

CS 5500: Managing Software Development
SCG Project: Test-Plan

Team Name: PRX
Team Members: Liang Yu, Parvathy Unnikrishnan Nair, Reto Kleeb, Xinyi Wang

Continuous Testing
Experience shows that a separation of test and development (http://en.wikipedia.org/wiki/
Software_testing#Finding_faults_early) leads to extremely high costs. This "over the fence to
QA" mentality has to be prevented at all costs. This means that the first level of (unit) testing
should happen while the code is written. To ensure that the tests fulfill the quality standards,
they have to be reviewed with the same rules the apply to normal source code.

Procedures / Unit Test organisation
Each component of the system is tested in a dedicated Test-Class in the test directory. The
package of the test class is the same as the one of the SUT (System Under Test). The test
class is prefixed with the word Test.

The class tests each (reasonable) public method of the class with at least the following
scenarios:

● Common Case
● Extreme Case
● Invalid / Unexpected Case

Central Repository
The development takes place in one central repository, this repository contains the complete
sources and has no further external dependencies. Each developer can check out the whole
repository at any point in time.

Continuous Integration
To guarantee that the code base and the related tests continue to remain stable and passing
over the course of a project, a solution to continually integrate the source code is essential.
Every single commit should automatically lead to the execution of the complete test set. If at any
point any of these tests fail, the focus of the developers has to switch from adding features, to
discovering and solving the issue

Used Utilities
The mainly used tool in this project is Junit, it allows a consistent evaluation of the state of a
test-code base and is widely supported by other tools (IDE, build environments, etc) on the JVM
platform.

Challenges for the SCG Tests
A fair amount of the SCG functionality is based on network based communication between
separate processes. The required integration tests, to test the complete stack are more
expensive to maintain and run.
The optimal compromise for this problem would be to isolate functionality into simple, testable
units (with the support of Mock objects) and only execute the extensive integration tests at
defined project mile stones.

Final Tests
The final tests are execute before every rollout of the SCG game.

Performance
The performance tests mostly affect the admin and its capability to host concurrent games. In
this test, we measure the following aspects of the admin:

● Response time of the Admin Status Web interface
● Response time for new registrations

While these measurements are being taken, we steadily increase the number of games running
on the admin (using multiple connecting clients)

User acceptance
The very technical nature of the SCG reduces the importance of classical user acceptance
tests. But even with these conditions, test-implementers should be interviewed and observed
while they use the provided tools. The informal feedback of these tests should be collected,
evaluated and could lead to feature requests.

Reporting

Weekly (In class, integrated into general weekly status meeting)
Summarize weekly testing activities, issues, risks, bug counts, test case coverage.

After a Phase Completion
The test report includes:

● The total test cases, number executed, number passed / failed, numbers yet to be
executed.

● The number of bugs found (date, solutions).
● The discussion of unresolved risks.
● The discussion of schedule of progress.
● The final report and sign-off

After the Final Test
To generate a final test report and wait for sign-off.

Each defect has to be reported in the chosen bug tracking system (presumably Trac). The bugs
should be reported as clear and complete as possible. The architect of the SCG game has
then to decide if the reported bug is actually considered a bug and then assign the task to the
developer that is responsible / most familiar with the affected part of the system.

Bugs should be divided (according to the following list) by their severity and assigned a priority
number for fixing.

 Severity List

Severity ID Severity Severity Description

1 Critical bugs which can cause non-
recoverable condition, like
system crashes, or database
of file corruption, or potential
data loss, program hangs.

2 High bugs which can cause a lack
of functionality, or insufficient
or unclear error message.
bugs which can prevents
other areas of the app from
being tested.

3 Medium bugs which cause incorrect
functionality of component or
process.

4 Minor Documentation errors or
notation errors.

Priority List

Priority Priority Level Priority Description

5 Must fix must be fixed immediately;
the product cannot ship with
this bug

4 Should fix should be fixed as soon as
possible or else it will ruin the
company’s reputation

3 Fix When Have Time fix it when id does not delay
the shipping date

2 Low Priority fix it after all other higher

levels are done

1 Trivial fix it to make the product
perfect

