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Abstract

A graphG is said to bed-distinguishableif there is ad-coloring of G which no
non-trivial automorphism preserves. That is,9χ : G!f1; : : : ;dg;8φ 2 Aut(G)nfidg;9v;χ(v) 6= χ(φ(v)):
It was conjectured that ifjGj> jAut(G)j and the Aut(G) action onG has no singleton
orbits, thenG is 2-distinguishable. We give an example where this fails. We partially
repair the conjecture by showing that when “enough motion occurs,” the distinguishing
number does indeed decay. Specifically, definingm(G) = min

φ2Aut(G)
φ 6=id

jfv2G : φ(v) 6= vg j;
we show that whenm(G)> 2log2 jAut(G)j, G is indeed 2-distinguishable. In general,
we show that ifm(G) lnd > 2lnjAut(G)j thenG is d-distinguishable.

There has been considerable interest in the computational complexity of thed-
distinguishability problem. Specifically, there has been much musing on the computa-
tional complexity of the languagef(G;d) : G is d-distinguishableg :
We show that this language lies in AM� ΣP

2 \ΠP
2 . We use this to conclude that if

DIST is CONP-hard then the polynomial hierarchy collapses.
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1 Introduction

An undirected graphG is d-distinguishableif there is ad coloring ofG which no non-trivial
automorphism preserves. Formally, we write9χ : G!f1; : : : ;dg;8φ 2 Aut(G)nfidg;9v;χ(v) 6= χ(φ(v));
where Aut(G) denotes the collection of automorphisms of the graphG andid denotes the
identity map. One says that such a coloring “destroys the symmetries” ofG. Every graph
G is thenjGj-distinguishable and a graph is 1-distinguishable exactly when it isrigid, i.e.jAut(G)j= 1. The smallestd for whichG is d-distinguishable is dubbed thedistinguishing
numberof G, denotedd(G). An instantiation of this machinery, mentioned in [1], is the
problem of coloring keys on a (circular) key chain so that one can uniquely identify each
key. (In this case, one is interested in the distinguishing number of the dihedral groups.)

A paper of Albertson and Collins [1] gracefully develops the theory of distinguishability
in several directions. They conjectured that ifjGj> jAut(G)j and the action of Aut(G) on
G has no singleton orbits, thend(G) = 2. Though there are graphs for which this fails1, the
idea thatfew colors suffice if every automorphism moves many verticescan be substantiated.
Specifically, for an automorphismφ 2 Aut(G), define themotionof φ asm(φ) = jfv2 G : φ(v) 6= vgj:
Themotionof a graphG is then m(G) = min

φ2Aut(G)
φ6=id

m(φ):
We show that whenm(G)> 2log2 jAut(G)j, G is 2-distinguishable. More generally, whenm(G) lnd > 2lnjAut(G)j, G is d-distinguishable.

Another natural question is that of the computational complexity of the graph distin-
guishability problem (see the discussion in [1]). Specifically, one would like to place the
language

DIST = f(G;d) : d(G)� dg ;
as low in the natural hierarchy of complexity classes as possible. There is noobvious NP
algorithm for this language; the only immediate conclusion is that DIST2 ΣP

2. We show
that DIST 2 AM � ΠP

2 \ΣP
2.

2 Graphs with Large Motion can be Distinguished with
Few Colors

We now return to the first theorem advertised in the introduction, namely

Theorem 1. If m(G)> 2log2 jAut(G)j then G is 2-distinguishable.

1Select a large rigid graphH and letGH be the graph formed by the disjoint union ofK3 and 3 copies of
H. Then Aut(GH) = S3�S3, GH has no one cycles,d(GH) = 3, andjGH j can be arbitrarily large.
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Anticipating the proof, we define thecycle normas follows: decomposing an automor-
phismφ into a product of disjoint cycles

φ = (v11v12: : :v1l1)(v21: : :v2l2) : : :(vk1 : : :vklk);
thecycle normof φ is the quantity c(φ) = k

∑
i=1

(l i �1):
The cycle norm is relevant to graph distinguishability in the following sense. Suppose
that a graphG is randomly two-colored by independently assigning each vertex a color
uniformly from fred;blackg. Then the probability that every cycle of an automorphismφ
is monochromatic is exactly 2�c(φ). When this event occurs, the automorphismφ preserves
the coloring so chosen.

For convenience, the cycle norm of a graphG is definedc(G) = min
φ2Aut(G)

φ6=id

c(φ):
Notice that for any automorphism,c(φ)� m(φ)=2. Of course, thenc(G)� m(G)=2. With
this observation, Theorem 1 above is an easy consequence of the following theorem:

Theorem 2. If c(G) lnd > ln jAut(G)j then G is d-distinguishable.

