
Lecture 3: Decoupling II

In the last lecture, we talked about the importance of dependences in the design of a
program. A good programming language allows you to express the dependences
between parts, and control them – preventing unintended dependences from arising.
In this lecture, we’ll how the features of Java can be used to express and tame depen-
dences. We’ll also study a variety of solutions to a simple coding problem, illustrating
in particular the role of interfaces.

3.1 Review: Module Dependency Diagrams
Let’s start with a brief review of the module dependency diagram (MDD) from the last
lecture. An MDD shows two kinds of program parts: implementation parts (classes in
Java) shown as boxes with a single extra stripe at the top, and specification parts shown
as boxes with a stripe at the top and bottom. Organizations of parts into groupings
(such as packages in Java) can be shown as contours enclosing parts in Venn-diagram-
style.

A plain arrow with an open head connects an implementation part A to a specification
part S, and says that the meaning of A depends on the meaning of S. Since the specifi-
cation S cannot itself have a meaning dependent on other parts, this ensures that a
part’s meaning can be determined from the part itself and the specifications it depends
on, and nothing else. A dotted arrow from A to S is a weak dependence; it says that A
depends only the existence of a part satisfying the specification S, but actually has no
dependence on any details of S. An arrow from an implementation part A to a specifi-
cation part S with a closed head says that A meets S: its meaning conforms to that of S.

Because specifications are so essential, we will always assume they are present. Most of
the time, we will not draw specification parts explicitly, and so a dependence arrow
between two implementation parts A and B should be interpreted as short for a
dependence from A to the specification of B, and a meets arrow from B to its specifi-
cation. We will show Java interfaces as specification parts explicitly.

3.2 Java Namespace
Like any large written work, a program benefits from being organized into a hierar-
chical structure. When trying to understand a large structure, it’s often helpful to view

29

it top-down, starting with the grossest levels of structure and proceeding to finer and
finer details. Java’s naming system supports this hierarchical structure. It also brings
another important benefit. Different components can use the same names for their
subcomponents, with different local meanings. In the context of the system as a whole,
the subcomponents will have names that are qualified by the components they belong
to, so there will be no confusion. This is vital, because it allows developers to work
independently without worrying about name clashes.

Here’s how the Java naming system works. The key named components are classes and
interfaces, and they have named methods and named fields. Local variables (within
methods) and method arguments are also named. Each name in a Java program has a
scope: a portion of the program text over which the name is valid and bound to the
component. Method arguments, for example, have the scope of the method; fields have
the scope of the class, and sometimes beyond. The same name can be used to refer to
different things when there is no ambiguity. For example, it’s possible to use the same
name for a field, a method and a class; see the Java language spec for examples.

A Java program is organized into packages. Each class or interface has its own file
(ignoring inner classes, which we won’t discuss). Packages are mirrored in the directo-
ry structure. Just like directories, packages can be nested arbitrarily deeply. To organ-
ize your code into packages, you do two things: you indicate at the top of each file
which package its class or interface belongs to, and you organize the files physically
into a directory structure to match the package structure. For example, the class
dnj.browser.Protocol would be in a file called Protocol.java in the directory dnj/brows-
er.

We can show this structure in our dependence diagram. The classes and interfaces
form the parts between which dependences are shown. Packages are shown as con-
tours enclosing them. It’s convenient sometimes to hide the exact dependences
between parts in different packages and just show a dependence arc at the package
level. A dependence from a package means that some class or interface (or maybe sev-
eral) in that package has a dependence; a dependence on a package means a depend-
ence on some class or interface (or maybe several) in that package.

3.3 Access Control

Java’s access control mechanisms allow you to control dependences. In the text of a
class, you can indicate which other classes can have dependences on it, and to some
extent you can control the nature of the dependences.

30

A class declared as public can be referred to by any other class; otherwise, it can be
referred to only by classes in the same package. So by dropping this modifier, we can
prevent dependences on the class from any class outside the package.

