
Semantics of Edge Visitor
Methods

Karl and Pengcheng

Kinds of edge methods

• construction edges
– cbefore / cafter / caround

• repetition edges
– rbefore / rafter / raround

• strategy edges
– sbefore / safter / saround

• In the following focus is on before methods.

Addition to Visitor

has a method
CEdge getCEdge()

that returns the CEdge of the

current or most recent construction edge being
traversed. The motivation is to fill in the blanks
about the edge being traversed. The interface of
cbefore may not uniquely determine an edge. DJ
now also supports edge patterns.

Example

• void cbefore(Source s);
– -> Source, *, *

• This s an example of a cbefore method
on a construction edge that maps
several edges. getCEdge() will give us
the details of the current edge and the
programmer may use conditional
statements to make the behavior
dependent on the details of the edge.

CEdge

CEdge =
 [<sourceName> String]

 [<partName> String]
 [<targetName> String]
 [<edgeKind> String].

// derived / public, protected, private

Visitor Methods for
Construction Edges

• void cbefore_x(Source s, Target t);
– -> Source,x,Target

• void cbefore(Source s, Target t);
– -> Source, *, Target

• void cbefore_x(Source s);
– -> Source, x, *

• void cbefore(Source s);
– -> Source, *, *

All but the first method
needs getCEdge to get
edge details.

Visitor Methods for
Construction Edges

• void cbefore_x(Target t);
– -> *,x,Target

• void cbefore(Target t);
– -> *,*,Target

• void cbefore_x();
– -> *,x,*

• void cbefore(); // all edges
– -> *,*,*

Programming with Strategies

• Strategies are abstractions of class graphs and it is useful to
program directly with those abstractions. Therefore we
extend DJ in two ways by allowing:

– to check whether the traversal is currently in the scope
of a subtraversal

• if (SEdges(sg)) {} (e.g., inside a cbefore method) checks
whether the currently active strategy graph edges are contained
in the strategy sg. Notice that e.g. during the traversal of an
object graph edge, multiple strategy graph edges may be
active.

– edge methods on strategies

Programming with Strategies

• to check whether the traversal is currently in the
scope of a subtraversal
– We want to talk about the state of the traversal in

*before methods. This allows us to distinguish how we
arrived at an object graph node.

• edge methods on strategies
– Strategies are built out of simpler strategies. We want

to attach before and after code to the simpler strategies.

Programming with Strategies

• At a given point during the traversal a set of
strategy graph edges is active. I think of it as the
strategy edges corresponding to traversal graph edges
on which a token travels. But there is a more direct
explanation: the set of strategy graph edges that are
needed for the expansion into object paths.

• The following example illustrates the concept of
active strategy graph edges. Basically when several
tokens are distributed in different copies of the
class graph inside the traversal graph, several edges
are active.

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

Object graph

a1:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: A -> B for :A->x1:X

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: A -> B for x1:X->:B

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: A->B B->C for :B->x2:X

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: B->C for x2:X->c1:C

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

After going back to x1:X

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: A->B for :A->x1:X

Short-cut
strategy:
{A -> B
 B -> C}

A

X

x

B

C

X

0..1

x

b

c

start set

finish set

b

Object graph
Traversal graph

Used for token set and currently active object

After going back to :A

B
b

x

:A

c2:C

x1:X

:B

x2:X

c1:C

c3:C

Active strategy graph edges: none for :A

SEdges

SEdges = Vector(SEdge).
SEdge =

 [<sourceName> String]
 [<targetName> String].

Class Dictionary

Person = Brothers Sisters
Status.

Status : Single | Married.
Single = .
Married = <marriedTo> Person.
Brothers ~ {Person}.
Sisters ~ {Person}.

Strategy

from Person bypassing Person

 through Married

 bypassing Person

 through Person

 bypassing Person

 through {Brothers, Sisters}

 bypassing Person

to Person

Strategy and Traversal States
{ Person -> Married bypassing Person
 Married -> Person bypassing Person
 Person -> Brothers bypassing Person
 Person -> Sisters bypassing Person
 Brothers -> Person bypassing Person
 Sisters -> Person bypassing Person }
void before (Person h){
 if (previousSEdges(“”)) print(h.getName()); else
 if (previousSEdges(“{Married->Person}”))
 print(“spouse”+h.getName()); else
 if (previousSEdges(“{Brothers->Person}”))
 print(“brother-in-law”+h.getName());else
 if (previousSEdges(“{Sisters->Person}”))
 print(“sister-in-law”+h.getName());
}

Strategy and Traversal States
{ Person -> Married bypassing Person
 Married -> Person bypassing Person
 Person -> Brothers bypassing Person
 Person -> Sisters bypassing Person
 Brothers -> Person bypassing Person
 Sisters -> Person bypassing Person }
void before (Person h){
 if (nextSEdges(“Person->Married”)) print(h.getName()); else
 if (nextSEdges(“{Person->{Brothers,Sisters}}”))
 print(“spouse”+h.getName()); else
 if (previousSEdges(“{Brothers->Person}”))
 print(“brother-in-law”+h.getName());else
 if (previousSEdges(“{Sisters->Person}”))
 print(“sister-in-law”+h.getName());
}

Programming with Strategies

• At a given point during the traversal a set of strategy
graph edges is active. The set of active strategy graph
edges changes as we move through the object graph. When we
are at a node in the object graph, we can talk about the
next and previous set of strategy graph edges.

