SamaritanCloud: Secure and Scalable Infrastructure
for enabling Location-based Services

Abhishek Samanta Fangfei Zhou Ravi Sundaram
Northeastern University
Boston, MA 02115
Email: {samanta, youyou, koofi@ccs.neu.edu

Abstract—With the maturation of online social networks e.g, Facebook, Twitter, or “strangers helping strangei§; [
(OSNSs), people have begun to form online communities and look js post - an user posts his/her question or request on his/her
for assistance at a particular place and time from people they ¢gsial network page or a relative group page and waits for

only know virtually. However, seeking for such help on existing hich i imilar t bscribing t il li
OSN infrastructures has some disadvantages including loss of response, which IS very simiiar to subscribing to an emsil

privacy (in terms of both location as well as the nature of the and broadcast questions except exposing more privacy. This
help sought) and high response times. In this paper we propose method is simple but suffers from three major drawbacks.
SamaritanCloud, a scalable infrastructure that enables a group of 1) High/unpredictable response latencyPopular OSNSs,
mobile and geographically-dispersed personal computing dewcese_g” Facebook, Twitter own worldwide users, who live in

to form a cloud for the purpose of privately sharing relevant . . .
locality-specific information. From a technical standpoint our different locations and have different schedules. A post on

main contribution is to show that only additive homorphic en- & group page could not reach all the members in a short time
cryption is sufficient to compute nearness in a cryptographically and may be overwhelmed by other posts soon.

secure and scalable way in a distributed setting. This allows us  2) Limited range of request subject&Groups on OSNs
to harness the benefit of linear match time while guaranteeing are typically centered around interests, occupationsdeysn

the locational privacy of the clients. In terms of performance So. it is hard lici for ti ictad
our system compares favorably with simpler publish/subscribe ages. S0, It Is hard to elicit response for time-restricted a

schemes that support only equality match. We demonstrate the location sensitive questions. Most online requests foaus o
practical feasibility of SamaritanCloud with an experimental recommendation, suggestions and people do not make eff-lin
evaluation. _ _ _ _ _ offer before they build trust on each other.

Index Terms—location-based service, mobile devices, privacy, 3) Privacy loss: Users requesting help on OSNs could end
homorphic encryption . . . .

up exposing themselves to a large group, including friehdg t

know in real life, as well as users, who are not willing/alde t
offer help. Unnecessary privacy leak may affect user'sqeak
life and should be avoided.

People often have the need for assistance from strangers
in remote locations. Consider the following requests: ggeaB: Related Work
tell the marathon runner with bib #123 | will wait at the Geosocial networking [2]-[5] offers location based seggic
finish line; did | leave my keychain on campus? is there @BS) to users to interact relative to their locations. LBS
brown puppy roaming in the playground? In this paper wiypically is an information or entertainment applicatitrat is
propose, not just a new architecture, but, in fact, a newcclodependant on location of user. By these services users are of
based service - SamaritanCloud - the goal is to providefered possibilities to find other people, machines and lonat
way for people to connect with others (possibly strangersgnsitive resources. Some applications [6], [7] match suser
in a remote location and obtain (physical) help from themwith locations of interest. These services are used forrindi
SamaritanCloud is deployed as cell phone application,suser physically proximal social contact or for crowd sourcing.
submit their requests to the cloud which coordinates usefany of such public LBS provide no privacy while some
requests and efficiently find possible candidates to respouoffer limited protection on an opt-in or opt-out basis. Here
to the request. Such a service will require efficient teciinicwe briefly categorize the different approaches to providing
solutions to problems such as scalability, privacy, refita privacy, as well as the associated shortcomings.
etc to overcome the social barriers of soliciting help from 1) Middleware: Geopriv [8] and LocServ [9] are policy-
strangers. We focus primarily on the technical aspects lofsed privacy management approaches for secure location
scalability and privacy (matching people with strangersin transfer that employ a trustworthy middleware mediating
secure and private way) so that the need for help and thetween location-based applications and location trackin
ability/desire to assist are disclosed safely. servers. Geopriv [8] describes an approach to securelgfagan

Since the emergence of online social networks (OSNsing location information and associated privacy data @atr
people have sought help from their social contacts. The masg “location objects” that encapsulate user location cate
common method to seek for help on social network siteassociated privacy requirements. Once “location geneérato

I. INTRODUCTION
A. Motivation



(e.g. user device) creates an “location object”, it sends & ployed as a location-based cell phone application; thedclou
middle server which forwards the object to “location reeii’ coordinates client requests and efficiently finds candsiateo
based on different kinds of rules. LocServ [9] is a middleare able/willing to offer help, even possibly physical help
ware service that lies between location-based applicaton real-world life-threatening emergencies.
location tracking servers. It offers a general framework of From a technical standpoint our primary contribution is to
components that allows users to apply general policies show how partially homomorphic encryption can be adapted to
control release of their location information. Howevere tha distributed setting so as to guarantee cryptographicrisgcu
practicality of such systems have yet to be determined, @s thithout sacrificing efficiency gains. The resulting protbco
trustworthiness of middleware is hard to guarantee. finds near-neighbors in constant-time thus providing effiti

