
Ordered Greed for N SuperQueens

Daniel Kunkle
Computer Science Department

College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14623
drk4633@rit.edu

http://www.rit.edu/˜drk4633

May 1, 2002

Abstract

This is an extension of the Ordered Greed technique introduced by
Anderson and Gustafson in [1]. The Ordered Greed algorithm (OG)
is a hybrid greedy algorithm using permutations. OG is applicable
to many classical optimization problems, including job assignment,
graph coloring, bin packing, and satisfiability. Here, OG is applied to
a variant of the N Queens problem, the N SuperQueens problem. The
performance of the OG method and that of the Plain Permutation
GA in solving the N SuperQueens problem are compared. The results
here support those found in [1], that the OG method is far superior
to the Plain Permutation GA.

1 N SuperQueens

N SuperQueens is an extension of the classical N Queens problem where the
task is to place N chess queens on an N ×N board such that no two queens
are attacking each other. The normal queens attack along rows, columns,
and diagonals. A SuperQueen has all of the attacking abilities of a normal
queen along with those of the chess knight. The task remains to place N

1



SuperQueens on an N ×N board. The N Queens problem is solvable for any
N ≥ 4, whereas the N SuperQueens problem is solvable for any N ≥ 10. See
figure 1 for N SuperQueens solutions with N = 10 and N = 11.

Figure 1: Solutions for the N SuperQueens problem. Black squares represent
SuperQueen placements. left: N = 10. right: N = 11.

Though many heuristics have been developed to efficiently solve the N Queens
problem that could possibly be modified to satisfy the N SuperQueens prob-
lem they are not considered here. The goal is to examine and compare two
methods of search, Plain Permutation GAs and Ordered Greed. The N Su-
perQueens problem is used as a comparison problem because of its relative
simplicity and it similarity to many hard problems, such as the NP-complete
Maximum Independent Set (MIS) problem.

2 Permutations - Order Based GAs

Traditionally, individual GA solutions are represented as a bit string, where
each bit can take on a value of 0 or 1. In many problems, however, it is
necessary to ensure that each value occurs only once. Most notably, the
Traveling Salesman Problem (TSP) specifies that a salesman should visit
each city once and only once. In this case a solution is represented by a
permutation, 〈a0, a1, a2, · · · , aN−1〉 of the numbers 〈0, 1, 2, · · · , N − 1〉.
The use of permutations in GAs presents a problem: the normal genetic

operators of crossover and mutation will most likely destroy the permuta-
tion properties of the individual, often duplicating some numbers in the set

2



and removing others. A number of permutation preserving crossover opera-
tors have been developed, such as partially matched crossover (PMX), order
crossover (OX), and cycle crossover (CX) [2].
In keeping with the methods presented by Anderson and Gustafson in

[1], signatures are used here as a means of producing order based GAs. A
signature is a string of numbers that represent a permutation, but are not
themselves a permutation. A signature S = 〈s0, s1, s2, . . . , sN−1〉 satisfies the
property 0 ≤ si ≤ i for all i. S specifies that 0 is in position s0, 1 is in
position s1 of the remaining N − 1 positions, 2 is in position s2 of the N − 2
remaining positions, and so forth.
The advantages of signatures presented in [1] are:

• Signatures are easy to generate

• Signatures can be easily mutated (regenerate one of the entries) and
bred using two-point crossover (signature properties guarantee children
are valid signatures).

• There exist straightforward algorithms to convert signatures into their
corresponding permutations

3 Plain Permutation GA

The Plain Permutation GA uses the permutation, as specified by the sig-
nature, as a direct solution to the problem at hand. In the case of the N
SuperQueens problem the permutation 〈a0, a1, a2, · · · , aN−1〉 specifies that
the SuperQueens are to be placed in row 0, column a0; row 1, column a1;
· · ·; row N − 1, column aN−1. Any SuperQueens that would be attacked by
an earlier placed SuperQueen are not placed on the board at all.
The fitness of a permutation using this method is the number of success-

fully placed SuperQueens.

4 Ordered Greed

The Ordered Greed method doesn’t use the permutation directly, but in-
stead uses the permutation to drive a greedy algorithm. A greedy algorithm
is one that makes an optimal choice at each local step but has no global

3



memory with which to optimize later decisions. One greedy algorithm for
N SuperQueens (and N Queens) is to go row by row, placing a Queen in
the first non-attacked column. This greedy approach may work on its own
for certain board sizes but will fail for most. A permutation can be used to
specify the ordering of the rows that the Queens are greedily placed in.
In this way the permutations make up the search space, just as in the

Plain Permutation method, but the greedy algorithm makes the best of the
situation when placing the Queens. The improvements in performance when
using OG over Plain Permutations is dramatic and is described in the next
section.