– boolean nextSEdges(Strategy s);

– boolean nextSEdges(String str);

– boolean previousSEdges(Strategy s);

– boolean previousSEdges(String str);

• The meaning is: is the set of strategy graph edges
contained in the strategy?

• nextSEdges(“{Person->{Brothers,Sisters}}”)

• previousSEdges(“{Brothers->Person}”)

Programming with Strategies

• When we are at an edge in the object graph,
we can talk about the current set of
strategy graph edges.

– boolean SEdges(Strategy s);

– boolean SEdges(String str);

– boolean SEdges(TraversalGraph tg);

• The meaning is: is the set of strategy graph
edges contained in the strategy?

Visitor Methods for
Strategy Edges

• void sbefore(Source s, Target t); // strategy
– is executed before the traversal corresponding to {s->t} is

started. More precisely, if {s->t} is currently not in the set of
active strategy edges, but it will be after the next traversal step
(going through an edge in the object graph), the code of the sbefore
method will be executed before the next traversal step.

• void safter(Source s, Target t); // strategy
– is executed after the traversal corresponding to {s->t} is

finished. More precisely, if {s->t} is currently in the set of
active strategy edges, but it will not be after the next traversal step
(going through an edge in the object graph), the code of the safter
method will be executed before the next traversal step.

Be more general

• Allow code attachment not only to strategy
edges but to strategies.

Visitor Methods for
Strategies

• void sbefore(Strategy s); // strategy

– is executed before the traversal corresponding to s is started. More
precisely, if the current object graph node is currently not in the scope of
s, but it will be after the next traversal step (going through an edge in the
object graph), the code of the sbefore method will be executed before the
next traversal step.

• void safter(Strategy s); // strategy

– is executed after the traversal corresponding to s is finished. More
precisely, if s the current object graph node is currently in the scope of s,
but it will not be after the next traversal step (going through an edge in the
object graph), the code of the safter method will be executed before the
next traversal step.

Follow DJ rule

• Wherever a strategy is used, a string may be used.

• void sbefore(String str); // strategy
• void safter(String str); // strategy

Programming with strategies

check whether currently in scope of subtraversal

// may be used in before, cbefore, rbefore, sbefore

– // sg a substrategy of current strategy

 if (SEdges(sg)) {

 // currently in traversal determined by strategy sg

– // tg a subgraph of current traversal graph

 if (SEdges(tg)) {

 // currently in traversal determined by tg

Traversing an edge:
From C1 to C2

o1:C1 o2:C2e

go down e iff C1 <=.C C3 => C2

when we go down e, we execute the before method of all cbefore
methods that match the edge e in the order the cbefore methods
are listed in the visitor.

declared type of o2 is C3=>C2

Similarity

• When we traverse an edge in the object graph, several
visitor methods (for edges) will be executed.

– the same visitor may have several cbefore methods
whose expansion includes the same object graph edge.

• When we traverse a node in the object graph, several
visitor methods (for nodes) may be executed.

– when an object graph node method is executed we also
execute the methods of the super classes.

Executing cbefore_v(F f, W w)?

• Assuming that only one edge matches
• Object graph edge labeled v
 o1:SubClass(F) -> o2:SubClass(W)

• Is F a superclass of class(o1)?
• Has F a construction edge labeled w to W?

• Execute method.

Finding the edge methods

• Object graph edge labeled v

 o1:class(o1) -> o2:class(o2)
• Is there any edge visitor
cbefore_v for a superclass of
class(o1)?

• Execute method.

• Use a hash table.

before_v(F f, W w)?

• The second argument (W w) is uniquely
determined by the class graph and is only
given so the programmer can use the
interface of the target node.

• Semantic check done by DJ: Is W correct?
Executed each time the before method is
called?

Difference to DemeterJ for edge
methods

• DJ only allows edge methods on
construction edges and repetition edges
while DemeterJ also allows edge methods
on inheritance edges.

• Motivation: In DJ, we want the behavior of
a program to be invariant under flattening of
the class graph.

Basket

:B

Fruit Weight2

Weight Weight1

OrangeApple

:Weight1

:Orange