2) Dummies or Anonymityinstead of sending out the exactand private match of help-seekers and help-givers.
location, a client sends multiple different locations te th SamaritanCloud preserves efficiency and privacy while cal-
server with only one of them being true [10]. The drawbackulating near neighbor, by employing different blurringhe
of such schemes is that over the long run the server is ableniques and partially homomorphic encryption.
figure out the client’s location by comparing the intersatti
of uploaded locations. Some other schemes [11], [12] s&para
location information from other identifying informatiomd A. System Model
report anonymous locations to the server. However, guaranSamaritanCloud consists of. servers and it serves
teeing anonymous usage of location-based services requigkents. Each client has a mobile device with enough com-
that the precise location information transmitted by antlie putation power to efficiently encrypt-decrypt using adaditi
cannot be easily used to re-identify the subject. homomorphic functions. Clients are assumed to share a com-

3) Location hiding: Clients define sensitive locations wheranon key with which they exchange private messages that
they do not want to be tracked, and the location-based applire denied to the cloud. Servers are inter-connected with
cation stops tracking when the user gets close to those arsager-fast network connectors. SamaritanCloud is effidien
[13]. simple arithmatic computations (viz. addition, subtrac}iand

4) Location perturbation:These schemes “blur” the exactalso broadcasting to clients. On the other hand, a client can
location information to a spatial region [14]-[17] or send efficiently talk to SamaritanCloud or a small group of other
proxy landmark instead [18] and hence, are not suitable foients. SamaritanCloud is used to authenticate clients an
applications that require accurate locations. to initiate distributed near-neighbor computation. Onbe t
The scheme presented in this paper udémt-specific per- querying client knows the set of near neighbors, it sends
sonalizedandglobal blurs that are random elements in a finit¢the help request to them. Each client is associated with
field to guarantee perfect accuracy and cryptographic ggruran username, password and profile. A client uses username
more on this in the sections to follow. and password for authentication. A profile is a collection of
To complete our review of related work we briefly surveyariables and their respective values (or range of values).
the literature on homomorphic encryption. Homomorphic eMariables are drawn from a metric space and for the purposes
cryption is a type of encryption scheme that provides abiliof this paper are assumed to take real numbers. To obtain bet-
to perform arithmatic operation on cipher text and get ther scalability, SamaritanCloud delegates all computatiy
encrypted result which is equivalent to the encryption afxtensive operations, viz. distance computations, etiornyp
the result by applying the same arithmatic operation on tlecryption process, to the clients.
plaintext. The encryption systems of Goldwasser and Micali
[19], and El Gamal [20] are known to support either additioﬁ' Attack Model
or multiplication among encrypted cypher texts, but nothbot There areu adversaries (unknown to SamaritanCloud)
operation at the same time. In a breakthrough work, Gentpyesent in the network. These adversaries form a group and
[21] constructed a fully homomorphic encryption scheml@unch attacks to retrieve profile information of other good
(FHE) capable of an arbitrary number of addition and muglients. Adversaries follow SamaritanCloud protocol taigv
tiplication on encrypted data. Fully homorphic encryptiofietection and also exchange informations among themeselve
schemes are very powerful as it computes any function on tnlaunch an attack. The adversaries try to extract partial o
encrypted ciphertext. But, Lauter et al [22] showed thalyful full profile information from blurred profile data of a client
homomorphic encryption schemes till date are very resourge
consuming and are impractical to be used for most of prdctica
purposes.

Il. SYSTEM DESIGN

Definitions and Preliminaries

We present some definitions we will need later on
1) Distance: The distance between two profilas, ps,
C. Our Contributions represented ag-dimensional vectors, is defined as:

To overcome the above mentioned drawbacks of LBS and (1/2)
OSNs, we propose SamaritanCloud, a location-based cyber- ’
physical network allowing people to reach friends or steasg wherep;; andp;, are the values of thé" dimension ofp,
in desired locations for help. SamaritanCloud is easily dandps, respectively.

Ip1 — p2ll = (Zi(lpa — pi2])?)