Members of a class – that is, its fields and methods – may be marked public, private or
protected. A public member can be accessed from anywhere. A private member can be
accessed only from within the class in which the field or method is declared. A pro-
tected member can be accessed within the package, or from outside the package by a
subclass of the class in which the member is declared – thus creating the very odd
effect that marking a member as protected makes it more, not less, accessible.

Recall that a dependence of A on B really means a dependence of A on the specifica-
tion of B. Modifiers on members of B allow us to control the nature of the dependence
by changing which members belong to B‘s specification. Controlling access to the fields
of B helps give representation independence, but it does not always ensure it (as we’ll
see later in the course).

3.4 Safe Languages
A key property of a program is that one part should only depend on another if it names
it. This seems obvious, but in fact it’s a property that only holds for programs written
in so-called ‘safe languages’. In an unsafe language, the text in one part can affect the
behaviour of another without any names being shared. This leads to insidious bugs that
are very hard to track down, and which can have disastrous and unpredictable effects.

Here’s how it happens. Consider a program written in C in which one module (in C,

31

AST Main Protocol

List Socket InetAddress InputStream

dnj.browser

java.util java.net java.io

just a file) updates an array. An attempt to set the value of an array element beyond the
bounds of the array will sometimes fail, because it causes a memory fault, going
beyond the memory area assigned to the process. But, unfortunately, more often it will
succeed, and the result will be to overwrite an arbitrary piece of memory – arbitrary
because the programmer does not know how the compiler laid out the program’s
memory, and cannot predict what other data structure has been affected. As a result,
an update of the array a can affect the value of a data structure with the name d that is
declared in a different module and doesn’t even have a type in common with a.

Safe languages rule this out by combining several techniques. Dynamic checking of
array bounds prevents the kind of updating we just mentioned from occurring; in Java,
an exception would be thrown. Automatic memory management ensures that memo-
ry is not reclaimed and then mistakenly reused. Both of these rely on the fundamental
idea of strong typing, which ensures that an access that is declared to be to a value of
type t in the program text will always be an access to a value of type t at runtime. There
is no risk that code designed for an array will be mistakenly applied to a string or an
integer.

Safe languages have been around since 1960. Famous safe languages include Algol-60,
Pascal, Modula, LISP, CLU, Ada, ML, and now Java. It’s interesting that for many years
industry claimed that the costs of safety were too high, and that it was infeasible to
switch from unsafe languages (like C++) to safe languages (like Java). Java benefited
from a lot of early hype about applets, and now that it’s widely used, and lots of libraries
are available, and there are lots of programmers who know Java, many companies have
taken the plunge and are recognizing the benefits of a safe language.

Some safe languages guarantee type correctness at compile time – by ‘static typing’.
Others, such as Scheme and LISP, do their type checking at runtime, and their type sys-
tems only distinguish primitive types from one another. We’ll see shortly how a more
expressive type system can also help control dependences.

If reliability matters, it’s wise to use a safe language. In lecture, I told a story here about
use of unsafe language features in a medical accelerator.

3.5 Interfaces

In languages with static typing, one can control dependences by choice of types.
Roughly speaking, a class that mentions only objects of type T cannot have a depend-
ence on a class that provides objects of a different type T’. In other words, one can tell
from the types mentioned in a class which other classes it depends on.

32

However, in languages with subtyping, something interesting is possible. Suppose class
A mentions only the class B. This does not mean that it can only call methods on
objects created by class B. In Java, the objects created by a subclass C of B are regard-
ed as also having the type B, so even though A can’t create objects of class C directly, it
can be passed them by another class. The type C is said to be a subtype of the type B,
since a C object can be used when a B object is expected. This is called ‘substitutabili-
ty’.

Subclassing actually conflates two distinct issues. One is subtyping: that objects of class
C are to be regarded as having types compatible with B, for example. The other is
inheritance: that the code of class C can reuse code from B. Later in the course we’ll
discuss some of the unfortunate consequences of conflating these two issues, and we’ll
see how substitutability doesn’t always work as you might expect.

