
10/6/00 DJ Lieberherr/Orleans 1

Introducing the core concepts
of programming with DJ

• Define graphs, paths and strategies.
• The meaning of a strategy is a path set.
• Path sets may be infinite but are represented

efficiently by traversal graphs.
• Traversal graph construction is provided by DJ

and is covered by a US patent.
• Traversal graph construction may be covered later

but it is unimportant as long as you understand the
meaning of a strategy to be certain path set.

10/6/00 DJ Lieberherr/Orleans 2

Graphs and paths

• Directed graph: (V,E), V is a set of nodes, E
⊆ V× V is a set of edges.

• Directed labeled graph: (V,E,L), V is a set of
nodes, L is a set of labels, E ⊆ V× L× V is a
set of edges.

• If e = (u,l,v), u is source of e, l is the label
of e and v is the target of e.

10/6/00 DJ Lieberherr/Orleans 3

Graphs and paths

• Given a directed labeled graph: (V,E,L), a
node-path is a sequence p = <v0v1…vn>
where vi∈V and (vi-1,li,vi)∈E for some li∈L.

• A path is a sequence <v0 l1 v1 l2 … ln vn>,
where <v0 …vn> is a node-path and (v i-1, li,
vi)∈E.

10/6/00 DJ Lieberherr/Orleans 4

Graphs and paths

• In addition, we allow node-paths and paths
of the form <v0> (called trivial).

• First node of a path or node-path p is called
the source of p, and the last node is called
the target of p, denoted Source(p) and
Target(p), respectively. Other nodes:
interior.

10/6/00 DJ Lieberherr/Orleans 5

Strategy definition:
embedded, positive strategies

• Given a graph G, a strategy graph S of
G is any subgraph of the transitive
closure of G.

• The transitive closure of G=(V,E) is
the graph G*=(V,E*), where
E*={(v,w): there is a path from vertex
v to vertex w in G}.

A = s A

B BC C

D DE E

F=t F

G

S

S is a strategy for G

10/6/00 DJ Lieberherr/Orleans 7

Transitive Closure

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

10/6/00 DJ Lieberherr/Orleans 8

Key concepts

• Strategy graph S with source s and target t of a
base graph G. Nodes(S) subset Nodes(G)
(Embedded strategy graph).

• A path p is an expansion of path p’ if p’ can
be obtained by deleting some elements from p.

• S defines path set in G as follows:
PathSetst(G,S) is the set of all s-t paths in G
that are expansions of any s-t path in S.

Strategy graph and base graph are directed graphs

10/6/00 DJ Lieberherr/Orleans 9

Expansion

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

(BR BSL BS PL P) is an expansion of (BR BS P)

10/6/00 DJ Lieberherr/Orleans 10

PathSet

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

PathSetBusRoute,Person (S,G)={(BR BL B PL P),(BR BSL BS PL P)}

 S = from BusRoute to Person

BR P

10/6/00 DJ Lieberherr/Orleans 11

PathSet

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

PathSetBusRoute,Person (S,G)={(BR BSL BS PL P)}

 S = from BusRoute through BusStop to Person

BR BS P

10/6/00 DJ Lieberherr/Orleans 12

Expansion
PathSet

strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Traversal graph

B
b

x

A

B

C

X

0..1

x

x

b

c

class graph

c

(A X B X C) is an expansion of (A B C)
PathSetA,C(S,G) = {(A X B X (B X)* C)}
 = defined by traversal graph

S
G

10/6/00 DJ Lieberherr/Orleans 13

DJ

• An implementation of AP using only the DJ
library (and the Java Collections
Framework)

• All programs written in pure Java
• Intended as prototyping tool: makes heavy

use of introspection in Java
• Integrates Generic Programming (a la C++

STL) and Adaptive programming

10/6/00 DJ Lieberherr/Orleans 14

Integration of Generic and
Adaptive Programming

• A traversal specification turns an object
graph into a list.

• Can invoke generic algorithms on those
lists. Examples of generic algorithms: add,
remove, contains, etc.

• What is gained: genericity not only with
respect to data structure implementations
but also with respect to class graph.

10/6/00 DJ Lieberherr/Orleans 15

Sample DJ code

// Iterate through library users

List libUsers =
classGraph.asList(library,

 "from Library to User");

ListIterator li =
libUsers.listIterator();

// iterate through libUsers

10/6/00 DJ Lieberherr/Orleans 16

Methods provided by DJ

• On ClassGraph, ObjectGraph,
TraversalGraph, ObjectGraphSlice:
traverse, fetch, gather

• traverse is the important method; fetch and
gather are special cases

• TraversalGraph
– Object traverse(Object o, Visitor v)
– Object traverse(Object o, Visitor[] v)

10/6/00 DJ Lieberherr/Orleans 17

Traverse method: excellent
support for Visitor Pattern

// class ClassGraph

Object traverse(Object o,

 Strategy s, Visitor v);

traverse navigates through Object o following
traversal specification s and executing the
before and after methods in visitor v

ClassGraph is computed using introspection

10/6/00 DJ Lieberherr/Orleans 18

Fetch Method

• If you love the Law of Demeter, use fetch as
your shovel for digging:
– Part k1 = (K) classGraph.fetch(a,”from A to K”);

• The alternative is (digging by hand):
– Part k1 = a.b().c().d().e().f().g().h().i().k();

• DJ will tell you if there are multiple paths to
the target (but currently only at run-time).