2) Near-neighbor:Given a specific client?, a set of clients 1 Procedure MATCH_PUB_SUB(¢, (5, (7))
C, and a distance valuéist, ¢; € C,c? ¢ C, is said to be 2 Se 4= ¢
a near-neighbor of if the distance betweep? andp; is at 3  forall ¢; € C'do .
mostdist, i.e. if 4 &k(pi) fetch_encrypted_prolee(ci)

Ip? — pi|| < dist, 5: > Encrypted profile of;
. R . 6 if ggk(Pz‘)(T) = gfk(pq)(T) then

wherep? andp; are profile data of? andc;, respectively. 7: S, S.U¢;

3) Blur: Blur is a random number which is used to blur g. end if
data. e.g. data is blurred with a random blur as follows, o end for

ﬁ;t (p) = (p £ 1) modP, 10: Send2Clien{¢?, S.) > SendsS. to c?
11: return

wherer € [0, P) and P is a large public prime number.

4) Profile: Profile ;) of a client ¢;, is defined as a
collection of informations ot;, viz, x and y coordinates of its Fig. 1. Procedure invoked by the cloud in publish/subscabeeme after
current location, maximum amount of Weigj:)tcan help with, receiving a request to determine set of clients whose profilehm@quested
area where; can help etc. A profile of a client is represented™fle:
as ad-dimensional vector (iral-dimensional Euclideqn spacg). 1. procedure REQUEST PUB_SUB(p?)

5) Tolerance-value:Tolerence value is the maximum dis-
tance between profile of a clieat and profile requested by 3:
¢4, within which ¢; receives help request frond. ’

12: end procedure

r < fetch_rand_cloud()
> Fetches random number from cloud to encrypt clients

data.
TABLE | 4 SendZCIoudr, fgk(pq)(r))
TABLE OF NOTATION 5: > Sends arguments to cloud
Notation Explanation 6 retumn
o 7R Client 7: end procedure
c4 A client which needs help ) ) o ) )
C Set of clients Fig. 2. Procedure invoked by a client in publish/subscritfeeme to request
i Profile data ofc;, represented ag-dimensional vector for help
Pij '™ dimension ofp;
p4 Profile data requested hy, represented as
d-dimensional vector D. A confidential publish/subscribe scheme and its issues
p? i dimension ofp? . . .
Br(p) Profile datap blurred withr In the content-based publish/subscribe model the inwem@st
Ez(p) Encryption of datep using keyk subscribers are stored in a forwarding server which matches
£, (p) Encryption of data using keyk;, using additive and routes relevant notifications to interested subsif23].
homomorphic encryption p d in Ei 1 2 d3 the basi imiti h
6,};(0) Decryption of cipherc using keyk . roceaures In FIgs. 1, Z an are the pasic primitives snown
sk Secret key only known to clients in [23].
iT it entry of a tupleT’ Observe that, in the above scheme, the server can match

profiles across clients and across time so long as the random
The different kinds of communications between the Clouﬁhmber used by the querying client is same as the random

and a client are classified as follows, number used by the server. But, for the security of the scheme
password to authenticate itself to SamaritanCloud. this change incurs large overhead on the system. The extra

ProfileUpdate: The client-side application periqdicallyoverhead is explained with the following scenario.
sends update messages to the cloud to update profile dataa cjient ¢ wants to send a request to the cloud. So, it invokes

HelpRequestWhen a client looks for help, he/she sends Brocedure REQUESPUB SUB, Fig.2. But, after fetches
request to the cloud, which initiates distributed neaghbkor the random number_(lineE Fig.2), cloud updates it. When

co'r\rl1p)tt.;t.ati?n.- o th i lient find ¢ ends the pair of random number and the encrypted value
otification. ©nce the requesting client Tinds a se 0?Iine4 Fig.2) back to the cloud, it is rejected as the random

clients swtat_)le for servicing a request, it forwards thguest number in cloud is changed. To avoid such scenarios cloud has
encrypted with shared keyk) to the set.

Follow-up: SamaritanCloud provides a simple client evalu-
ation scheme by sending follow-up notification to the candi-1: procedure PROFILEUPDATE_PUB_SUB(p;)
dates who committed to offer help. We leave a more complete:  Send2Cloud¢y (p;)) > Sends argument to cloud
evaluation/reputation scheme as future work. 3 > k is the encryption key, shared among all clients
Our scheme builds on prior work on confidential pub-4: return
lish/subscribe schemes. In the subsections to follow wefligri  5: end procedure

summarize these techniques.
Fig. 3. Procedure invoked by a client in publish/subscritieeme to update

OTexts after right arrowheads)in pseudocodes are comments its profile to cloud



to keep extra bookkeeping to make sure that, all the requ
processes are completed before the random number is chat
For a large system this incurs large overhead.

Also, the request process in publish/subscribe is veryureso
consuming as clients have to perform two encryptions bef
sending a request to the cloud.

