| ntroducing the core concepts
of programming with DJ

» Define graphs, paths and strategies.

* The meaning of astrategy is a path set.

 Path sets may beinfinite but are represented
efficiently by traversal graphs.

» Traversal graph construction is provided by DJ
and is covered by a US patent.

» Traversal graph construction may be covered later
but it is unimportant as long as you understand the
meaning of a strategy to be certain path set.

10/6/00 DJ Lieberherr/Orleans 1

Graphs and paths

» Directed graph: (V,E), V isaset of nodes, E
| V' Visaset of edges.

» Directed labeled graph: (V,E,L), Visaset of
nodes, Lisaset of labels, Ei V' L” Visa
set of edges.

o If e= (u,l,v), uissourceof g, | isthe label
of eand v isthetarget of e.

10/6/00 DJ Lieberherr/Orleans 2

Graphs and paths

» Given adirected labeled graph: (V,E,L), a
node-path isasequence p = <VyV;...V,>
where vii V and (v._,,|.,v)I E for somell L.

» A pathisasequence<vgyl,vil,...1,v>,
where <, ...v,> isanode-path and (v 4, [;,
v,)l E.

10/6/00 DJ Lieberherr/Orleans 3

Graphs and paths

 In addition, we allow node-paths and paths
of the form <v> (called trivial).

» First node of a path or node-path piscalled
the source of p, and the last nodeis called
the target of p, denoted Source(p) and
Target(p), respectively. Other nodes:
interior.

10/6/00 DJ Lieberherr/Orleans 4

Strategy definition:
embedded, positive strategies

» Given agraph G, astrategy graph S of
G is any subgraph of the transitive
closure of G.

» Thetransitive closure of G=(V,E) is
the graph G*=(V,E*), where
E*={(v,w): thereis a path from vertex
v tovertex win G}.

10/6/00 DJ Lieberherr/Orleans

Sisastrategy for G
F=t

Transitive Closure

busStops

10/6/00 DJ Lieberherr/Orleans 7

Strategy graph and base graph are directed graphs
Key concepts

» Strategy graph Swith source sand target t of a
base graph G. Nodes(S) subset Nodes(G)
(Embedded strategy graph).

» A path pisanexpansion of path p' if p’ can
be obtained by deleting some elements from p.

o Sdefinespath set in G asfollows:

PathSety (G, isthe set of all st pathsin G
that are expansions of any s-t pathin S.

10/6/00 DJ Lieberherr/Orleans 8

Expansion
(BRBSL BSPL P) isan expansion of (BRBSP)

buses
0.*

waiting

(e

0.*

10/6/00 DJ Lieberherr/Orleans 9

S = fr omBusRoutet o Person

PathSet e=

PathSet g, route person (SG)={ (BR BL B PL P),(BR BSL BSPL P)}

buses

*

SR

o)

busStops

0.*

10/6/00 DJ Lieberherr/Orleans 10

S = fromBusRoutet hr ough BusStopt o Person

PathSet & & %

PathsetBusRoute,Person (S,G):{ (BR BSL BSPL P)}

busStops

10/6/00 DJ Lieberherr/Orleans 11

class graph "

EXpanS On strategy:

{A->B S
Pat h%t B->CG

Traversal graph

X

finish set

(A X BXC)isanexpansionof (A BC)
PathSet, o(S,G) = {(A X B X (B X)* C)}
= defined by traversal graph

10/6/00 DJ Lieberherr/Orleans 12

DJ

» Animplementation of AP using only the DJ

library (and the Java Collections
Framework)

 All programs written in pure Java

* Intended as prototyping tool: makes heavy
use of introspection in Java

* Integrates Generic Programming (ala C++
STL) and Adaptive programming

10/6/00 DJ Lieberherr/Orleans

13

Integration of Generic and
Adaptive Programming
» A traversal specification turns an object
graphinto alist.

» Caninvoke generic algorithms on those
lists. Examples of generic algorithms: add,
remove, contains, etc.

