Semantics of Edge Visitor
Methods

Karl and Pengcheng

Kinds of edge methods

construction edges

— cbefore / cafter / caround

repetition edges

— rbefore / rafter / raround

strategy edges

— sbefore / safter / saround

In the following focus is on before methods.

Addition to Visitor

has a method
CEdge get CEdge()
that returns the CEdge of the

current or most recent construction edge being
traversed. The motivation isto fill in the blanks
about the edge being traversed. The interface of
cbefore may not uniquely determine an edge. DJ
now also supports edge patterns.

Example

» void cbefore(Source s);
— -> Source, *, *

« This s an exanple of a cbefore nethod
on a construction edge that maps
several edges. getCeEdge() wll give us
the details of the current edge and the
programer nay use conditional
statenments to nake the behavi or
dependent on the details of the edge.

CEdge

CEdge =

'<sourceName> String]
<partName> String]
<targetName> String]
<edgeKind> String].

// derived / public, protected, private

Visitor Methods for
Construction Edges

void cbefore x(Sources, Target t);
— -> Source, x, Tar get

void cbefore(Source s, Target t); All but the first method
needs getCEdge to get

edge details.

— -> Source, *, Target

void cbefore x(Source s);
— -> Source, x, *

void cbefore(Source s);

— -> Source, *, *

Visitor Methods for
Construction Edges

« void cbefore x(Target t);

— -> * X, Tar get

« void cbefore(Target t);

— -> * * Target

 void cbefore x();

— -> * X *

« void cbeforg(); // al edges

* % *
- -> Yy

Programming with Strategies

o Strategies are abstractions of class graphs and it is useful to
program directly with those abstractions. Therefore we
extend DJ in two ways by allowing:

— to check whether the traversal is currently in the scope
of asubtraversal

o if (SEdges(s0)) {} (e.g., inside acbefore method) checks
whether the currently active strategy graph edges are contained
In the strategy sg. Notice that e.g. during the traversal of an
object graph edge, multiple strategy graph edges may be
active.

— edge methods on strategies

Programming with Strategies

 to check whether the traversal is currently in the
scope of a subtraversal

— We want to talk about the state of the traversal in
*before methods. This allows us to distinguish how we
arrived at an object graph node.

» edge methods on strategies

— Strategies are built out of simpler strategies. We want
to attach before and after code to the simpler strategies.

Programming with Strategies

At a given point during the traversal a set of
strategy graph edges is active. | think of it as the
strategy edges corresponding to traversal graph edges
on which a token travels. But there is a nore direct
expl anation: the set of strategy graph edges that are
needed for the expansion into object paths.

The follow ng exanple illustrates the concept of
active strategy graph edges. Basically when several
tokens are distributed in different copies of the

cl ass graph inside the traversal graph, several edges
are acti ve.

Active strategy graphedges. A -> B for : A->x1:. X

strategy:
Short- (A ->B
Object graph Ort CUt B->(C
Traversal graph
\M A Start set
~
B
W
x2:X
N\
cl.C
c2.C

c3.C 9 Used for token set and currently active object

Active strategy graph edges. A -> B for x1: X->: B

Object graph

strat egy:
A->B
Short-cut g
Traversal graph
A Start set

® Used for token set and currently active object

Active strategy graph edges. A- >B B->C for :B->x2: X

st rat egy:
Sh _ {(A->B
Object graph Ort CUt B->(C
_ Traversal graph
.|A
\xl:x A start set

~
X2:X
\
cl.C

E——

‘%
O

® Used for token set and currently active object

Active strategy graph edges. B- >C for x2: X->cl: C

strat egy:
Short- {A->B
Object graph Ort CUt B->(C
_ Traversal graph
.A
\xl_:x A Start set

)

® Used for token set and currently active object

st rat egy:

Short- {A->B
Object graph Ort CUt B->(C
: Traversal graph
.A

\xl_:x A Start set

® Used for token set and currently active object

Active strategy graph edges. A->B for : A->x1: X

strategy:
Short-cut (a2
Object graph i }
A Traversal graph
'.—\ After going back to x1:X
A
x1:X Start set
~
B
~
x2: X
\
cl.C
c3:.C ® Used for token set and currently active object

Active strategy graph edges. none for : A

strategy:
Short-cut (a2
Object graph i }
A Traversal graph
'.—\ After going back to :A
x1:X
~
B
~
x2: X
\
cl.C
c2.C
c3:.C ® Used for token set and currently active object

SEdges

SEdges = Vector(SEdge).
SEdge =

'<sourceName> String]
<targetName> String].

Class Dictionary

Person = Brothers Sisters
St at us.

Status : Single | Marri ed.

Single = .

Marri ed <marri edTo> Person.

Brot hers ~ {Person}.

Sisters ~ {Person}.