More importantly, the above scheme, without fully-homaecpt
crypto-system only computes equality match and not theeelc
ness of two attributes. But, Lauter et al [22], have shown tl

fully-homorphic encryptions are highly resource consugni p.or B
and are not practical in real life scenario. ' [j,.’<p,-), pi'b""
Therefore, the above publish/subscribe algorithm is igadee &y (1)

for our purposes.

E. SamaritanCloud

In this section we propose the protocol of SamaritanCloi T T ]
Then we prove the correctness of our protocol. At the end
discuss about the security offered by SamaritanCloud. Cj' Ci C;
Before delving into technical details, we first present sh
intuitive description of our protocol. Fig. 4. ProfileUpdate process in SamaritanCloud system
At the startup time, SamaritanCloud generates client fipec
blur for each client and a global blur, which are kept sec
from clients.
When profile of a client changes, it blurs the chang
profile_with a random personalized blur ar_1d sends it Store(c;, ©*r;),Ve; € C
SamaritanCloud along with encrypted blur. Since, the @0 ¢, . stores client-specific blur with corresponding client
data is blurred with a random blur and the random b/ -. return
is encrypted, no profile information leaks from the blurre.g. ong procedure
profile. SamaritanCloud reblurs the already blurred profith
client-specific and global blur of the client and distrilmite Fig. 5. Procedure invoked at start of SamaritanCloud system
amongk least loaded clients.
a \F/)\g;:g naaliczlfg tgrlingnzegpé nrgi/str;e Sbg:;z:ts ag\gﬂjgéowﬁimtaﬁentsa The data transfer is thus composed of two subphases
turn reblurs the already blurred profile and broadcasts Ito ar follows, . . . .
) . . . a) Update: In Update phase, Fig.6¢; blurs its profile
clients. Along with these reblurred profiles, Samaritan@lo datap. by blurring each dimension seperately as follows
also broadcasts addition of client specific and encrypted pe Pi DY 9 P y '
sonalized blurs. With these informations, a client compute B, (pji) = (pji —m:) mod P,Vj € [1,d] Q)
the set of ne_ar—naghpqrs of requesting client. SamarltanC B (i) = (B (915), By (D2:)s s B (pai))
uses both client specific blur and global blur, because witho ) _ ) _ )
these blurs under certain attack scenarios, an attacker WAWre.p;i is j™ dimension ofp;, andr; is the personalized

deterministically compute profile information of a requegt blur used byc;. _ _ -
client. c; also encrypts its personalized blur, using the additive-

) MO )
1) Protocol: SamaritanCloud uses additive homomorph\i/([?g:nomorph'C encryption &g, (r;), and sends the pair

1: procedure INITIALIZE

2 79 < get_rand() > Global blur
3 Store(r9)

4 ¢r; « get_rand(),VYe; € C > Client-specific blur
5
6

h (1) B—(n:
crypto system to compute distance between profiles of s (): 5, (Pi)) to the cloud.

clients. It works in 3 phases as follows,

Initialization: In this phase, Fig.5, SamaritanCloud assign
client-specific blur to all the clients. A client-specifiaubFsr;
is assigned to a client;. SamaritanCloud also generates
global blurr9. Both client-specific and global blur are kept pﬁ-’“” = (B, (pji) =7 +77) mod P,Vj € [1,d]
secret from clients. These are used by SamaritanCloud to blu = (pji — i = r;+719) mod P 2)
client prOfIIeS' rblur rblur rblur rblur

ProfileUpdate: This phase, Fig.4, is invoked by a client Pt = P )
when its profile data, is changed. SamaritanCloud distributes reblurred profile values caegbu
In this phase¢; updates SamaritanCloud with blurred profilen equation (2) along with the address @f amongk least-
data. SamaritanCloud broadcasts blurggd among set of loaded clients and saves the encrypted Bltir;).

b) Redistribution: SamaritanCloud invokes this phase,
Fig.7, when it receives an update request from a clignt
El(",slient—spec:ific blursr;, and the global blur9 are used to blur
glready blurred profile of;. We call this process reblurring.



procedure UPDATE(p;)
r < get_rand)() > Personalized random blur

(plz7 -5 Djis ap(h) < Di

. procedure REQUEST(p?)
r? < get_rand()
> Randomly generates personalized blur

1 1

2: 2

3 3

4 B7(psi) < (pji —r) mod P,Vj € [1,d] a (ply s Pl pY)

5 B (i) < By (pri)s -, By (0gi)s - By (Pai)) 5. B (p?) < (pj +79) mod P,Vj € [1,d]

6 o (r) < (r-sk) mod P 6. Ba(p) < (BLWY), s B (p]), s B (p)))