» What is gained: genericity not only with
respect to data structure implementations
but also with respect to class graph.

10/6/00 DJ Lieberherr/Orleans

14

Sample DJ code

/1l lIterate through |ibrary users

Li st IibUsers =
cl assG aph. asList(library,

“"fromLibrary to User");

Listlterator i =
i bUsers.listlterator();

/1l iterate through |ibUsers

10/6/00 DJ Lieberherr/Orleans

15

Methods provided by DJ

» On ClassGraph, ObjectGraph,
Traversal Graph, ObjectGraphSlice:
traverse, fetch, gather

o traverseistheimportant method; fetch and

gather are special cases

» TraversalGraph
— Object traverse(Object o, Visitor v)
— Object traverse(Object o, Visitor[] v)

10/6/00 DJ Lieberherr/Orleans

16

Traverse method: excellent
support for Visitor Pattern

/'l class ClassG aph
bj ect traverse((Object o,
Strategy s, Visitor v);

traverse navigates through Object o following
traversal specification s and executing the
before and after methodsin visitor v

ClassGraph is computed using introspection

10/6/00 DJ Lieberherr/Orleans 17

Fetch Method

 If you love the Law of Demeter, use fetch as
your shovel for digging:
— Part k1 = (K) classGraph.fetch(a,”from A to K”);
» The dternativeis (digging by hand):
— Part k1 = ab().c().d().€().f0).g0).h().i0.k();
o DJwill tell you if there are multiple paths to
the target (but currently only at run-time).

10/6/00 DJ Lieberherr/Orleans 18

Gather Method

* Returnsalist of copied objects.
» Object ClassGraph.gather(Object o, String)

— List ks = classGraph.gather(a,”from A to K”);
returnsalist of K-objects.

10/6/00 DJ Lieberherr/Orleans

19

Using DJ

o traverse(...) returnsthe v[0] return value.
Make sure the casting is done right,
otherwise you get arun-time error. If
“publ i ¢ Obj ect getReturnValue()”
returns an Integer and traverse(...) castsit
to a Real: casting error at run-time.

 Make sure all entries of Visitor[] array are
non-null.

10/6/00 DJ Lieberherr/Orleans

20

Using multiple visitors

[/ establish visitor comruni cation
aV.set _cV(cV);
aV.set _sV(sV);
rv.set_aV(aV);

Float res = (Float) whereToCo.

traverse(this,
new Visitor[] {rV, sV, cV, aV});

10/6/00 DJ Lieberherr/Orleans 21

DJ binaryconstruction operations

cg S tg o og 0gs
Cg * tg’cg * og * *

S * * Ogs *
tg * * Ogs *
o) * * *
Og * *
0gs *

10/6/00 DJ Lieberherr/Orleans 22

Who has traverse, fetch, gather?

(number of arguments of traverse)
cg3) s 9@ o og(2) ogs(1)

cg * tgeg * og * ¥

S * * Ogs *
tg * * Ogs *
o) * * *
Og * *
0gs *

10/6/00 DJ Lieberherr/Orleans 23

Methods returning an
ObjectGraphSlice

ClassGraph.slice(Object, Strategy)
ObjectGraph.dlice(Strategy)

Traversal Graph.slice(Object)
ObjectGraphSlice(ObjectGraph,Strategy)
ObjectGraphSlice(ObjectGraph, Traversal Graph)

Blue: constructors

10/6/00 DJ Lieberherr/Orleans 24

Traverse method arguments

ClassGraph

— Object, Strategy, Visitor
TraversalGraph

— Object, Visitor
ObjectGraph

— Strategy, Vigitor
ObjectGraphSlice

— Vigitor

10/6/00 DJ Lieberherr/Orleans 25

Traverse method arguments.
Where is collection framework
used?
ClassGraph

— Object, Strategy, Vidtor / asList(Object, Strategy)
TraversalGraph

— Object, Vigtor / asList(Object)

ObjectGraph

— Strategy, Vigtor / asList(Strategy)
ObjectGraphSlice

— Vigitor / asList()

10/6/00 DJ Lieberherr/Orleans 26

Where s collection framework
used?

