
Lecture 2: Decoupling I

A central issue in designing software is how to decompose a program into parts. In this
lecture, we’ll introduce some fundamental notions for talking about parts and how
they relate to one another. Our focus will be on identifying the problem of coupling
between parts, and showing how coupling can be reduced. In the next lecture, we’ll see
how Java explicitly supports techniques for decoupling.

A key idea that we’ll introduce today is that of a specification. Don’t think that specifi-
cations are just boring documentation. On the contrary, they are essential to decou-
pling and thus to high-quality design. And we’ll see that in more advanced designs,
specifications become design elements in their own right.

Our course text treats the terms uses and depends as synonyms. In this lecture, we’ll
distinguish the two, and explain how the notion of depends is a more useful one than
the older notion of uses. You’ll need to understand how to construct and analyze
dependency diagrams; uses diagrams are explained just as a stepping stone along the
way.

2.1 Decomposition
A program is built from a collection of parts. What parts should there be, and how
should they be related? This is the problem of decomposition.

2.1.1 Why Decompose?
Dijkstra pointed out that if a program has N parts, and each has a probability of cor-
rectness of c – that is, there’s a chance of 1-c that the developer gets it wrong – then
the probability that the whole assemblage will work is cN. If N is large, then unless c is
very close to one, cN will be near zero. Dijkstra made this argument to show how much
getting it right matters – and the bigger the program gets, the more it matters. If you
can’t make each part almost perfect, you have no hope of getting the program to work.

(You can find the argument in the classic text Structured Programming by Dahl,
Dijkstra and Hoare, Academic Press, 1972. It’s a seductive and elegant argument, but
perhaps a bit misleading. In practice, the probability of getting the whole program
completely correct is zero anyway. And what matters is ensuring that certain limited,

15

but crucial, properties hold, and these may not involve every part. We’ll return to this
later.)

But doesn’t this suggest that we shouldn’t break a program into parts? The smaller N
is, the higher the probability that the program will work. Of course, I’m joking – it’s
easier to get a small part right than a big one (so the parameter c is not independent of
N). But it’s worth asking what benefits come from dividing a program into smaller
parts. Here are some:
· Division of labour. A program doesn’t just appear out of thin air: it has to be built

gradually. If you divide it into parts, you can get it built more quickly by having dif-
ferent people work on different parts.

· Reuse. Sometimes it’s possible to factor out parts that different programs have in
common, so they can be produced once and used many times.

· Modular Analysis. Even if a program is built by only one person, there’s an advan-
tage to buidling it in small parts. Each time a part is complete, it can be analyzed for
correctness (by reading the code, by testing it, or by more sophisticated methods
that we’ll talk about later). If it works, it can be used by another part without revis-
iting it. Aside from giving a satisfying sense of progress, this has a more subtle
advantage. Analyzing a part that is twice is big is much more than twice as hard, so
analyzing about a program in small parts dramatically reduces the overall cost of the
analysis.

· Localized Change. Any useful program will need adaptation and extension over its
lifetime. If a change can be localized to a few parts, a much smaller portion of the
program as a whole needs to be considered when making and validating the change.

Herb Simon made an intriguing argument for why structures – whether man-made or
natural – tend to be build in a hierarchy of parts. He imagines two watchmakers, one
of whom builds watches in one go, in a single large assembly, and one of who builds
composite subassemblies that he then puts together. Whenever the phone rings, a
watchmaker must stop and put down what he as currently working on, spoiling that
assembly. The watchmaker who builds in one go keeps spoiling whole watch assem-
blies, and must start again from scratch. But the watchmaker who builds hierarchical-
ly doesn’t lose the work he did on the completed subassemblies that he was using. So
he tends to lose less work each time, and produces watches more efficiently. How do
you think this argument applies to software?

(You can find this argument in Simon’s paper The Architecture of Complexity.)

2.1.2 What Are The Parts?
What are the parts that a program is divided into? We’ll use the term ‘part’ rather than

16

‘module’ for now so we can keep away from programming-language specific notions.
(In the next lecture, we’ll look at how Java in particular supports decomposition into
parts). For now, all we need to note is that the parts in a program are descriptions: in
fact, software development is really all about producing, analyzing and executing
descriptions. We’ll soon see that the parts of a program aren’t all executable code – it’s
useful to think of specifications as parts too.

2.1.3 Top Down Design
Suppose we need some part A and we want to decompose into parts. How do we make
the right decomposition? This topic is a large part of what we’ll be studying in this
course. Suppose we decompose A into B and C. Then, at the very least, it should be
possible to build B and C, and putting B and C together should give us A.