For now, we’ll focus on the subtyping mechanism alone, since it’s what’s relevant to our
discussion. Java provides a notion of interfaces which give more flexibility in subtyping
than subclasses. A Java interface is, in our terminology, a pure specification part. It
contains no executable code, and is used only to aid decoupling.

Here’s how it works. Instead of having a class A depend on a class B, we introduce an
interface I. A now mentions I instead of B, and B is required to meet the specification
of I. Of course the Java compiler doesn’t deal with behavioural specifications: it just
checks that the types of the methods of B are compatible with the types declared in I.
At runtime, whenever A expects an object of type I, an object of type B is acceptable.

For example, in the Java library, there is a class java.util.LinkedList that implements
linked lists. If you’re writing some code that only requires that an object be a list, and
not necessarily that it be a linked list, you should use the type java.util.List in your
code, which is an interface implemented by java.util.LinkedList. There are other class-
es, such as ArrayList and Vector that implement this interface. So long as your code
refers only to the interface, it will work with any of these implementation classes.

Several classes may implement the same interface, and a class may implement several
interfaces. In contrast, a class may only subclass at most one other class. Because of
this, some people use the term ‘multiple specification inheritance’ to describe the
interface feature of Java, in contrast to true multiple inheritance in which can reuse
code from multiple superclasses.

Interfaces bring primarily two benefits. First, they let you express pure specification
parts in code, so you can ensure that the use of a class B by a class A involves only a
dependence of A on a specification S, and not on other details of B. Second, interfaces
let you provide several implementation parts that meet a single specification, with the

33

selection being made at compile time or at runtime.

3.6 Example: Instrumenting a Program

For the remainder of the lecture, we’ll study some decoupling mechanisms in the con-
text of an example that’s tiny but representative of an important class of problems.

Suppose we want to report incremental steps of a program as it executes by displaying
progress line by line. For example, in a compiler with several phases, we might want to
display a message when each phase starts and ends. In an email client, we might dis-
play each step involved in downloading email from a server. This kind of reporting
facility is useful when the individual steps might take a long time or are prone to fail-
ure (so that the user might choose to cancel the command that brought them about).
Progress bars are often used in this context, but they introduce further complications
(marking the start and end of an activity, and calculating proportional progress) which
we won’t worry about.

As a concrete example, consider an email client that has a package core that contains
a class Session that has code for setting up a communication session with a server and
downloading messages, a class Folder for the objects that models folders and their con-
tents, and a class Compactor that contains the code for compacting the representation
of folders on disk. Assume there are calls from Session to Folder and from Folder to
Compactor, but that the resource intensive activities that we want to instrument occur
only in Session and Compactor, and not in Folder.

The module dependency diagram shows that Session depends on Folder, which has a
mutual dependence on Compactor.

We’ll look at a variety of ways to implement our instrumentation facility, and we’ll
study the advantages and disadvantages of each. Starting with the simplest, most naive
design possible, we might intersperse statements such as

System.out.println (“Starting download”);

throughout the program.

3.6.1 Abstraction by Parameterization
The problem with this scheme is obvious. When we run the program in batch mode,
we might redirect standard out to a file. Then we realize it would be helpful to time-
stamp all the messages so we can see later, when reading the file, how long the various
steps took. We’d like our statement to be

34

System.out.println (“Starting download at: ” + new Date ());

instead. This should be easy, but it’s not. We have to find all these statements in our
code (and distinguish from other calls to System.out.println that are for different pur-
poses), and alter each separately.