» ObjectGraphSlice.asList()

— afixed-size List backed by the object graph
dice.

10/6/00 DJ Lieberherr/Orleans 27

DJ unary construction operations

» Class graph from Traversal Graph
 Class graph from all classes in package

10/6/00 DJ Lieberherr/Orleans 28

Guidelines

I F you use the conbination of the following pairs and triples
for multiple traversals, fetch or gather, introduce the
foll owi ng conputation saving objects:

(cg, sg, 0)->o0gs

(cg, sg)->tg

(cg, 0)->0g

(t g, 0)->00s

cg cl ass graph

s strategy

tg traversal graph ..

o obj ect Abreviations

og obj ect graph

0gs obj ect graph slice

10/6/00 DJ Lieberherr/Orleans 29

ClassGraph construction

* make aclass graph from all classesin
default package
— ClassGraph()

* include all fields and non-void no-argument
methods.

— ClassGraph(boolean f, boolean m)

o |f fistrue, include dl fields; if mistrue, include all
non-void no-argument methods.

10/6/00 DJ Lieberherr/Orleans 30

Dynamic features of DJ
ClassGraph construction

* When aclassis defined dynamically from a
byte array (e.g., from network)
ClassGraph.addClass(Class cl) has to be
called explicitly. Class cl is returned by
class |oader.

 ClassGraph() constructor examines class
file names in default package and uses them
to create class graph.

10/6/00 DJ Lieberherr/Orleans 31

Dynamic features of DJ
ClassGraph construction

« ClassGraph.addPackage(String p)

— adds the classes of package p to the class graph.
The packageis search for inthe CLASSPATH.

» Java has no reflection for packages.
M otivates above solution.

10/6/00 DJ Lieberherr/Orleans 32

Adding Nodes and Edgesto
ClassGraph

» addClass(Class cl)

—add cl and all its membersto the class graph, if
it hasn't already been added.

» addClass(Class cl, boolean aF, boolean aM)

— add cl to the class graph. If aF, add al its non-
static fields as construction edges. If aM, add
all its non-static non-void methods with no
arguments as derived construction edges.

10/6/00 DJ Lieberherr/Orleans 33

Combining DJ and DemeterJ

* DJisa100% Java solution for adaptive
programming.
» DemeterJd has

— XML style data binding facilities: code
generation from schema (class dictionary).

— Its own adaptive programming language.

« We attempt an optimal integration giving us
the strong advantages of both and only few
small disadvantages.

10/6/00 DJ Lieberherr/Orleans 34

Optimal DJ and DemeterJ
Integration

e« Takedl of DJ

» Takeall of DemeterJ class dictionary
notation

o Takeavery tiny bit of Demeterd adaptive
programming language (basically only part
that allows us to weave methods).

10/6/00 DJ Lieberherr/Orleans 35

Combining DJ and DemeterJ

* Pros (advantages) » Cons (disadvantages)

— Javaclass generation — No longer pure Java
from class dictionary solution.
(getters, setters, — need to learn Demeter
constructors). notation for class

— Parser generation. dictionaries (similar to

— Baetter packagn‘]g of XML DTD notatlon)
Java code into different — need to learn how to
files. call DemeterJ and how

— MUCH MORE to use project files.
POWERFUL.

10/6/00 DJ Lieberherr/Orleans 36

Combining DJ and DemeterJ

e What do we have to learn about DemeterJ?
— Classdictionaries. *. cd files
— Behavior files: *. beh files. Very SIMPLE!
*A{ {{ ...}} } definesmethods...of classA
— Project files: * . prj
* list behavior files*. beh that you are using
— Commands:

» denj ava new, denjava test,

denj ava cl ean
10/6/00 DJ Lieberherr/Orleans 37

Combining DJ and DemeterJ

* What you might forget in class dictionaries
that are used with DJ:
—inport edu. neu. ccs.deneter. dj.*;
— visitors need to inherit from Vi si t or

— parts of visitors need to be defined in class
dictionary

10/6/00 DJ Lieberherr/Orleans 38

Combining DJ and DemeterJ

 Structuring your files
— put reusable visitors into separate behavior files.

