
Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 1 of 8

Test Design Document
Authors
Team Name : PRX
Team Members : Liang Yu, Parvathy Unnikrishnan Nair, Reto Kleeb, Xinyi Wang

Purpose of this Document
This document explains the general idea of the continuous integration setup for the
development of the SCG Arena.

General Idea of a Continuous Integration System
Martin Fowler [1]:
“Continuous Integration is a software development practice where members of a team integrate
their work frequently, usually each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an automated build (including test) to detect
integration errors as quickly as possible. Many teams find that this approach leads to
significantly reduced integration problems and allows a team to develop cohesive software more
rapidly.”

A continuous integration (CI) system serves as a central, authorities instance for the state of the
code and the state of the test cases. Every contribution (commit) has to compile and pass the
tests on the server. This ensures that the builds and test cases do not depend on any local
developer-machine configuration.

The continuous integration system works closely with a central source code repository, similar
to the CI system, the repository is the central and only place for source code, code that is not
checked-in in the correct directory (branch) is considered inexistent.

Procedures / Unit Test organization
Each component of the system is tested in a dedicated Test-Class in the test directory. The
package of the test class is the same as the one of the SUT (System Under Test). The test
class is prefixed with the word Test. The class tests each (reasonable) public method of the
class with at least the following scenarios:
● Common Case
● Extreme Case
e.g. Claim claim = Claim.parse(“csp.CSPInstancesSet{{ (12 800) }} scg.protocol.PositiveSecret {{}} 1.1
 0.8”)”) -- for the quality here, we choose the 0.8, 1.0 and 1.1 to verify the behaviour close to the
boundaries.
● Invalid / Unexpected Cases
e.g. CSPInstanceSet cspInstanceSetWrong = CSPInstanceSet.parse(“(523 768)”) – 523 and 768 are
way above the upper boundary.

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 2 of 8

Testing the SCG Court
The network specific functionality is definitely an area that would benefit from the refactorings
that are mentioned below (“Coverage could be improved”). The current coverage is insufficient
(overall around 20%). We were wondering if it would make sense to build brittle and extremely
expensive solutions to work around the issues of partly untestable code, or if the project would
benefit from specific refactorings in the problematic areas and then tests could be introduced
much more reasonable.

Testing the Playground-Specific Parts
If the project has reached a stable status, playground designers should be able to focus on the
code that was introduced in the playground specific *.beh files (Example: hsrDomain.beh and
hsrAvatar.beh) and the playground specific objects that were introduced with the grammar
(Example: hsrDomain.cd and hsrAvatar.cd).

These testing-efforts can be split up into two sub-tasks:

 Introducing the Playground:

This requires testing of all the methods that are introduced in the xxxDomain.beh file as well
as the testing if the transformation from- and to strings of all playground specific elements
works as expected.

 Creating a new Avatar:

It is important to notice that this testing-part does not directly relate to the stability and
reliability of the overall system, these tests are a guideline to help avatar creators to write
avatars that run stable in tournaments: The functionality that is written in xxxAvatar.beh
should be thoroughly tested to prevent an avatar from being kicked out for a small
programming mistake (NPE, etc.).

Test Coverage
One important metric related to testing is the so called “Code Coverage” [4]. This number
describes the number of source code lines that are covered by a complete run of all tests
divided by the number of total lines. A naïve observer might come to the conclusion that a
project that has a code-coverage of 100% is the ultimate goal and will prove the system solid.
The reality is however not that simple:

 “80 / 20 Rule”:

As a rule of thumb, coverage in the area of 80 - 90% is a reasonable, desirable number for
most projects. The amount of work that would be necessary to reach 100% is often not
proportional to the information gain [5]. Real world systems often contain elements that are
too hard to test (while maintaining reasonable costs). The recommended approach is to
focus on the central elements and tests these thoroughly before attempting to generally
increase the code coverage.

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 3 of 8

 Covering a line does not necessarily mean that the test was intelligent:
The systems to generate these numbers follow some simple rules, the most important one
is, if the executed code has touched line xy, mark this line as covered. These systems
however are unable to tell the difference between just executing a certain statement with a
very simple case, or a tricky, edge case that could case a problem.