In the 1970’s, there was a popular approach to software development called Top-down
Design. The idea is simply to apply the following step recursively:
· If the part you need to build is already available (for example, as a machine instruc-

tion), then you’re done;
· Otherwise, split it into subparts, develop them, and combine them together.

The splitting into subparts was done using ‘functional decomposition’. You think about
what function the part should have, and break that function into smaller steps. For
example, a browser takes user commands, gets web pages, and displays them. So we
might split Browser into ReadCommand, GetPage, DisplayPage.

The idea was appealing, and there are still people who talk about it with approval. But
it fails miserably, and here’s why. The very first decomposition is the most vital one,
and yet you don’t discover whether it was good until you reach the leaves of the decom-
position tree. You can’t do much evaluation along the way; you can’t test a decomposi-
tion into two parts that haven’t themselves been implemented. Once you get to the bot-
tom, it’s too late to do anything about the decompositions you made at the top. So from
the point of view of risk – making decisions when you have the information you need,
and minimizing the chance and cost of mistakes – it’s a very bad strategy.

In practice, what usually happens is that the decomposition is a vague one, with the
hope that the parts become more clearly defined as you go down. So you’re actually fig-
uring out what problem you’re trying to solve as you’re structuring the solution. As a
result, when you get near the bottom, you find yourself adding all kinds of hacks to
make the parts fit together and achieve the desired function. The parts become exten-
sively coupled to one another, so that the slightest alteration to one isn’t possible with-
out changing all the others. If you’re unlucky, the parts don’t fit together at all. And,

17

finally, there’s nothing in top-down design that encourages reuse.

(For a discussion of the perils of top-down design, see the article with that title in:
Software Requirements and Specifications: A Lexicon of Software Principles, Practices
and Prejudices, Michael Jackson, Addison Wesley, 1995.)

This isn’t to say, of course, that viewing a system hierarchically is a bad idea. It’s just not
possible to develop it that way.

2.1.4 A Better Strategy

A much better strategy is to develop a system structure considering of multiple parts
at a roughly equal level of abstraction. You refine the description of every part at once,
and analyze whether the parts will fit together and achieve the desired function before
starting to implement any of them. It also turns out that it is much better to organize
a system around data than around functions.

Perhaps the most important consideration in evaluating the decomposition into parts
is how the parts are coupled to one another. We want to minimize coupling – to decou-
ple the parts – so that we can work on each part independently of the others. This is
the topic of our lecture today; later in the course, we’ll see how we can express prop-
erties of the parts and the details of how they interact with one another.

2.2 Dependence Relationships

2.2.1 Uses Diagram

The most basic notion relationship between parts is the uses relationship. We say that
a part A uses a part B if A refers to B in such a way that the meaning of A depends on
the meaning of B. When A and B are executable code, the meaning of A is its behav-
iour when executed, so A uses B when the behaviour of A depends on the behaviour of
B.

Suppose, for example, we’re designing a web browser. The diagram shows a putative
decomposition into parts:

The Main part uses the Protocol part to engage in the HTTP protocol, the Parse part
to parse the HTML page received, and the Display part to display it on the screen.
These parts in turn use other parts. Protocol uses Network to make the network con-
nection and to handle the low-level communication, and Page to store the HTML page

18

received. Parser uses the part AST to create an abstract syntax tree from the HTML
page – a data structure that represents the page as a logical structure rather than as a
sequence of characters. Parser also uses Page since it must be able to access the raw
HTML character sequence. Display uses a part Render to render the abstract syntax
tree on the screen.

Let’s consider what kind of shape a uses graph may take.
· Trees. First, note that when viewed as a graph, the uses-diagram is not generally a

tree. Reuse causes a part to have multiple users. And whenever a part is decom-
posed into two parts, it is likely that those parts will share a common part that
enables them to communicate. AST, for example, allows Parser to communicate its
results to Display.

· Layers. Layered organizations are common. A more detailed uses-diagram of our
browser may have several parts in place of each of the parts we showed above. The
Network part, for example, might be replaced by Stream, Socket, etc. It is sometimes
useful to think of a system as a sequence of layers, each providing a coherent view
of some underlying infrastructure, at varying levels of abstraction. The Network
layer provides a low-level view of the network; the Protocol layer is built on top of
it, and provides a view of the network as an infrastructure for processing HTTP
queries, and the top layer provides the application user’s view of the system, which
turns URLs into visible web pages. Technically, we can make any uses-diagram lay-
ered by assigning each part to a layer so that no uses arrow points from a part in

19

Main

Display Parser Protocol

AST Page Network

some layer to a part in a higher layer. But this doesn’t really make the program lay-
ered, since the layers have no conceptual coherence.