10/6/00 DJ Lieberherr/Orleans 19

Gather Method

• Returns a list of copied objects.
• Object ClassGraph.gather(Object o, String s)

– List ks = classGraph.gather(a,”from A to K”);
returns a list of K-objects.

10/6/00 DJ Lieberherr/Orleans 20

Using DJ

• traverse(…) returns the v[0] return value.
Make sure the casting is done right,
otherwise you get a run-time error. If
“public Object getReturnValue()”
returns an Integer and traverse(…) casts it
to a Real: casting error at run-time.

• Make sure all entries of Visitor[] array are
non-null.

10/6/00 DJ Lieberherr/Orleans 21

Using multiple visitors

// establish visitor communication
aV.set_cV(cV);
aV.set_sV(sV);
rV.set_aV(aV);

Float res = (Float) whereToGo.
 traverse(this,
 new Visitor[] {rV, sV, cV, aV});

10/6/00 DJ Lieberherr/Orleans 22

DJ binaryconstruction operations

cg s tg o og ogs
cg * tg,cg * og * *
s * * * ogs *
tg * * ogs *
o * * *
og * *
ogs *

10/6/00 DJ Lieberherr/Orleans 23

Who has traverse, fetch, gather?
(number of arguments of traverse)

cg(3) s tg(2) o og(2) ogs(1)
cg * tg,cg * og * *
s * * * ogs *
tg * * ogs *
o * * *
og * *
ogs *

10/6/00 DJ Lieberherr/Orleans 24

Methods returning an
ObjectGraphSlice

• ClassGraph.slice(Object, Strategy)
• ObjectGraph.slice(Strategy)
• TraversalGraph.slice(Object)
• ObjectGraphSlice(ObjectGraph,Strategy)
• ObjectGraphSlice(ObjectGraph,TraversalGraph)

Blue: constructors

10/6/00 DJ Lieberherr/Orleans 25

Traverse method arguments

• ClassGraph
– Object, Strategy, Visitor

• TraversalGraph
– Object, Visitor

• ObjectGraph
– Strategy, Visitor

• ObjectGraphSlice
– Visitor

10/6/00 DJ Lieberherr/Orleans 26

Traverse method arguments.
 Where is collection framework

used?
• ClassGraph

– Object, Strategy, Visitor / asList(Object, Strategy)
• TraversalGraph

– Object, Visitor / asList(Object)
• ObjectGraph

– Strategy, Visitor / asList(Strategy)
• ObjectGraphSlice

– Visitor / asList()

10/6/00 DJ Lieberherr/Orleans 27

Where is collection framework
used?

• ObjectGraphSlice.asList()
– a fixed-size List backed by the object graph

slice.

10/6/00 DJ Lieberherr/Orleans 28

DJ unary construction operations

• Class graph from TraversalGraph
• Class graph from all classes in package

10/6/00 DJ Lieberherr/Orleans 29

Guidelines
IF you use the combination of the following pairs and triples

for multiple traversals, fetch or gather, introduce the
following computation saving objects:

(cg,sg,o)->ogs
(cg,sg)->tg

(cg,o)->og
(tg,o)->ogs

cg class graph

s strategy
tg traversal graph
o object

og object graph
ogs object graph slice

Abreviations

10/6/00 DJ Lieberherr/Orleans 30

ClassGraph construction

• make a class graph from all classes in
default package
– ClassGraph()

• include all fields and non-void no-argument
methods.

– ClassGraph(boolean f, boolean m)
• If f is true, include all fields; if m is true, include all

non-void no-argument methods.

10/6/00 DJ Lieberherr/Orleans 31

Dynamic features of DJ
ClassGraph construction

• When a class is defined dynamically from a
byte array (e.g., from network)
ClassGraph.addClass(Class cl) has to be
called explicitly. Class cl is returned by
class loader.

• ClassGraph() constructor examines class
file names in default package and uses them
to create class graph.

10/6/00 DJ Lieberherr/Orleans 32

Dynamic features of DJ
ClassGraph construction

• ClassGraph.addPackage(String p)
– adds the classes of package p to the class graph.

The package is search for in the CLASSPATH.
• Java has no reflection for packages.

Motivates above solution.