Test-Coverage in the SCG Project
The fact that parts of the code in the project are automatically generated makes the generation
of exact number a bit more challenging. In a typical project that contains generated code, it is
often undesirable to test the generated code (these tests should happen in the framework that
writes the code, not in the project that uses the framework). The tools to measure coverage can
be instructed to ignore certain directories (we used EclEmma [6], but there are plenty of
alternatives with comparable functionality available). This often solves the problem, in our case
however, the folder for generated source (typically called “gen”) also contains manually written
code that is copied from the *.beh files. It certainly would be possible to extend a coverage
report tool to allow a more fine-grained differentiation between DemeterF [7] code and hand-
written methods.

The screenshot displays the result of a coverage analysis run using the EclEmma Eclipse
plugin, lines that were covered during the run are highlighted in green. Yellow stands for a
partially executed line (typically inline conditionals), and a line highlighted in red, was not
executed during the test. The image shows a situation that is typical for this project. The file
(CSPInstance.java) contains code that was generated by DemeterF as well as code that was
copied from a *.beh file.

Considering these circumstances, we collected the test-coverage in a manual process, this
approach has the advantage that it implicitly includes a cursory code-review, it is however not
feasible for larger code-bases.

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 4 of 8

Solid Coverage (above 70% coverage)
The packages for the protocol-interpreter as well as the packages for the protocols have a solid
coverage. Possible ideas for further improvement would be: More corner-cases, more invalid
inputs.

Coverage could be improved (below 70% coverage)
One of the major difficulties while writing tests, was the fact that a lot of the code was written in
a way that made method calls expensive. What does this mean? The following three items
describe issues that we found particularly important:

 “Multi-Purpose Methods”

Methods should be written as small units with one specific purpose. There are two very
simple indicators to recognize if a certain method fulfils this criterion: 1. Is the number of
lines less than 10. 2. Can I clearly describe the methods purpose in a single sentence?

 “Tangled Objects as Arguments”
This is a typical issue in Java – Web projects, often the functionality lies inside of methods
that can only be called with objects that are unnecessarily complex to create. A prominent
example is the HTTPRequest object in Servlets. There are Mock-Frameworks that help to
mitigate these issues, the more straightforward way however, would be to write and test
methods that only rely on primitive or simple Domain-Specific objects. Instead of having one
method that takes an object that is expensive to construct, work with two methods, the first
one takes the elements from the expensive argument object and then calls the tailored
method with simple arguments.

 “State in Classes”
One of the ideas that are heavily promoted lately, especially by people that are experienced
users of functional languages, is the idea reducing state in objects. State-Depended logic is
much harder to predict and therefore to test. I will illustrate this issue with two simple
examples:

Stateless State-full (with implicit state-changes)
object.calculateResult(“xy”) = 5
object.calculateResult(“xy”) = 5
object.calculateResult(“xy”) = 5
object.calculateResult(“xy”) = 5
...
...

object.calculateResult(“xy”) = 4
object.calculateResult(“xy”) = 5
object.calculateResult(“xy”) =>
Exception “Calculation does not
make sense”

In the first example (on the left), the result of a certain call is (and will be) always the same,
the result does never depend on anything that happened before. On the right hand side
however, each call updates an internal state that influences the return value of the method.

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 5 of 8

Such behavior and other examples of implicit state-updates might seem like a convenient
shortcut for the initial developer, they are however extremely hard to understand for the next
person that has to test or maintain the code.

Central Source Code Repository
One of the central aspects of a CI server, is its ability to check a repository for changes and
based on such events trigger actions (usually build and test, but we could easily extend these
capabilities to anything else that might be desired).

The most pragmatic approach in our case was to choose an existing, free hosting provider for
Subversion.