Strategy

from Person bypassi ng Person
t hrough Marri ed
bypassi ng Person
t hrough Person
bypassi ng Person
t hrough {Brothers, Si sters}
bypassi ng Person
to Person

Strategy and Traversal States

{ Person -> Married bypassi ng Person
Married -> Person bypassi ng Person
Person -> Brothers bypassi ng Person
Person -> Sisters bypassi ng Person
Brot hers -> Person bypassi ng Person
Sisters -> Person bypassing Person }
voi d before (Person h){
| f (previousSEdges(“”)) print(h.getNane()); else
| f (previousSEdges(“{Marri ed->Person}”))
print (“spouse” +h.get Nane()); el se
| f (previousSEdges(“{Brot hers->Person}”))
print(“brother-in-law +h. get Nane()); el se
| f (previousSEdges(“{Si sters->Person}”))
print(“sister-in-law’ +h. get Nane());

Strategy and Traversal States

{ Person -> Married bypassi ng Person
Married -> Person bypassi ng Person
Person -> Brothers bypassi ng Person
Person -> Sisters bypassi ng Person
Brot hers -> Person bypassi ng Person
Sisters -> Person bypassing Person }
voi d before (Person h){
| f (next SEdges(“Person->Married”)) print(h.getNanme()); else
| f (next SEdges(“{Person->{Brothers, Sisters}}”))
print (“spouse” +h.get Nane()); el se
| f (previousSEdges(“{Brot hers->Person}”))
print(“brother-in-law +h. get Nane()); el se
| f (previousSEdges(“{Si sters->Person}”))
print(“sister-in-law’ +h. get Nane());

At

Programming with Strategies

a given point during the traversal a set of strategy

graph edges is active. The set of active strategy graph
edges changes as we nove through the object graph. \Wen we
are at a node in the object graph, we can tal k about the
next and previous set of strategy graph edges.

bool ean next SEdges(Strategy s);
bool ean next SEdges(String str);
bool ean previ ousSEdges(Strategy s);

bool ean previ ousSEdges(String str);

The nmeaning is: is the set of strategy graph edges
contained in the strategy?

next SEdges(“{Person->{Brothers, Sisters}}”)

previ ousSEdges (“ { Br ot her s- >Person}”)

Programming with Strategies

« When we are at an edge in the object graph,
we can tal k about the current set of
strategy graph edges.

— bool ean SEdges(Strategy s),;
— bool ean SEdges(String str);
— bool ean SEdges(Traversal G aph tg);

« The neaning is: Is the set of strategy graph
edges contained in the strategy?

Visitor Methods for
Strategy Edges

« void sbefore(Source s, Target t); // strategy

— Isexecuted before the traversal correspondingto { s- >t } is
started. More precisaly, if { s- >t } iscurrently not in the set of
active strategy edges, but it will be after the next traversal step
(going through an edge in the object graph), the code of the sbefore
method will be executed before the next traversal step.

o void safter(Source s, Target t); // strategy

— Isexecuted after thetraversal correspondingto { s- >t } is
finished. More precisdly, if { s- >t } iscurrently in the set of
active strategy edges, but it will not be after the next traversal step
(going through an edge in the object graph), the code of the safter
method will be executed before the next traversal step.

Be more general

* Allow code attachment not only to strategy
edges but to strategies.

Visitor Methods for
Strategies

» void shefore(Strategy S); // strategy

— Isexecuted before the traversal corresponding to s is started. More
precisaly, if the current object graph node is currently not in the scope of
s, but it will be after the next traversal step (going through an edge in the
object graph), the code of the sbefore method will be executed before the
next traversal step.

» void safter(Strategy s); // strategy

— Isexecuted after the traversal corresponding to s isfinished. More
precisaly, if s the current object graph node is currently in the scope of s,

but it will not be after the next traversal step (going through an edge in the
object graph), the code of the safter method will be executed before the

next traversal step.

Follow DJrule

 Wherever astrategy is used, a string may be used.
» void sbeforeg(String str); // strategy
« void safter(String str); // strategy

Programming with strategies

check whether currently in scope of subtraversal
// may be used in before, cbefore, rbefore, sbefore
— /[sg asubstrategy of current strategy
It (SEdges(sg)) {
/[currently in traversal determined by strategy sg
— /[tg a subgraph of current traversal graph
It (SEdges(tg)) {
// currently in traversal determined by tg

Traversing an edge:
From C1 to C2

oL:C1[o 102C2 declared type of 02 is C3=>C2

godowneiff C1L<=.CC3=>C2

when we go down e, we execute the before method of all cbefore
methods that match the edge e in the order the cbefore methods
are listed in the visitor.

Similarity

When we traverse an edge in the object graph, several
visitor methods (for edges) will be executed.

— the same visitor may have several cbefore methods
whose expansion includes the same object graph edge.

When we traverse a node in the object graph, several
visitor methods (for nodes) may be executed.

— when an object graph node method is executed we also
execute the methods of the super classes.

Executing cbefore v(Ff, W w)?

Assuming that only one edge matches
Object graph edge labeled v

0l: Subd ass(F) -> 02: Subd ass(W
|s F a superclass of class(ol)?

Has F a construction edge labeled w to W?
Execute method.

Finding the edge methods

(b) ect graph edge | abeled v

ol:class(o0l) -> 02:class(02)

| s there any edge visitor
cbefore v for a superclass of
class(ol) ?

Execut e net hod.
Use a hash tabl e.

before v(Ff, W w)?

e The second argument (W w) isuniquely
determined by the class graph and is only
given so the programmer can use the
Interface of the target node.

e Semantic check done by DJ: IsW correct?
Executed each time the before method is
caled?

Difference to Demeterd for edge
methods

e DJonly allows edge methods on
construction edges and repetition edges
while Demeterd also allows edge methods

on Inheritance edges.

* Motivation: In DJ, we want the behavior of
a program to be invariant under flattening of
the class graph.

Basket

Fruit

Apple

Weight

Weightl

Weight2

Orange

‘Weightl

:Orange