Of course, what we should have done is to define a procedure to encapsulate this func-
tionality. In Java, this would be a static method:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg);
}

}

Now the change can be made at a single point in the code. We just modify the proce-
dure:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

Matthias Felleisen calls this the ‘single point of control’ principle. The mechanism in
this case is one you’re familiar with: what 6001 called abstraction by parameterization,
because each call to the procedure, such as

StandardOutReporter.report (“Starting download”);

is an instantiation of the generic description, with the parameter msg bound to a par-
ticular value. We can illustrate the single point of control in a module dependence dia-
gram. We’ve introduced a single class on which the classes that use the instrumenta-

35

Session Folder

Core

Compactor

tion facility depend: StandardOutReporter. Note that there is no dependence from
Folder to StandardOutReporter, since the code of Folder makes no calls to it.

3.6.2 Decoupling with Interfaces
This scheme is far from perfect though. Factoring out the functionality into a single
class was a good idea, but the code still has a dependence on the notion of writing to
standard out. If we wanted to create a new version of our system with a graphical user
interface, we’d need to replace this class with one containing the appropriate GUI code.
That would mean changing all the references in the core package to refer to a different
class, or changing the code of the class itself, and now having to handle two incompat-
ible versions of the class with the same name. Neither of these is an attractive option.

In fact, the problem’s even worse than that. In a program that uses a GUI, one writes
to the GUI by calling a method on an object that represents part of the GUI: a text
pane, or a message field. In Swing, Java’s user interface toolkit, the subclasses of
JTextComponent have a setText method. Given some component named by the vari-
able outputArea, for example, the display statement might be:

outputArea.setText (msg)

How are we going to pass the reference to the component down to the call site? And

36

StandardOut
Reporter

Session Folder

core

Compactor

ui

how are we going to do it without now introducing Swing-specific code into the
reporter class?

Java interfaces provide a solution. We create an interface with a single method report
that will be called to display results.

public interface Reporter {
void report (String msg);
}

Now we add to each method in our system an argument of this type. The Session class,
for example, may have a method download:

void download (Reporter r, …) {
r.report (“Starting downloading”);
…
}

Now we define a class that will actually implement the reporting behaviour. Let’s use
standard out as our example as it’s simpler:

public class StandardOutReporter implements Reporter {
public void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

This class is not the same as the previous one with this name. The method is no longer
static, so we can create an object of the class and call the method on it. Also, we’ve indi-
cated that this class is an implementation of the Reporter interface. Of course, for stan-
dard out this looks pretty lame and the creation of the object seems to be gratuitious.
But for the GUI case, we’ll do something more elaborate and create an object that’s
bound to the particular widget:

public class JTextComponentReporter implements Reporter {
JTextComponent comp;
public JTextComponentReporter (JTextComponent c) {comp = c;}
public void report (String msg) {

comp.setText (msg + “ at: “ + new Date ());
}

}

At the top of the program, we’ll create an object and pass it in:

37

s.download (new StandardOutReporter (), …);

Now we’ve achieved something interesting. The call to report now executes, at run-
time, code that involves System.out. But methods like download only depend on the
interface Reporter, which makes no mention of any specific output mechanism. We’ve
successfully decoupled the output mechanism from the program, breaking the depend-
ence of the core of the program on its I/O.

Look at the module dependency diagram. Recall that an arrow with a closed head from
A to B is read ‘A meets B’. B might be a class or an interface; the relationship in Java may
be implements or extends. Here, the class StandardOutReporter meets the interface
Reporter.

The key property of this scheme is that there is no longer a dependence of any class of
the core package on a class in the gui package. All the dependences point downwards
(at least logically!) from gui to core. To change the output from standard output to a
GUI widget, we would simply replace the class StandardOutReporter by the class
JTextComponentReporter, and modify the code in the main class of the gui package to
call its constructor on the classes that actually contain concrete I/O code. This idiom
is perhaps the most popular use of interfaces, and is well worth mastering.

38

Session Folder

core

Compactor

Reporter

StandardOut
ReporterMain

ui

Recall that the dotted arrows are weak dependences. A weak dependence from A to B
means that A references the name of B, but not the name of any of its members. In
other words, A knows that the class or interface B exists, and refers to variables of that
type, but calls no methods of B, and accesses no fields of B.