· Cycles. It’s quite common to have cycles in the uses-diagram. This doesn’t have to
mean that there is recursion in the program. Here’s how it might arise in our brows-
er design. We haven’t considered how Display will work. Suppose we have a GUI
part that provides functions for writing to a display, and handles input by making
calls (when buttons are pressed, etc) to functions in other parts. Then Display may
uses GUI for output, and GUI may use Main for input. In object-oriented designs,
as we’ll see, cycles often arises when objects of different classses interact strongly.

What can we do with the uses-diagram?
· Reasoning. Suppose we want to determine whether a part P is correct. Aside from P

itself, which parts do we need to examine? The answer is: the parts P uses, the parts
they use, and so on – in other words all parts reachable from P. In our browser
example, to check that Display works we’ll need to lok at Render and AST also.
Conversely, if we make a change to P, which parts might be affected? The answer is
all parts that use P, the parts that use them, and so on. If we change AST for exam-
ple, Display, Parser and Main may all have to change. This is called impact analysis
and it’s important during maintenance of a large program when you want to make
sure that the consequences of a change are completely known, and you want to
avoid retesting every part.

20

Application

Protocol

Network

Main Parser AST

URL Get Post

Stream Socket

· Reuse. To identify a subsystem – a collection of parts – that can be reused, we have
to check that none of its parts use any other parts not in the subsystem. The same
determination tells us which how to find a minimal subsystem for initial imple-
mentation. For example, the parts Display, Render and AST form a collection with-
out dependences on other parts, and could be reused as a unit.

· Construction Order. The uses diagram helps determine what order to build the
parts in. We might assign two sets of parts to two different groups and let them
work in parallel. By ensuring that no part in one set uses a part in another set, we
can be sure that neither group will be stalled waiting for the other. And we can con-
struct a system incrementally by starting at the bottom of the uses diagram, with
those parts that don’t use any other parts, and then move upwards, assembling and
testing whenever we have a consistent subsystem. For example, the Display and
Protocol parts could be developed independently along with the parts they use, but
not Display and Parser.

Thinking about these considerations can shed light on the quality of a design. The cycle
we mentioned above, (Main–Display–GUI–Main), for example, makes it impossible to
reuse the Display part without also reusing Main.

There’s a problem with the uses diagram though. Most of the analyses we’ve just dis-
cussed involve finding all parts reachable or reaching a part. In a large system, this may
be a high proportion of the parts in a system. And worse, as the system grows, the
problem gets worse, even for existing parts which refer directly to no more parts than
they did before. To put it differently, the fundamental relationship that underlies uses

21

Main

Display

GUI

is transitive: if A is affected by B and B is affected by C, then A is affected by C. It would
be much better if reasoning about a part, for example, required looking at only at the
parts it refers to.

The idea of the uses relation, and its role in thinking about software structure, was first
described by David Parnas in Designing Software for Ease of Extension and Contraction,
IEEE Transactions on Software Engineering, Vol. SE-5, No 2, 1979.

2.2.2 Dependences & Specifications

The solution to this problem is to have instead a notion of dependence that stops after
one step. To reason about some part A, we will need to consider only the parts it
depends on. To make this possible, it will be necessary for every part that A depends
on to be complete, in the sense that its description completely characterizes its behav-
iour. It cannot itself depend on other parts. Such a description is called a specification.

A specification cannot be executed, so we’ll need for each specification part at least
one implementation part that behaves according to the specification. Our diagram, the
dependency diagram, therefore has two kinds of arcs. An implementation part may
depend on a specification part, and it may fulfill or meet a specification part.

In comparison to what we had before, we have broken the uses relationship between
two parts A and B into two separate relationships. By introducing a specification part
S, we can say that A depends on S and B meets S. The diagram on the left illustrates
this; note the use of two double lines to distinguish specification parts from imple-
mentation parts.

Each arc incurs an obligation. The writer of A must check that it will work if it is assem-
bled with a part that satisifies the specification S. And ‘works’ is now defined by explic-
itly by meeting specifications: B will be usable in A if it works according to the specifi-
cation S, and A will be deemed to work if it meets whatever specification is given for
its intended uses – T say. The diagram on the right shows this. It’s the same depends-
meet chain centered on an implementation part rather than a specification part.

This is a much more useful and powerful framework than uses. The introduction of
specifications brings many advantages:
· Weakened Assumptions. When A uses B, it is unlikely to rely on every aspect of B.