5 Results

These are the results of several experiments to determine the relative ef-
fectiveness of Plain Permutations versus Ordered Greed in solving the N
SuperQueens problem. These results correspond closely to those found in
[1].

5.1 Random Permutation Comparison

As a simple comparison between Plain Permutations and Ordered Greed
10,000 random permutations were created and their fitness evaluated. The
fitness of each permutation is the number of successfully placed SuperQueens
on a 1024 × 1024 board. A histogram of the fitnesses for the two methods
clearly shows that OG produces superior SuperQueen placements (see fig-
ure 2). The average fitness of the random Plain Permutations was 621.7,
whereas with OG it was 1013.7. In fact, the problem of placing 1024 Su-
perQueens was almost solved in the first 10,000 random permutations of
Ordered Greed with a maximum fitness of 1023 (see table 3).

5.2 Population Fitness Over Time

When examining a scatter plot of the calculated fitnesses of each individual
from the GA it is apparent not only that the OG method produces better
fitnesses for random permutations but that the GA using the OG method

4



400 500 600 700 800 900 1000
0

200

400

600

800

1000

Number of Successfully Placed SuperQueens

N
um

be
r o

f R
an

do
m

 B
oa

rd
s 

W
ith

 G
iv

en
 F

itn
es

s

Random Odered
Greed Fitnesses 

Random Plain
Permutation Fitnesses 

Figure 2: Histogram of fitness values for 10,000 random individuals for the
Plain Permutation and Ordered Greed methods as applied to the N Su-
perQueens problem with N = 1024. The OG method is clearly superior.

Method Mean Minimum Maximum
Plain Permutation 621.7(±10.0) 586 666
Ordered Greed 1013.7(±4.6) 986 1023

Figure 3: Fitness value statistics for Plain Permutation and Ordered Greed
over 10,000 random individuals as applied to the N SuperQueens problem
with N = 1024.

has a much better chance of improving over time. Figure 4 shows a compar-
ison of one GA trial for both Plain Permutations and Ordered Greed while
attempting to solve N SuperQueens for N = 4096. The Plain Permutations
method had no substantial increase in fitness over 3000 evaluations, whereas
the OG method had a clear improvement in populations fitness over time
and found a solution after 594 fitness evaluations.

5



500 1000 1500 2000 2500 3000
2300

2350

2400

2450

2500

2550

2600

2650

2700
Plain Permutation

Fitness Evaluation Index

Fit
ne

ss

50 100 150 200 250 300 350 400 450 500 550
4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

Ordered Greed

Fitness Evaluation Index

Fit
ne

ss

Figure 4: top: scatter plot of the first 3000 fitness evaluations of the Plain
Permutation method in solving N SuperQueens with N=4096. Almost all
fitness values are below 2550 and there is no significant rise in fitness over
time. bottom: scatter plot of the first 594 fitness evaluations of the Order
Greed method of solving N SuperQueens with N=4096. All fitnesses are 4049
or better and a solution was found after 594 fitness evaluations.

5.3 100 Random GA Trials

To further expand on the findings of the one GA trial in the last section,
100 GA trials were conducted for both Plain Permutations and Ordered
Greed, using a different random seed each time. Both were trying to solve
the N SuperQueens problem with N = 128 and were not allowed more than
2100 fitness evaluations (100 in the initial population and 1000 tournaments
producing 2 children each). The Plain Permutation GA was never able to
solve the problem in the 2100 fitness evaluation and achieved a maximum

6



fitness of only 93 out of 128 (or 72.6%). The OG GA was able to solve the
problem all 100 times, in an average of 517.6 fitness evaluations. Figure 5
details the results.

Method Average Number of Average Best Maximum Best
Fitness Evaluations Fitness Fitness

Plain Permutation 2100(±0) 90.11(±0.9) 93
Ordered Greed 517.6(±327.5) 128(±0) 128

Figure 5: Fitness value statistics for Plain Permutation and Ordered Greed
over 100 runs of the GA with different random seeds. Parameters were:
population size of 100, tournament size 3, uniform crossover, mutation rate
of 0.03, and the number of fitness evaluations was held to 2100 or fewer.
Applied to the N SuperQueens problem with N = 128.

6 Conclusions

The results of applying both Plain Permutations and Ordered Greed Genetic
Algorithms to the N SuperQueens problem support the results found in [1].
The speed and likelihood of finding a solution are greatly increased by the use
of OG. Any problem that has a greedy approach that can be controlled by
permutations should receive the same benefits from OG that N SuperQueens
does.

7 Acknowledgments

Thanks to Samuel Inverso for Perl and Unix shell scripts to extract valuable
data from raw output.

References

[1] Peter G. Anderson and William T. Gustafson. Ordered greed.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learing. Addison Weslay, 1989.

7


