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The opiimal path cover problem is to Had 1 minimum number of vertex disipint paths which
together cover ail the vertices of the graph. [n this paper. we present linear-time atgorithms {or the
wpiimal path cover problem for the class of block graplhs und bipurtite permutation grapis,

1. Introduction

The optimal path cover problem is to find a minimum number of vertex disjoint
paths which together cover all the vertices of the graph. FFinding an optimal path cover
for an arbitrary graph is known to be WP-compiete [3]. However, pelynomial-time
algorithms exist for trees [4], cacti [4] and for interval graphs [9]. The solution
presented in [2] for circular-arc graphs is known to be wrong. In this paper, we
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present linear-time algorithms for finding an optimal path cover on bipartite permu-
tation graphs and bleck graphs. The path cover problem finds applications in
establishing ting protocols. code optimization, and mapping parailel programs to
parallel architectures [4].

2. Bipartite permutation graphs

In this section, we assume that the given graph G=(5, T, £) is a bipartite permuta-
tion graph [6], where S, T are the partite sets of the graph G.

Definition 2.1. A sirong erdering ol the vertices of a bipartite graph G=(5.T. E)
consists of an ordering of 5 and an ordering of Fsuch thatferallis. sl (s )in £, 5 <5
and r>¢ imply that (st (8.2 E.

Lemma 2.2 {Spinrad et al. [77) Ler G=(5.T.E) pe a bipartite graph. Then the
Jollowing sratements are equivalenr

t1) G is a bipartite permutarion araph.

(2) There ts a swrong erdering of vertices gf G.

2.0, Optimal pati cover in bipartite permuiation grapls

Definition 2.3. Let G be a bipurtite permutation graph. A path caver (P, Pz, ... Py)
on G is said to be conliguous i1 1t satisfies the following two conditions;

(1y If 5 1s the only vertex in P and if ' <s <5", then 5" und s* belong wo different
pitths.

(2) If sz is an edge in £ and $'¢ s an edge in P, where i#/ and s<s', then r <¢",

Lemma 2.4. Let G be a hipartite permuration graph. Then there exists a contiguous path
cover for G which is optimal,

Proof. We will convert an arbitrary optimal path cover P into a contiguous optimal
path cover as foilows: We consider the two conditions in Definition 2.3 separately.

(1) Let 5",5 5" be the vertices not satisfying condition 1. Without loss of generality,
assume that &', s” are closest to s from the right and left in the ordering of § 1n some
path Pjof P. Let s'~i—s" be the subpath of P;. From Definition 2.1, ¢ is adjacent to s.
Connect ¢t with s and remove the connection between ¢ and s” in the path cover. By
repeating this procedure, we get an optimal path cover satisfying condition 1.

(2) Let sr and s't". respectively, be the edges in P, and P; of P, not satisfying
condition 2. From Definition 2.1. we know that s7" and 't are in £. Remove the edges
st and s't" from the path cover and replace them with st' and s't. We get two new paths
Piand P/ which cover the same vertices as Py and £;. By repealing this tor all pairs of
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edges which do not satisfy condition 2, we get an optimal path cover which satisfies
condition 2.

Hence, we can convert an arbitrary optimal path cover into a contiguous optimal
path cover, 0

Remark 2.5, Let S=s5,,51,...,55 and T=1!,,¢3,...,47) be the vertices of S and T in
the strong ordering of G. Note that a centiguous path P starting with a vertex s;€$ will
be of the form $68s e . Sitlsee ), whers I<sish<|S] Us/<r<|T]. Ths
follows from the proof given in [ 7] for the Hamiltonian path. In other words, P covers
SiaSivy.- Spand i,2;.0 ..., 1, A similar remark holds for contiguous paths starting
from a vertex in T,

Let P=s;6,5 1441 - - S0y be a path in G P is said to be extendable on right, or
simply exrendubile. if Pends with ¢, and 55, &E or P ends with s, and s, 1,6 E. We say
that & path is amaximal parh ifitis not possible 10 extend the path on the right. Note
that each optimal path cover can be converted into an optimal path cover wn which
cach path i3 a4 maximal path. We say that an optimal contiguous path cover
P=p Py, . Pis s muximum opiinal badh cover [ 2ach P, covers maximum number
of vertices in ¥ —{£ P, U v Py

Lemma 2.8, Ler G beu bipaitite perinucation graph. Thew there exists a contiguous path
cover for G which Is an oprimal maximum parh couer,

Proof. Lef P=P,,P,..... P, beun snumal maximal puth cover for G. We will convert
this path cover into an eptimal path cover in which each path is a maximum path. Let
Py=8if;51-y ... 5.t be the first path :n £ which is not u maximum path. Withour loss of
generality, assume that Py ends ina ¢ vertex. Then the maximum path Py will be of the
form Py=r;5. . 0, bo 8,0 . n,t8,) I the path Py starts from s, then we can
replace Py and Py., with P{and P{_,. where Pi., =P, —P. If Piy starts from
the vertex t,,, then Py, with repluce P, and P _ . which will contradict the optimality.
By repeating the procedure for all ngon maximum paths, we can get an optimal path
cover in which each path is a maximum path. T

Algorithm 1

{1} Mark all vertices in § and T as not visited. Let P=0,

{2) While all the vertices are not visited Do
(2.1) Let s and ¢ be the first vertices in S and T which are not visited.
{2.2) Let P, and P, be the maximal paths starting from s and f, respectively.