Build Setup
The cornerstone of the build of the SCG arena is a fairly simple Ant [2] script:

<project name="cs6515" default="build" xmlns:ivy="antlib:org.apache.ivy.ant">

 <!--

 ANT Build File for the CS 5500 project

 -->

 <!-- Basic Directory Definitions -->
 <property name="build.dir" value="Build" />
 <property name="src.dir" value="src" />
 <property name="srcGen.dir" value="gen" />
 <property name="test.dir" value="test" />
 <property name="test.report.dir" location="testreport" />

 <!-- Classpath for the project-libraries -->
 <path id="classpath">
 <fileset dir=".">
 <include name="**/*.jar" />
 </fileset>
 </path>

 <!-- Define the classpath which includes the junit.jar and the classes
after compiling-->
 <path id="junit.class.path">
 <pathelement location="${build.dir}" />
 <fileset dir=".">
 <include name="**/*.jar" />
 </fileset>
 </path>

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 6 of 8

 <target name="build" description="--> resolve dependencies, compile and
run the project">
 <mkdir dir="${build.dir}" />
 <javac destdir="${build.dir}" includeantruntime="true">
 <src path="${src.dir}" />
 <src path="${srcGen.dir}" />
 <src path="${test.dir}" />
 <classpath refid="classpath" />
 </javac>
 </target>

 <!-- executes all tests (Test*.java files) and generates
 html reports in the ${test.report.dir} -->
 <target name="test" depends="build" description="--> test the project">
 <mkdir dir="${test.report.dir}" />
 <junit printsummary="on" fork="true" haltonfailure="false"
includeantruntime="true">
 <classpath refid="junit.class.path" />
 <formatter type="xml" />
 <batchtest todir="${test.report.dir}">
 <fileset dir="${test.dir}">
 <include name="**/Test*.java" />
 </fileset>
 </batchtest>
 </junit>
 <junitreport todir="${test.report.dir}">
 <fileset dir="${test.report.dir}" />
 <report todir="${test.report.dir}" />
 </junitreport>
 </target>

 <target name="clean" description="--> clean the project">
 <delete includeemptydirs="true" quiet="true">
 <fileset dir="${build.dir}" />
 <fileset dir="${test.report.dir}" />
 </delete>
 </target>

</project>

Explanation of the defined Ant Tasks
build: Runs JavaC for all source files in the project
test: compiles all sources (depends=”build”) and then executes all Junit-Tests in all Java
classes that start with the name Test. The results of the tests are written to the directory defined
in “test.report.dir”

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 7 of 8

Setup for Jenkins CI
Jenkins CI [3] is a freely available Build-System that is easily configurable and extensible. The
system is distributed as a simple jar file that does have no dependencies and can be started
from the command line right away. The following command starts a simple (but unprotected)
Jenkins instance.
java -jar jenkins.war

After entering the command, a webinterface that allows the configuration of test-plans is
available on http://localhost:8080

This setup however does give full access and change rights to anybody, starting the system
with the following arguments:
java -jar jenkins.war --argumentsRealm.passwd.cs5500=scgarena --
argumentsRealm.roles.cs5500=admin
Will prevent these issues. The arguments that are highlighted in green are the ones that need to
be changed: cs5500 is the username, scgarena is the password. The last argument assigns
administrative privileges to the user cs5500.

Setting up a Build
Once Jenkins is running, new Jobs can be configured. A click on “New Job” will bring up a form
with the following four main elements that are explained in the next section:

The first section defines the URL of the SVN Repository, if the repository is not publicly
readable, the corresponding credentials need to be entered. It is important to notice that there
are plugins for Jenkins that allow different Version Control systems (such as Git) to be used.

After the Repository to be checked is defined, we need to specify how often the system should
check for modifications.

Test-Design-Document CS 5500: SCG Arena

Team: PRX Page 8 of 8

Once the repository and the schedule are set up, we need to define what should happen once
the system detects a change in the given repository. In our case we simply call two ant targets
that we defined in the build.xml file. The first target “clean” deletes any artifacts from any
previous builds, this ensures that we never have any “leftovers” that could lead to inaccurate or
strange test-results. The next target is the test target (Ant allows users to simply pass a list of all
targets that should be executed in order). We have seen in the build.xml file that this target does
depend on the target “build”. This setup will ensure that any call to test will first compile all
sources.

The final step before we have a build system that delivers valuable information about the status
of the system, is to configure the system to read the results of the JUnit tests. It is important that
the given directory matches the directory that is set in the Ant file.

Sources:
[1] http://www.martinfowler.com/articles/continuousIntegration.html
[2] http://ant.apache.org/
[3] http://jenkins-ci.org/
[4] http://www.bullseye.com/coverage.html
[5] http://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-coverage/
[6] http://www.eclemma.org/
[7] http://www.ccs.neu.edu/home/chadwick/demeterf/

