWN1: AG(P=>AF(S))
- UNKNOWN3 R: A[(P=>A[!R U ((S and !R) or $\mathrm{AG}(!\mathrm{R}))]) \mathbf{U}(\mathrm{R}$ or $\mathrm{AG}(!\mathrm{R}))]$

CTL formulas for Response

- S responds to P : $(\mathrm{P}$ is the cause, S the effect)
- UNKNOWN2 Q: AG(Q=>AG(P=>AF(S)))
- UNKNOWN1 : AG(P=>AF(S))
- GLOBALLY : AG(P=>AF(S)): Globally, if P holds then S will eventually hold.

CTL formulas for Response

- S responds to P : $(\mathrm{P}$ is the cause, S the effect)
- UNKNOWN3 R: A [(P=>A[!R U ((S and !R) or AG(!R))]) U (R or AG(!R))]
- BEFORE R: ...
- Amazing how complex it is to express BEFORE.
- Until \mathbf{R} holds or \mathbf{R} never holds, if P holds then for all paths until (S and !R) holds or R never holds not \mathbf{R} holds.

Question 7: Properties of assignment /10 points

- Assume that the property $\left\{q^{*} y+x=a\right\}$ holds before we execute the two assignment statements: $\mathrm{x}:=\mathrm{x}-\mathrm{y}$; $\mathrm{q}:=\mathrm{q}+1$; Does the property still hold after execution of the two assignment statements? Explain your answer.
- Solution: Substitute: $(\mathbf{q}+1) \mathbf{y}+\mathbf{x}-\mathbf{y}=\mathbf{q} \mathbf{y}+\mathrm{x}$. Therefore, $q \mathbf{y}+\mathrm{x}=\mathbf{a}$ still holds.

Question 8: Blackbox Testing: Topological Sorting

- Assume you have to test a program written for the following specification: Given a directed acyclic graph $G=(V, E)$ with n vertices, label the vertices from 1 to n such that, if v is labeled k , then all vertices that can be reached from v by a directed path are labeled with labels $>\mathrm{k}$.

What to do.

- Write test requirements and test specifications for this testing task. 30 points
- Outline an algorithm for implementing the specification. Any implications on your test requirements? 10 points

Test requirements

- Graph has zero vertices
- Graph has one vertex
- Graph has >1 vertices
- Graph has zero edges
- Graph has one edge
- Graph has >1 edges

Test requirements

- Graph has a cycle: expect error
- Graph is not connected

Algorithm

- Compute number of predecessors of each vertex.
- While there is a node with 0 predecessors
- put such a node into topological order and delete node and all outgoing edges. Update predecessor counts.
- If there are nodes left in the graph, there must be a cycle.

Test specifications

- Empty graph => output: empty graph

Test specifications

Testing whether topological

- $\mathrm{i}<\mathrm{j}$: test whether there is a path from i to j . Use Warshall's algorithm with adjacency matrix representation:
- for $y:=1$ to V do for $x:=1$ to V do
- if $a[x, y]$ then
- for $\mathrm{j}:=1$ to V do
- if $\mathrm{a}[\mathrm{y}, \mathrm{j}]$ then $\mathrm{a}[\mathrm{x}, \mathrm{j}]:=$ true;