0 =Maximum of P, and P,.

(23} P=PuQ.
{2.4) Mark all vertices in @ as visited.
End while.

{31 Output P.
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Theorem 2.7. Algorithm 1 oukpurs an optimul path cover,
Proof. Follows from Lemma 2.6, O

Complexity. Strong ordering of the given bipartite permutation graph can be found
in linear time [7]. Note that each vertex is examined atmost twice. Hence, Algorithm
I runs in O(n+m) time. For other details, refer to [8].

Theorem 2.8. The optimal path cover probiem can be solved in linear time for the class of

Bipartite permuration graphs, T2

3. Block graphs

A block of a graph is 4 muximal biconrected subgraph of the graph. A vertex r of
aconnecwed graph G is a cut vertex if G — y 1s disconnected. A block graph is a graph in
which each block is a complete graph. For avery block graph G =i V. E). we define its
BC-tree Tus follows: T has a node corresponding ta each block and each cut vertex of
G. The nodes of 7 corresponding to blocks of G are called block nodes and the nodss
corresponding to cut vertices of G are called cut nodes. We say. a cut nodg ¢ is
contained in 4 block node b if the block represented by b contains «. Everv cut node
¢ 1s connectad 10 gl block nodes which contain ¢,

3.0 Opeimad path cover in block graphs

[+ is mstrucrive to note that the minimum path cover number for the graph T
eeed not be equal to the minimum path cover number of G (Fig. 1). We will assume
that T is rooted at a cut node. The nodes of T will be visited in post order traversal.
For each node ve 7, G, denotes the subgraph of G formed by the vertices in the blocks
represented by descendant block nodes of » except for the vertex w, where w is

] ™,

~F S

G

Fig. 1. The optimal path cover number of G is . The optimal puth cover number of T is 3.
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the cut vertex v if v is a cut node or the cut vertex u, and the parentof p if v is a
block node.

Algorithm 2
(1) Construct the BC-tree T of G and root the tree T at a cut node.
{2} While the root is not visited Do :
(2.1) For all nodes » of T'whose_children are visited Do

(2.1.1) If v is a cut node then let b . b, ..., be the children of ». Let
Py Poyson s Py, be the optimal path covers of G, Gy,..... G,
respectively.
If there are paths P;epP,, and P, &P, such that paths P;, and
P{ end in ¢ and (" respectivelv. and ¢.ceh; and " ceb,
ther Pos=P, VP, v UiP, —PLis Ul Py =P Ju Py, L
(Pi, —¢' —c—¢"—P; 0 {8ee Fig. 2 :
If there is only one such path Pjefy, then P =P, uby,
s Py, — P o P i PO =0 =0,
If there 15 no such path then P, = Fh.: P P Py L

(2.2} If ¢ is a block node then,
let By, B4, ..., B, be the non cut vertices in the block represented by
the block node ¢«
If ¢ has oniy one son ¢ then

[f there s a path £, 2P, where P is the optimal path
cover of (r, and ift P, ends in ¢

then P.=(P =Py P, —v—h, —hs— - —p,
glse P.=Puib —hy— - —h,
eise
Let ¢y, eae.. v be the children of e, Let £, Pey. o0 Py, be the
optimal path covers of G, . G,.. ... .G, . respectively.
Let P, .P., ....P, be the paths that end in vertices

CitsCizy - - Cire TESpECtively.
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Fig. 3

Then A, =1 Pg, —¢;) == Py By~ — Poghu- 0
(Peg. = Ciger = iy~ Paghus (1 Pe;, v PeiaM =+ W Peid = ( Py
Plisy ... Pl iwhere g=¢ or p— |, depending upon whether
ris divisible by 2 or not;. (See Fig. 3)
Iir is divisible by 2 then Py=P, (b, —hy ~ .- —By)
alse Pu=Po(Py —b —b;— - —b)
Muark pas visited.
End for.
End while,

We can easily prove the correctness of Algorithm 2 by inductien on the number of
vertices of the given graph {17, At each step the algorithm processes a node and its
children. Hence, Algorithm 2 takes onty Otin+am time to find an optimal path cover.

Theorem 3.1. The oprimal puth cover problem can be solved in linear thme for the class of
block graphs,

4, Conclusions

We have presented linear algorithms for the path cover problem on bipartite
permutation graphs and block graphs. The earlier polynomial-time algorithms have
been predominantly using greedy techniques and in our case, for the bipartite
permutaticn graphs, we have used greedy methods while, for the block graphs, we
have used the block cut vertex tree as the tool. The block cut vertex tree has been
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-emerging as a paradigm for solving a rumber of problems in block graphs [5]. While

we have been successful in designing polynomial-time algorithms for this problem on
interval graphs, block graphs etc,, it is well known that minimal path cover problem is
NP-complete even for chordal graphs. Thus, it would be interesting to investigate the
complexity of the path cover problem on larger classes of graphs and identify
a sharper dividing line between P- and NP-completeness of this problem across

different classes of graphs.
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