7 Send2Cloud (&% (r), B, (pi)) 7 ¢h (r?) « (r?- sk) mod P

8: > Sends the pair to SamaritanCloud g ¢h (tol) « (tol - sk) mod P

9 return 9: > Encrypts tolerance value
10: end procedure 10:  Send2Cloud¢?h, (r7), &5, (tol), Bl (p?))
Fig. 6.  Procedure invoked by a client to update its blurredfiler to 1; return > Sends arguments to SamaritanCloud

SamaritanCloud
13: end procedure

HelpRequest: When a client %) is in need of help, it Fig. 8. Procedure invoked by a requesting client to computeokeear-
invokes HelpRequest phase Fig.10. In this phagesends "'9MPors
blurred requested-profile along with a tolerance value to
SamaritanCloud. On reception of a request, SamarltanCIoiJsd

and 2" entries oqu are the address of? and c;,
broadcasts the blurred requested-profile to all clients apéjs K

ectivel
delegates the near-neighbor computation to clients. @lien P y
compute distance between the requested profile and saved 1TJ‘? =t
blurred-profiles and send back the result directly:toThus, 2 _ ¢
J

this phase is composed of 3 subphases as follows,
c) RequestThe requesting client? blurs the requested- 3" entry is built by reblurring the blurred profile ef, with
profile p¢ with a randomly generated personalized bluf){ the clients-specific blur assigned ¢ and the global blur, as

Fig.8, by blurring each dimension @f seperately. follows.
S (pf) = (pf +77) mod P,Vi € [1,d] ®3) ST = (Bl (p]) + r?+r9) mod P,Vj € [1,1]
(00 = (B (0]), B2 (02), .., B (P3)) = (p?+ 79 +r7+19) mod P, (4)

c? encrypts its personallzed blur and tolerance vate# @nd whereL‘T‘; is I*" dimension of3"¢ entry oqu cspd js client
sends the tuplé”, (r?), & (tol), 5,7 (p?)) to SamaritanCloud. specific blur ofc? andr9 is the global blur.

d) Redistribution: SamaritanCloud invokes this phase osamaritanCloud adds encrypted personalized random blur of
reception of a request fromt. c? andc; to build 4*" entry of the tuple. This is where we use

N additive homorphic nature of encryption scheme.
: procedure REDIST_UP((£2,.(7:), By (pi)))

ey < fetch_cs_blur(c;) T = (€l (r) + €l (r;))  mod P (5)
> Fetches client-specific blur far;
r9 < fetch_global_blur() > Fetches global blur

1
2

j_ 5" entry is built by adding the client specific blur of andc;.
5 (B (pji), s By (Pji), s By (Pai)) < By (i)

6:

7

8

9

Since, both the client-specific blurs are not known to cient
the individual value of eithet*r? or “*r; is not leaked by this

rblur — cs g .
Pji < (B (pi) —“ri +19) mod P,Vj € [1,d] entry.

bl bl bl bl
pr ur g (prL ur7 7pjt ur7 7prz ur)

Cy + get_random_clients(t)
> Randomly selectes set ofclients 6t entry is the encrypted tolerance value sentdy This

5qu = (“r?4%r;) mod P (6)

10:  Send2Clients;, (c;, pi®r) tolerance value is used in the near-neighbor computation.

11: > Sends pair of arguments (G, 6 h

12:  Store(c;, & (1)) T} = &, (tol) @)

13: > Stores encrypted personalized blur

14 return e) Distance-Computationin this phase, Fig.11, clients

15: end procedure compute distance between the blurred requested-profile and

Fig. 7. Procedure invoked by SamaritanCloud to redistribeitéurred profile saved blurred profile data of Other.dle.nts' .
of ¢; Let us assume that after redistribution phase, a clignt

receives a sef. Let us also assume thathas blurred profile
Without loss of generality, let us assume that a cligritas  informations of¢ clients, ¢;,Vj € [1,¢]. Let T]? € SI be the
blurred profile information oft other clientsc;,Vj € [1,¢]. tuple corresponding te, andpgbl“’" be the reblurred profile
SamaritanCloud builds a sef ) of ¢ 6-tuples (') and sends of c;.
it to ¢;, Fig.9. Since, ¢; has the shared secret, it decrypts the encrypted