10/6/00 DJ Lieberherr/Orleans 33

Adding Nodes and Edges to
ClassGraph

• addClass(Class cl)
– add cl and all its members to the class graph, if

it hasn’t already been added.
• addClass(Class cl, boolean aF, boolean aM)

– add cl to the class graph. If aF, add all its non-
static fields as construction edges. If aM, add
all its non-static non-void methods with no
arguments as derived construction edges.

10/6/00 DJ Lieberherr/Orleans 34

Combining DJ and DemeterJ
• DJ is a 100% Java solution for adaptive

programming.
• DemeterJ has

– XML style data binding facilities: code
generation from schema (class dictionary).

– Its own adaptive programming language.
• We attempt an optimal integration giving us

the strong advantages of both and only few
small disadvantages.

10/6/00 DJ Lieberherr/Orleans 35

Optimal DJ and DemeterJ
Integration

• Take all of DJ
• Take all of DemeterJ class dictionary

notation
• Take a very tiny bit of DemeterJ adaptive

programming language (basically only part
that allows us to weave methods).

10/6/00 DJ Lieberherr/Orleans 36

 Combining DJ and DemeterJ

• Pros (advantages)
– Java class generation

from class dictionary
(getters, setters,
constructors).

– Parser generation.
– Better packaging of

Java code into different
files.

– MUCH MORE
POWERFUL.

• Cons (disadvantages)
– No longer pure Java

solution.
– need to learn Demeter

notation for class
dictionaries (similar to
XML DTD notation).

– need to learn how to
call DemeterJ and how
to use project files.

10/6/00 DJ Lieberherr/Orleans 37

Combining DJ and DemeterJ

• What do we have to learn about DemeterJ?
– Class dictionaries: *.cd files
– Behavior files: *.beh files. Very SIMPLE!

•A { {{ … }} } defines methods … of class A
– Project files: *.prj

• list behavior files *.beh that you are using

– Commands:
•demjava new, demjava test,

 demjava clean

10/6/00 DJ Lieberherr/Orleans 38

Combining DJ and DemeterJ

• What you might forget in class dictionaries
that are used with DJ:
– import edu.neu.ccs.demeter.dj.*;

– visitors need to inherit from Visitor
– parts of visitors need to be defined in class

dictionary

10/6/00 DJ Lieberherr/Orleans 39

Combining DJ and DemeterJ

• Structuring your files
– put reusable visitors into separate behavior files.
– put each new behavior into a separate behavior file.

Visitors that are not planned for reuse should also go
into same behavior file. Update the class dictionary
with required structural information for behavior to
work.

– List all *.beh files in .prj file.

10/6/00 DJ Lieberherr/Orleans 40

Context switch

• Back to pattern language

Pattern Language for AP 41

Selective Visitor

• Intent
– Loosely couple behavior modification to

behavior and structure.
– Would like to write an editing script to modify

traversal code instead of modifying the
traversal code manually.

Pattern Language for AP 42

Selective Visitor

• Could also be called:
– Structure-shy Behavior Modification
– Event-based Coupling

Pattern Language for AP 43

Selective Visitor

• Motivation:
– Avoid tangling of code for one behavior with

code for other behaviors.
– Localize code belonging to one behavior.
– Compose behaviors.
– Modify the behavior of a traversal call

(traversals only traverse).

Pattern Language for AP 44

Selective Visitor

• Applicability:
– Need to add behavior to a traversal.

Pattern Language for AP 45

Selective Visitor

• Solution:
– Use visitor classes and objects.
– Pass visitor objects as arguments to traversals.
– Either use naming conventions for visitor

methods (e.g., before_A()) or extend object-
oriented language (e.g. before A, before is a
new key word).

Pattern Language for AP 46

Selective Visitor

• Solution:
– before, after methods for nodes and edges in the

class graph
– Activated during traversal as follows:

• Execute before methods
• Traverse
• Execute after methods

Pattern Language for AP 47

Visitor visits objects

following strategy

Visitor collects information in suitcase (variables)

Pattern Language for AP 48

Selective Visitor

• Solution: Focus on what is important.
SummingVisitor {
 (@ int total; @)
 init (@ total = 0; @)
 before Salary (@ total = total + host.get_v(); @)
 return (@ total @)
}

host is object visited

Code between (@ and @) is Java code

Pattern Language for AP 49

Selective Visitor

• Solution: Use of visitor
Company {
 traversal allSalaries(UniversalVisitor) {do S;}
 int sumSalaries()
 (@
 SummingVisitor s = new SummingVisitor();
 this.allSalaries(s);
 return s.get_return_val();
 @)
}