Specifications allow us to say explicitly which aspects matter. By making specifica-
tions much smaller and simpler than implementations, we can make it much easier
to reason about correctness of parts. And a weak specification gives more opportu-

22

nities for performance improvements.
· Evaluating Changes. The specification S helps limit the scope of a change. Suppose

we want to change B. Must A change as well? Now this question doesn’t require
looking at A. We start by looking at S, the specification A requires of the part it uses.
If the new B will still meet S, then no change to A will be needed at all.

· Communication. If A and B are to be built by different people, they only need to
agree upon S in advance. A can ignore the details of the services B provides, and B
can ignore the details of the needs of A.

· Multiple Implementations. There can be many different implementation parts that
meet a given specification part. This makes a market in interchangeable parts pos-
sible. Parts are marketed in a catalog by the specifications they meet, and a cus-
tomer can pick any part that meets the required specification. A single system can
provide multiple implementations of a part. The selection can be made when the
system is configured, or as we shall see later in the course, during execution of the
system.

Specifications are so useful that we’ll assume that there is a specification part corre-
sponding to every implementation part in our system, and we’ll conflate them, draw-
ing dependences directly from implementations to implementations. In other words, a
dependence arc from A to B means that A depends on the specification of B.

So whenever we draw a diagram like the one of our browser above, we’ll interpret it as
a dependence diagram and not as a uses diagram. For example, it will be possible to
have teams build Parser and Protocol in parallel as soon as the specification of Page is

23

A

S

B

meets

depends

A

S

depends

T

meets

complete; its implementation can wait.

Sometimes, though, specifications are design elements in their own right and we’ll
want to make explicit their presence. Java provides some useful mechanisms for
expressing decoupling with specifications, and we’ll want to show these. Design pat-
terns, which will be studying later in the term, make extensive use of specifications in
this way.

2.2.3 Weak Dependences
Sometimes a part is just a conduit. It refers to another part by name, but doesn’t make
use of any service it provides. The specification it depends on requires only that the
part exist. In this case, the dependence is called a weak dependence, as is drawn as a
dotted arc.

In our browser, for example, the abstract syntax tree in AST may be accessible as a
global name (using the Singleton pattern, which we’ll see later). But for various reasons
– we might for example later decide that we need two syntax trees – it’s not wise to use
global names in this way. An alternative is for the Main part to pass the AST part from
the Parse part to the Display part. This would induce a weak dependence of Main on
AST. The same reasoning would give a weak dependence of Main on Page.

In a weak dependence of A on B, A usually depends on the name of B. That is, it not
only requires that there be some part satisfying the specification of B, but it also
requires that it be called B. Sometimes a weak dependence doesn’t constrain the name.

24

Main

Display Parser

AST

In this case, A depends only the existence of some part satisfying the specification of
B, and A will refer to such a part using the name of the specification of B. We will see
how Java allows this kind of dependence. In this case, it’s useful to show the specifica-
tion of B as a separate part with its own name.

For example, the Display part of our browser may use a part UI for its output, but need
not know whether the UI is graphical or text-based. This part can be a specification
part, met by an implementation part GUI which Main depends on (since it creates the
actual GUI object). In this case, Main, because it passes an object whose type is
described as UI to Display, must also have a weak dependence on the specification part
UI.

2.3 Techniques for Decoupling
So far, we’ve discussed how to represent dependences between program parts. We’ve
also talked about some of the effects of dependences on various development activi-
ties. In every case, a dependence is a liability: it expands the scope of what needs to be
considered. So a major part of design is trying to minimize dependences: to decouple
parts from one another.

Decoupling means minimizing both the quantity and quality of dependences. The
quality of a dependence from A to B is measured by how much information is in the
specification of B (which, recall from above, is what A actually depends on). The less
information, the weaker the dependence. In the extreme case, there is no information
in the dependence at all, and we have a weak dependence in which A depends only on
the existence of B.

The most effective way to reduce coupling is to design the parts so that they are sim-
ple and well defined, and bring together aspects of the system that belong together and
separate aspects that don’t. There are also some tactics that can be applied when you
already have a candidate decomposition: they involve introducing new parts and alter-
ing specifications. We’ll see many of these throughout the term. For now, we’ll just
mention some briefly to give you an idea of what’s possible.

2.3.1 Facade
The facade pattern involves interposing a new implementation part between two sets
of parts. The new part is a kind of gatekeeper: every use by a part in the set S of a part
in the set B which was previously direct now goes through it. This often makes sense
in a layered system, and helps to decouple one layer from another.

25

In our browser, for example, there may be many dependences between parts in a pro-
tocol layer and parts in a networking layer. Unless all the networking parts are plat-
form-independent, porting the browser to a new platform may require replacing the
networking layer. Every part in the protocol layer that depends on a networking part
may have to be examined and altered.