1: procedure REDIST REQ((" (1), &N, (tol), B (p?)))
2 for all ¢; € C do
3 r9 « fetch_global_blur()
4: > Fetches global blur
5: eSrd « fetch_cs_blur(c?)
6: > Fetches client-specific blur far;
7 PP — (B (p1) + i +7r9) mod P,Vj € [1,d]
8 prblur — (qulur7 .“7p§blur7 .“7p2blur)
9 C; « fetch_clients_in(c;)
10: > Set of clients whose blurred profile is stored &y
11: ST+ ¢
12: for all ¢; € C; do
13: T
14: 2ij1 —cj
15: BTJQ — prblur
16: &M (ry) < fetch_encrypted_blur(c;)
17: > Encrypted personalized blur of c |p™ i Set of clients matched
18: AT = (&l (r1) + €l () mod P . with requested profile
19: ®r; «— fetch_cs_blur(c;)
20: > Client specific blur ofc;
21: ST < (“°r% + “*r;) mod P
. 6774 h
22 T?j <_<—(1§§1,;q(7t;)%1’ STﬁ 4qu’ STJ{I’ GTJQ) Fig. 10. Request process in SamaritanCloud system
24: Slq +~— S; U T]g
25: end for ; B it i i
. Send2Clientc:, ) > Sendss? to client I?(;T]C?5§Sk( ) is an additive homorphic encryption, from equa
27: return
28:  end for T = (€l (r) + €l (r;))  mod P
29: end procedure =& (r947;) mod P

Fig. 9. Procedure invoked by SamaritanCloud to delegatenesarcompu- So,
tation to clients

5?1@(41}9) = 80 (el (" + 1) mod P)

) — (4 )
blur and tolerance value [ﬁ;. ¢; sends clients whose reblurred (r?+7;) mod P (10)
profile satisfies the following condition ta. So, combining equations (4), (6), (9), and (10),
d 3q rblur h (4mq 5 mq
o . . . T —phovm — 50 (CTL) —=° T
3 rblur h (A 5 i \2\1/2 h (6 ( ij J sk\ Tij ij
T — prbter — st (A7) 5 T < ol (°T7), (8
(;( lj p] sk( l]) lj) ) sk( lj) ( ) _ ((pg+rq+csrq+r9) mod P—
. CSp g9 _
whered” () decrypts given cipher data using kej. (pig =75 rj + %) CSmOd C}:
2) Correctness:After stating the newly proposed scheme, (rf+r;) mod P— (“r?+“r;) mod P)
here we prove that, the scheme calculates distance cgrrectl = (p! —p;;) mod P

between requested profile dat& and blurred profile of a

candidate client;. The fact that blurring according to ourThus’ according to the definition,

proposed scheme preserves distance is captured by the fol- d . . o 5 g 21172
lowing lemma. (Z( T =5 = 04,(°T5) = T5)°%)
i=1
Lemma 1. Given,TJfl is the tuple corresponding to; and d
piter is the blurred profile of; = (0! = pi))»)"?) mod P
d =1
é rblur - 1 —p,
O CTE — ppr — 85 (AT) =5 T2 = p7 — py| Ip*=psl
i=1 |

Proof: As described in ProfileUpdate protocol, blurred 3) Security: A client ¢; has access to reblurred profile data
profile stored on SamaritanCloud is calculated using egmatiof set of othert clientsc;,j € [1,t]. The cliente; does not
(2). know profile data of any ot; clients, as all the profile data

rblur

pi " = pij — 71y —“rj+7r9) mod P (9) are blurred with random blurs unknown tg. Attacks on



procedure DISTANCE_COMP(S)
S.=¢ > Set of clients matching requested profil
forall T € S do
q . 3 4 [
(¢9, ¢, 3T AT 5T, OT?) = T

;: both the protocol and the shared secret kiy(
3

4

5: pjr-bl“’ « fetch_blur_profile(c;)

6

7

8

9

?According to our proposed system, a client has access to
reblurred profile oft other clients. Since, for internal attacks,
attackers behave as clients, an adversaryhas access to
blurred profile data ot other clientse;,i € [1,t]. Some of

> Blurred profile ofc; theset clients are adversaries. There are two types of internal

[p? = pjll
(Zle(STJ‘?—pgb““’—6Qk(47’39)—5TJ7)2)1/2 attacks .as follows,

. > Distance between profiles of andc; . Act|ve.attack: An adve'rsary. sends a help request to
10: if [p? —pill < 6%.(°T7) then SamaritanCloud. The intention of the help request is
11: ¢h (¢;) « (c; - sk) modP to assist oth_er_ advesaries to compute randqm blurs gnd
12: S.« S, U f?k(cj) _thereby _aSS|st|ng them_ to successfully retrieve profile
13: end if information of a good client. We know that, an adversary
14: Send2Clientc?, S,) a; has profile information of a client; blurred with
15: > Sends the set of near-neighborscto personalized blur, client-specific blur of and the global
16: end for blur, equation (2).