The weak dependence of Main on Reporter simply indicates that the Main class may
include code that handles a generic reporter; it’s not a problem. The weak dependence
of Folder on Reporter is a problem though. It’s there because the Reporter object has
to be passed via methods of Folder to methods of Compactor. Every method in the call
chain that reaches a method that is instrumented must take a Reporter as an argument.
This is a nuisance, and makes retrofitting this scheme painful.

3.6.3 Interfaces vs. Abstract Classes
You may wonder whether we might have used a class instead of an interface. An
abstract class is one that is not completely implemented; it cannot be instantiated, but
must be extended by a subclass that completes it. Abstract classes are useful when you
want to factor out some common code from several classes. Suppose we wanted to dis-
play a message saying how long each step had taken. We might implement a Reporter
class whose objects retain in their state the time of the last call to report, and then take
the difference between this and the current time for the output. By making this class
an abstract class, we could reuse the code in each of the concrete subclasses
StandardOutReporter, JTextComponentReporter, etc.

Why not pass make the argument of download have this abstract class as its type,
instead of an interface? There are two related reasons. The first is that we want the
dependence on the reporter code to be as weak as possible. The interface has no code
at all; it expresses the minimal specification of what’s needed. The second is that there
in no multiple inheritance in Java: a class can only extend at most one other class. So
when you’re designing the core program, you don’t want to use the opportunity to sub-
class prematurely. A class can implement any number of interfaces, so by choosing an
interface, you leave it open to the designer of the reporter classes how they will be
implemented.

3.6.4 Static Fields

The clear disadvantage of the scheme just discussed is that the reporter object has to
be threaded through the entire core program. If all the output is displayed in a single
text component, it seems annoying to have to pass a reference to it around. In depend-
ency terms, every method has at least a weak dependence on the interface Reporter.

39

Global variables, or in Java static fields, provide a solution to this problem. To elimi-
nate many of these dependences, we can hold the reporter object as a static field of a
class:

public class StaticReporter {
static Reporter r;
static void setReporter (Reporter r) {

this.r = r;
{

static void report (String msg) {
r.report (msg);
}

}

Now all we have to do is set up the static reporter at the start:

StaticReporter.setReporter (new StandardOutReporter ());

and we can issue calls to it without needing a reference to an object:

void download (…) {
StaticReporter.report (“Starting downloading”);
…
}

In the module dependency diagram, the effect of this change is that now only the class-
es that actually use the reporter are dependent on it:

Notice how the weak dependence of Folder has gone. We’ve seen this global notion
before, of course, in our second scheme whose StandardOutReporter had a static
method. This scheme combines that static aspect with the decoupling provided by
interfaces.

Global references are handy, because they allow you to change the behaviour of meth-
ods low down in the call hierarchy without making any changes to their callers. But
global variables are dangerous. They can make the code fiendishly difficult to under-
stand. To determine the effect of a call to StaticReporter.report, for example, you need
to know what the static field r is set to. There might be a call to setReporter anywhere
in the code, and to see what effect it has, you’d have to trace executions to figure out
when it’s executed relative to the code of interest.

Another problem with global variables is that they only work well when there is really
one object that has some persistent significance. Standard out is like this. But text com-

40

ponents in a GUI are not. We might well want different parts of the program to report
their progress to different panes in our GUI. With the scheme in which reporter
objects are passed around, we can create different objects and pass them to different
parts of the code. In the static version, we’ll need to create different methods, and it
starts to get ugly very quickly.

Concurrency also casts doubt on the idea of having a single object. Suppose we
upgrade our email client to download messages from several servers concurrently. We
wouldn’t want the progress messages from all the downloading sessions to be inter-
leaved in a single output.

A good rule of thumb is to be wary of global variables. Ask yourself if you really can
make do with a single object. Usually you’ll find ample reason to have more than one
object around. This scheme goes by the term Singleton in the design patterns literature,
because the class contains only a single object.

41

Session Folder

core

Compactor

StandardOut
Reporter

Main

ui

StaticReporter

Reporter