— put each new behavior into a separate behavior file.
Visitorsthat are not planned for reuse should also go
into same behavior file. Update the class dictionary
with required structural information for behavior to
work.

—Listal *. behfilesin. prj file.

10/6/00 DJ Lieberherr/Orleans 39

Context switch

» Back to pattern language

10/6/00 DJ Lieberherr/Orleans 40

Selective Visitor

e |ntent

— Loosely couple behavior modification to
behavior and structure.

— Would like to write an editing script to modify
traversal code instead of modifying the
[} traversal code manually.

Pattern Language for AP 41

Selective Visitor
e Could aso be called:

— Structure-shy Behavior Modification
— Event-based Coupling

Pattern Language for AP 42

Selective Visitor

 Motivation:;

— Avoid tangling of code for one behavior with
code for other behaviors.

— Localize code belonging to one behavior.
— Compose behaviors.

— Modify the behavior of atraversal call
(traversalsonly traverse).

Pattern Language for AP 43

Selective Visitor

o Applicability:
— Need to add behavior to atraversa.

Pattern Language for AP 44

Selective Visitor

 Solution:
— Use visitor classes and objects.
— Pass visitor objects as arguments to traversals.

— Either use naming conventions for visitor
methods (e.g., before A()) or extend object-
oriented language (e.g. before A, beforeisa
new key word).

Pattern Language for AP 45

Selective Visitor

« Solution:
— before, after methods for nodes and edgesin the
class graph
— Activated during traversal asfollows:
 Execute before methods

e Traverse
* Execute after methods

Pattern Language for AP 46

Visitor visits objects

Visitor collects information in suitcase (variables)

Pattern Language for AP

. //4 % following strategy

a7

Selective Visitor

» Solution: Focus on what is important.

SummingVisitor {
(@int totd; @)
i nit (@tota =0; @)
bef or e Salary (@ total = total + host.get_v(); @)

return (@ tota @) host is object visited

}
Code between (@ and @) is Java code

Pattern Language for AP

48

Selective Visitor

e Solution: Use of visitor

Company {
traver sal alSaarieUniversaVisitor) {do S}
int sumSalaries()
(@
SummingVisitor s = new SummingVisitor();
this.alSalaries(s);
return s.get_return_val();
@)
}

Pattern Language for AP 49

Selective Visitor

» Consequences
— Easy behavior adjustments. Add visitor
— Reuse of vigitors

_/

Pattern Language for AP 50

summing 0

I 50 " Selective Visitor

» Consequences. Easy behavior enhancement

counting

Company { // enhancementsin red
traver sal alSalarieqUniversalVisitor, UniversalVisitor)
{do S}
(@ float averageSalaries() {
SummingVisitor s = new SummingVisitor();
CountingVisitor ¢ = new CountingVisitor();
this.alSaaries(s,c);
return s.get_return_val () / c.qet_return_val();
1@)
}

Pattern Language for AP 51

Writing Programs with Strategies
Example of Adaptive Program

strategy: f r omBusRoutet hr ough BusStop t o Person

BusRoute {
t raver sal waitingPersons(PersonVisitor) {
t hr ough BusStopt o Person; } // f r omisimplicit
i nt printWaitingPersons() // traversal/visitor weaving instr.
= waltingPersons(PrintPersonVisitor);
PrintPersonVisitor {
before Person(@ ... @) ... }
PersonVisitor{init (@r=0@) ... }

Extension of Java: keywords: t r aver sal init
t hrough bypassing to before after etc.

Pattern Language for AP 52

Selective Visitor

» Consequences.