17: return When SamaritanCloud receives the fake help request, it
18: end procedure broadcasts following three informations to all clients,

— reblurred requested-profile data of the querying ad-

Fig. 11. Procedure invoked by clients to compute near-neighbrequested versary 9) to all other clients. Thus an adversary

profile (a;) receives requested profile blurred with personal-
ized blur, client-specific blur of the querying adver-
SamaritanCloud are averted by the use of different types of sary and the global blur?, equation (4). Assuming
blurs. Here we state the effect of different blurs on the sgcu a’ informs a; about personalized blur{), and re-
of the overall SamaritanCloud system, quested profilex?), a; computeg“*r?+r9) mod P
a) Personalized blur: Personalized blur is a random successfully. Profile data of a clientis blurred with
number used by every client to blur their original profile its own client-specific ;) and the global blur. So,
information. Since, this blur is randomly selected by diéen a; can successfully compute blurred profifg; —r;)
SamaritanCloud cannot gain knowledge from blurred profile mod P of a client ¢;, if “r? = “r;, equation
about the profile data of a client. (2). Since, all the blurs are selected randomly from
b) Client-specific and global blurBoth client-specific [0, P),
and global blurs are randomly generated by SamaritanCloud.
Th_ese blurs are used by the cloud to reblur profile of a client. Prla; knows (p;; —r;) mod P] = l
Clients do not have access to these blurs. Global blur along P

with client-specific blur are used to protect profile datarfro
distributed attacks by a group of adversaries.
We measure security of the proposed protocol with follow-
ing metric,
Probability of Information Leak per Comparison (PILC):
PILC is defined as the probability of an advesary succegsfull
computing the profile data of a client by single comparison
between reblurred profile of the client and that of an adwgrsa
Now, we state different kinds of possible attacks as follows
External attack: In external attack, attackers know pro- |, successfully.
tocol of SamaritanCloud, but do not know the shared secret us, 1
key(sk). PILC = B (11)
Every profile data is blurred with above mentioned blurs.
Since, blurs are random numbers, it is impossible for eslern « Passive AttackAn adversary ;) can launch a passive
attackers, without the knowledge of blurs used, to extract attack if it has access to reblurred profile of another ad-
profile information from the blurred profile data. Also, clte versarya;, equation (2). Let us assume thatknows the
send personalized blurs to SamaritanCloud encrypted with a reblurred profile of a client;. Since, all adversaries share
shared key. The shared key is known only to clients. Thus, informations,a; knows the blurred profile of;. If client-
blurred profile together with encrypted blurs avert externa  specific blur ofa; is same as that aof;, a; can compute
attacks. blurred profile ofc; ((pj; — r;) mod P), equation (2).
Internal attack: For internal attack, the assumptions are  Since, reblurred profile of a client is randomly distributed
much more strict than external attack. Here, attackers know amongt clients with least number of reblurred profile of

— the addition of client-specific blur of? and ¢; as
in equation (6). Since, both the blurs are random
numbers unknown to clients, this addition does not
reveal individual value of each blur.

— encrypted value of the addition of the personalized
blur of a? and¢; as shown in equation (5),; knows
the personlaized blur of?, as all the advesaries
share information. Thusg; computesr; mod P



other clients, required accuracy. As our application periodically update
location to the server, it saves battery life by enabling the

Prla; has reblurred profile of a;] standard location service as per the interval defined bytslie

=1-(1- u- 1)t With significant-change location service, a location updat
n triggered by the OS only if a device moves from one cell tower
~ (u—1) - loglogn [Since, t = loglogn [24]] to another, thus providing only coarse location updaterdise
n - logk ’ ’ logk an accuracy-power tradeoff — GPS location update is acurat
Since, personalized and client-specific blurs are randoniyt power inefficient while significant-change locationvses
selected from0, P), is less accurate and low on power usage. To test the worst

possible impact of our application on battery life, we rue th

1
Prla; knows client specific blur of ¢;] = 5 applications always in foreground with intensive updatecé
1 per minute) via both 3G and WiFi. In each update, the mobile
Prla; knows personalized blur of ¢;] = 2 application fetches location coordinatést, lon), computes

((lat +7r) mod P, (lon+r) mod P) (P is a prime with 64
(u—1)-loglogn 1 bits, r is randomly chosen between [0, P)), sends the result
7Y (f)2 (12) together with&® (r) to the server. The encryption function

. . , ~used is as follows,
Since, P is chosen to be a large prime number, probability of

a successful attack is small both in active (equation (143) a gly(r) = (r-sk) mod P (13)

passive (equation (12)) internal attacks. where, sk is a 512bit key. The results in Table Il show
1. EXPERIMENTAL EVALUATION that the impact on battery life is acceptable (in real world
deployment the application would run in background with