To avoid this problem, we might introduce a facade part that sits between the layers,
collects together all the networking that the protocol layer needs (and no more), and
presents them to the protocol layer with a higher-level interface. This interface is, of
course, a new specification, weaker than the specifications on which the protocol parts
used to rely. If done right, it may now be possible to change the parts of the network-
ing layer while leaving the facade’s specification unchanged, so that no protocol parts
will be affected.

2.3.2 Hiding representation
A specification can avoid mentioning how data is represented. Then the parts that
depend on it cannot manipulate the data directly; the only way to manipulate the data
is to use operations that are included in the specification of the used part. This kind of
specification weakening is known as ‘data abstraction’, and we’ll have a lot to say about
it in the next few weeks. By eliminating the dependence of the using part A on the rep-
resentation of data in the used part B, it makes it easier to understand the role that B
plays in A. It makes it possible to change the representation of data in B without any
change to A at all.

In our browser, for example, the specification part associated with Page might say that
a web page is a sequence of characters, hiding details of its representation using arrays.

2.3.3 Polymorphism

A program part C that provides container objects has a dependence on the program
part E that provides the elements of the container. For some containers, this is a weak
dependence, but it need not be: C may use E to compare elements (eg, to check for
equality, or to order them). Sometimes C may even use functions of E that mutate the
elements.

To reduce the coupling between C and E, we can make C polymorphic. The word
‘polymorphic’ means ‘many shaped’, and refers to the fact that C is written without any
mention of special properties of E, so that containers of many shapes can be produced
according to which E the part C uses. In practice, pure polymorphism is rare, and C

26

will at least rely on equality checks provided by E. Again, what’s going on is a weaken-
ing of the specification that connects C to E. In the monomorphic case, C depends on
the specification of E; in the polymorphic case, C depends on a specification S that says
only that the part must provide objects with an equality test. In Java, this specification
S is the specification of the Object class.

In our browser, for example, the data structure used for the abstract syntax tree might
use a generic Node specification part, which is implemented by an HTMLNode part,
for much of its code. A change in the structure of the markup language would then
affect less code.

2.3.4 Callbacks

We mentioned above how, in our browser, a GUI part might depend on the Main part
because it calls a procedure in Main when, for example, a button is pressed. This cou-
pling is bad, because it makes intertwines the structure of the user interface with the
structure of the rest of the application. If we ever want to change the user interface, it
will be hard to disentangle it.

Instead, the Main part might pass the GUI part at runtime a reference to one of its pro-
cedures. When this procedure is called by the GUI part, it has the same effect it would
have had if the procedure had been named in the text of the GUI part. But since the
association is only made at runtime, there is no dependence of GUI on Main. There
will be a dependence of GUI on a specification (Listener, say) that the passed procedure

27

Main

Display

Listener

GUI

must satisfy, but this is usually minimal: it might say, for example, just that the proce-
dure returns without looping forever, or that it does not cause procedures within GUI
itself to be called. This arrangement is a callback, since GUI ‘calls back’ to Main against
the usual direction of procedure call. In Java, procedures can’t be passed, but the same
effect can be obtained by passing a whole object.

2.4 Coupling Due to Shared Constraints

There’s a different kind of coupling which isn’t shown in a module dependency dia-
gram. Two parts may have no explicit dependence between them, but they may never-
theless be coupled because they are required to satisfy a constraint together.

For example, suppose we have two parts, Read, which reads files, and Write, which
writes files. If the files read by Read are the same files written by Write, there will be a
constraint that the two parts agree on the file format. If the file format is changed, both
parts will need to change.

To avoid this kind of coupling, you have to try to localize functionality associated with
any constraint in a single part. This is what Matthias Felleisen calls ‘single point of con-
trol’ in his novel introduction to programming in Scheme (How to Design Programs, An
Introduction to Programming and Computing, Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2001).

David Parnas suggested that this idea should form the basic of the selection of parts.
You start by listing the key design decisions (such as choice of file format), and then
assign each to a part that keeps that decision ‘secret’. This is explained in detail with a
nice example in his seminal paper On the Criteria To Be Used in Decomposing Systems
into Modules, Communications of the ACM, Vol. 15, No. 12, December 1972 pp.
1053–1058.

2.5 Back to Dijkstra: Conclusion

Dijsktra’s warning that the chance of getting a program right will drop to zero as the
number of parts increases is worrying. But if we can decouple the parts so that each of
the properties we care about is localized within only a few parts, then we can establish
their correctness locally, and be immune to the addition of new parts.

28