— Can reuse SummingVisitor and
CountingVisitor in other applications.

Pattern Language for AP 53

Selective Visitor

* Implementation
— Trand ate to object-oriented language.
— See Demeter/Java, for example.

Pattern Language for AP 54

Selective Visitor

e Known uses

— Propagation patterns use inlined visitor objects
(see AP book).

— Demeter/Java.

— The Visitor Design Pattern from the design
pattern book uses a primitive form of Selective

Vigtor.

Pattern Language for AP 55

Differencesto Visitor pattern

» Focus selectively on important classes.
Don’'t need a method for each traversed
class.

 Finer control: not only one accept method
but before and after methods for both nodes

and edges.

Pattern Language for AP 56

Structure-shy Object

e |ntent

— Make object descriptions for tree objects
robust to changes of class structure.

— Make object descriptions for tree objects
Independent of class names.

Pattern Language for AP 57

Structure-shy Object

» Could also be called:
— Object Parsing
— Grammar
— Abstract=Concrete Syntax

Pattern Language for AP 58

Structure-shy Object

 Motivation

— Data maintenance a mgor problem when class
structure changes

— Tedious updating of constructor calls

— The creational patterns in the design pattern
book also recognize need

— Concrete syntax is more abstract than abstract
syntax!

Pattern Language for AP 59

Structure-shy Object

o Applicability
— Useful in object-oriented designs of any kind.
— Especially useful for reading and printing
objectsin user-friendly notations. Ideal if you
control notation.
— If you see many constructor calls: think of
Structure-shy Object.

Pattern Language for AP 60

Structure-shy Object

» Solution

— Extend the class structure definitions to define
the syntax of objects.

— Each class will define a parse function for
reading objects and a print visitor for printing
all or parts of an object.

Pattern Language for AP 61

Structure-shy Object

e Solution

— Start with familiar grammar formalism and
changeit to makeit also aclass definition
formalism. In the Demeter group we use
Wirth's EBNF formalism.

— Use aparser generator (like YACC or JavaCC)
Or ageneric parser.

Pattern Language for AP 62

Structure-shy Object]
Parsers weave sentences into

objects

Problem in OO programs: Constructor calls for compound
objects are brittle with respect to structure changes.

Solution: Replace constructor calls by callsto a parser. Annotate
class diagram to make it agrammar.

Benefit: reduce size of code to define objects,
object descriptions are more robust

Correspondence: Sentence defines afamily of objects. Adaptive
program defines family of object-oriented programs. In both cases,
family member is selected by (annotated) class diagram.

Pattern Language for AP 63

Structure-shy Object
Run-time weaving: Description

C Object astree

Sentence e RI\C
* M

3+45 */ / }A\\NN
Grammar 3 \ Vo
Compound ... + 4 5
Simple....
I\N/Iurlrt]'belr Object in linear form (Constructor calls)

ultiply ...
Kdd_llo_y CM* N3CA+N4NS5

etc. SENTENCE ISMORE ROBUST THAN OBJECT
Grammar defined by annotating UML class diagram

Pattern Language for AP 64

Structure-shy Object

» Consequences
— more robust and shorter object descriptions
— Need to deal with unique readability with
respect to an efficient parsing algorithm

— Can guarantee unique readability by adding
more syntax

— debug class structures by reading objects

Pattern Language for AP 65

Structure-shy Object

» Related patterns
— Creational patternsin design pattern book.

— Interpreter pattern uses smilar idea but failsto
propose it for general object-oriented design.

— Structure-shy Object useful in conjunction with
Prototype pattern.

Pattern Language for AP 66

Structure-shy Object

e Known uses

— Demeter Tools since 1986, T-gen, applications
of YACC, programming language Beta and
many more.

Pattern Language for AP 67

Structure-shy Object

* References

— Chapters 11 and 16 of AP book describe
details.

e Exercise

— Use your favorite grammar notation and modify
it to also make it a class graph notation.

Pattern Language for AP 68