A. Implementation . .
_ _ _ _ infrequent location updates).
The implementation of SamaritanCloud includes two parts

— client side application and the cloud. We implemented the TABLE Il
client side application with a prototype mobile applicatio IMPACT OF SAMARITAN CLOUD IOSAPPLICATION ON BATTERY LIFE.
running on iOS 5.0, allowing users to, standard standard significant-change
« log in or register with unique username and password. ”e;"é’;"rk (?ghs) (VX'ZFA/%er:?r']Z“) 'Oiegm;;mg:e
« choose time interval to update profile; by setting a fixed WiFi ‘ 11h 14mins  16h 14mins 16h
update time interval, exact profile change time is not
exposed to the cloud. 1) Key distrubution: Each client-side application is pro-
« input request location (either latitude and longitude eooyided with a long term 1024bit secret keyk). This key is
dinates or zipcode) and request content. used to encrypt the secret key, equation (13). The shared
« get notification when the client is close to a requestegkcret keysk, is changed every one hour. At the start of each
location; respond with willingness to offer help. hour, SamaritanCloud randomly selects a client. The ssdect
« get notification if anyone offers help to the client'sient, randomly generates the shared secret key, enciypts
request. with [k as follows, and sends it to SamaritanCloud
« get follow-up questionnaire of (1) “did you offer the help
that you committed to?” if the client was a candidate, (2) &k (sk) = (sk - lk) mod P
‘was the request resolved?” if the client was the requestefamaritanCloud broadcasts the encrypted shared secat, to
We implemented the server using the Python Twisted libramlients.
The major concerns of SamaritanCloud performance aretclie
application battery consumption and server scalabilitye

So,

PILC =
n - logk

. Server scalability

examine those two concerns with experimental results. For server side performance we are primarily interested in
] o understanding the rate gBqueststhat a single server can
B. Mobile application handle, as this serves as the dominating factor controllieg

We first examine SamaritanCloud on mobile devices. Oaumber of online users that the server can support.
application registers itself as a background VoIP servide ProfileUpdate phase, a client sends its blurred profile
allowing it to maintain a persistent connection with thand SamaritanCloud distributes the blurred profile among
server, periodically fetch location information, even Ket ¢ clients having least number of profiles of other clients.
application is running in background. Our applicationiméit Since, SamaritanCloud can distribute in parallel, theinuat
Core Location Frameworko get physical location. Location of ProfileUpdate is O(1).
coordinates can be obtained through standard location der-HelpRequest phase, the requesting client sends blurred
vice, and significant-change location service. With stathdarequested profile along with encrypted tolerance value ¢o th
location service, location data is gathered with eithed calloud. SamaritanCloud broadcasts these informations gmon
triangulation, Wi-Fi hotspots or GPS satellites, depegdin all available clients. Clients compute the distance betwee



requested profile and other stored profile data. Broadcasicryption. To hinder external and internal security &ac
to clients takeO(1) time. Time taken to compute distanceSamaritanCloud uses randomly generated blurs. We have
between a pair i$)(d), because a profile has dimensions. implemented a SamaritanCloud mobile application for iOS

Since, each client hdsnumber of profile data of other clients,5.0.

The application fetches user’s location with the hdip o

it takesO(d - k) time for a client to determine set of near-one of cell triangulation, Wi-Fi hotspot or GPS. Because of

neighbors. Since, blurred profile data of a client is distiélol the
amongt clients having least number of profile data of othethe

clients, k = l"lg(f;’f” [24].

limited battery-life and processing power of smartgsn
mobile application allows users to manually select the

frequency of location update and the level of security that

For experimental purpose we consider plain-text mode, &hehey desire. Our SamaritanCloud system, opens up an gntirel

ProfileUpdate | HelpRequest
Togl
o(1) O(d- fogean)
TABLE Il
RUNTIME OF DIFFERENT PHASES OFSAMARITAN CLOUD [1]
[2]

no profile information is blurred and all communications argg
un-encrypted. We compared latency of a help request in-plairf]
text mode with that of the proposed protocol. [2]
Latency, Fig.12, is measured starting from the moment thE]
requester sends out blurred attributes to the time he geig
response from the server. We ran our server implementati%
on a machine with 2.5 GHz Intel Core i5 and 4GB memory.

To minimize the affect of Internet speed, we simulated ¢ien [9]
on another machine on the same LAN. The main takeawa[Xg]

1 T T T

P n=10k, d=10 —»—
n=20k, d=10 —&—
n=30k, d=10 —e—
n=10k, d=100
n=20k, d=100
n=30k, d=100

(11]

0.8

(12]

o
=
T

Latency (s)
o
S
T

(23]

o
)
T

(14]

[15]

Fig. 12. Matching time measurement: plain-text(red) vs. gutey mes-
sage(green)

[16]
are that using plain-text messages has the benefit of fast
qguery processing but leaks client privacy to the server;-co
munication with encrypted messages preserves clientqyiva
while the query processing is expensive. When using plain-té!8]

messages, query latency nearly remains the same when reques

rate increases; server scalability depends on the numidgeof [19]
TCP connections (open files) allowed on the machine. In the
normal encrypted mode, for n=20k query processing is not

new approach to enable people to benefit from location-based
social networks.
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