Pattern Language for AP 50

Selective Visitor

• Consequences
– Easy behavior adjustments: Add visitor
– Reuse of visitors

Pattern Language for AP 51

Selective Visitor

• Consequences: Easy behavior enhancement
Company { // enhancements in red
 traversal allSalaries(UniversalVisitor, UniversalVisitor)
 {do S;}
 (@ float averageSalaries() {
 SummingVisitor s = new SummingVisitor();
 CountingVisitor c = new CountingVisitor();
 this.allSalaries(s, c);
 return s.get_return_val() / c.get_return_val();
 }@)
}

summing counting

Pattern Language for AP 52

Writing Programs with Strategies
Example of Adaptive Program

BusRoute {
 traversal waitingPersons(PersonVisitor) {
 through BusStop to Person; } // from is implicit
 int printWaitingPersons() // traversal/visitor weaving instr.
 = waitingPersons(PrintPersonVisitor);
PrintPersonVisitor {
 before Person (@ … @) … }
PersonVisitor {init (@ r = 0 @) … }

Extension of Java: keywords: traversal init
through bypassing to before after etc.

strategy: from BusRoute through BusStop to Person

Pattern Language for AP 53

Selective Visitor

• Consequences:
– Can reuse SummingVisitor and

CountingVisitor in other applications.

Pattern Language for AP 54

Selective Visitor

• Implementation
– Translate to object-oriented language.
– See Demeter/Java, for example.

Pattern Language for AP 55

Selective Visitor

• Known uses
– Propagation patterns use inlined visitor objects

(see AP book).
– Demeter/Java.
– The Visitor Design Pattern from the design

pattern book uses a primitive form of Selective
Visitor.

Pattern Language for AP 56

Differences to Visitor pattern

• Focus selectively on important classes.
Don’t need a method for each traversed
class.

• Finer control: not only one accept method
but before and after methods for both nodes
and edges.

Pattern Language for AP 57

Structure-shy Object

• Intent
– Make object descriptions for tree objects

robust to changes of class structure.
– Make object descriptions for tree objects

independent of class names.

Pattern Language for AP 58

Structure-shy Object

• Could also be called:
– Object Parsing
– Grammar
– Abstract=Concrete Syntax

Pattern Language for AP 59

Structure-shy Object

• Motivation
– Data maintenance a major problem when class

structure changes
– Tedious updating of constructor calls
– The creational patterns in the design pattern

book also recognize need
– Concrete syntax is more abstract than abstract

syntax!

Pattern Language for AP 60

Structure-shy Object

• Applicability
– Useful in object-oriented designs of any kind.
– Especially useful for reading and printing

objects in user-friendly notations. Ideal if you
control notation.

– If you see many constructor calls: think of
Structure-shy Object.

Pattern Language for AP 61

Structure-shy Object

• Solution
– Extend the class structure definitions to define

the syntax of objects.
– Each class will define a parse function for

reading objects and a print visitor for printing
all or parts of an object.

Pattern Language for AP 62

Structure-shy Object

• Solution
– Start with familiar grammar formalism and

change it to make it also a class definition
formalism. In the Demeter group we use
Wirth’s EBNF formalism.

– Use a parser generator (like YACC or JavaCC)
or a generic parser.

Pattern Language for AP 63

Parsers weave sentences into
objects

Problem in OO programs: Constructor calls for compound
objects are brittle with respect to structure changes.

Solution: Replace constructor calls by calls to a parser. Annotate
class diagram to make it a grammar.

Benefit: reduce size of code to define objects,
 object descriptions are more robust

Correspondence: Sentence defines a family of objects. Adaptive
program defines family of object-oriented programs. In both cases,
family member is selected by (annotated) class diagram.

Structure-shy Object

Pattern Language for AP 64

Run-time weaving: Description
Sentence
* 3 + 4 5
Grammar
Compound ...
Simple ...
Number ...
Multiply ...
Add ...
etc.

C

M

*

N

3

C

A

+

N N

4 5

Object in linear form (Constructor calls)

C M * N 3 C A + N 4 N 5

Object as tree

Grammar defined by annotating UML class diagram

SENTENCE IS MORE ROBUST THAN OBJECT

Structure-shy Object

Pattern Language for AP 65

Structure-shy Object

• Consequences
– more robust and shorter object descriptions
– Need to deal with unique readability with

respect to an efficient parsing algorithm

– Can guarantee unique readability by adding
more syntax

– debug class structures by reading objects

Pattern Language for AP 66

Structure-shy Object

• Related patterns
– Creational patterns in design pattern book.
– Interpreter pattern uses similar idea but fails to

propose it for general object-oriented design.
– Structure-shy Object useful in conjunction with

Prototype pattern.

Pattern Language for AP 67

Structure-shy Object

• Known uses
– Demeter Tools since 1986, T-gen, applications

of YACC, programming language Beta and
many more.

Pattern Language for AP 68

Structure-shy Object

• References
– Chapters 11 and 16 of AP book describe

details.
• Exercise

– Use your favorite grammar notation and modify
it to also make it a class graph notation.