Proof. We study the behavior of a randomd-coloring of G, the probability distribution
given by selecting the color of each vertex independently and uniformly in the setf1; : : : ;dg.
Fix an automorphismφ 6= id and consider the bad event that the random coloringχ is in
fact preserved byφ: an easy calculation shows that

Pr
χ
[8v;χ(v) = χ(φ(v))] = (1

d
)c(φ) � (1

d
)c(G):

Collecting together these bad events, we have

Pr
χ
[9φ 6= id;8v;χ(v) = χ(φ(v))]� jAut(G)j(1

d
)c(G):

The hypothesis of the theorem is exactly that this quantity is less than one, in whichcase
there exists a coloringχ for which8φ 6= id;9v;χ(v) 6= χ(φ(v)), as desired.

For a delightful survey of the probabilistic method, of which the above is an example,
see [2].

It is interesting to notice that the above theorem is actually tight in the case of the
dihedral groupsD3;D4; : : : mentioned in the introduction (and in [1]). (The answers ared(D3) = 3;d(D4) = 4;d(D5) = 2;d(D6) = 2; : : : .)
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3 DIST 2 AM

Though we will discuss the definition of AM in some detail, for a general introduction to
complexity theory and detailed discussions of the polynomial time hierarchy and AM,we
refer the reader to [9] and [4, 5].

The polynomial time hierarchy is the “polynomial time bounded variant” of the Kleene
hierarchy of recursive function theory. One definesΣP

0 = ΠP
0 = P, and, in general,L 2 ΣP

k
if there is a polynomialp andD 2 ΠP

k�1 for which

L = fw : 9π; jπj � p(jwj);hw;πi 2 Dg :
Finally, define the classΠP

k to consist of all languagesL for which L 2 ΣP
k . Above, the

notationh�; �i refers to some canonical pairing function. With these definitions, NP= ΣP
1,

CONP=ΠP
1, and the classesΣP

k andΠP
k form a neat hierarchy containing P and lying inside

PSPACE.
Considering the quantifier alternation in the definition of the distinguishability problem,

it is not surprising that DIST 2 ΣP
2, as an easy argument shows. Our goal here is to show

that DIST 2 AM � ΣP
2 \ΠP

2.
AM is the class of languages for which there areArthur–Merlingames (see [3]). Intu-

itively, an Arthur–Merlin game for a languageL is played by two players,Arthur, equipped
with a random coin and only modest (polynomial-time bounded) computing power and
Merlin, who is computationally unbounded. Both Arthur and Merlin are supplied with a
word x, and the goal of the game is for Arthur to determine ifx 2 L. Arthur, based on
his coin flips, may ask Merlin a constant number of questions, and, having heard Mer-
lin’s answers, must then decide toacceptthatx2 L or reject this statement. Of course, a
natural question for Arthur to ask is, “x 2 L?” Unfortunately, rather than being the trust-
worthy advisor we might hope, Merlin actually has a vested interest in seeingthat Arthur
accept the predicate. An Arthur–Merlin game, then, is a strategy for Arthur to follow in his
questioning of Merlin so that:� Whenx2 L, regardless of Arthur’s coin tosses (which may determine the questions

he asks of Merlin under this strategy), Merlin can answer satisfactorily, convincing
Arthur to accept thatx2 L.� Whenx 62 L, regardless of way in which Merlin answers, the discussion ends with
Arthur rejecting thatx2 L a constant fraction of the time. (The probability distribu-
tion is taken over Arthur’s coin tosses.)

The number of questions which Arthur is allowed to ask may depend on the language, but
not the specific input. Furthermore, the entire conversation must have length polynomial in
the length of the input. In the above model, Arthur’s coin flips arepublic– Merlin can see
them.

Hopefully, it is clear from this vague definition that every language in NP has an(easy)
Arthur-Merlin game. We will show that there is an Arthur-Merlin game forthe language
DIST. First, a formal definition:
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Definition 1. For a function M: f0;1g�!f0;1gp, and random variables X1;X2; : : : ;XR2f0;1gp, let
MX = (M(X1);M(hX1;X2i); : : : ;M(hX1; : : : ;XRi)):

AM consists of those languages L for which there exists a constant R, a polynomial p, and
a polynomial time bounded Turing machine A so that:� x2 L )9M : f0;1g� !f0;1gp(jxj);

PrfXig[A(x;X1; : : : ;XR;MX) accepts] = 1;
where the Xi are independent uniform random variables onf0;1gp.� x 62 L )8M : f0;1g� !f0;1gp(jxj),

PrfXig[A(x;X1; : : : ;XR;MX) accepts]� 1
2
;

where the Xi are independent uniform random variables onf0;1gp.

We start by showing that the language of rigid graphs is in AM. Let

RIGID = fG : jAut(G)j= 1g :
Theorem 3. RIGID 2 AM

Proof. The proof is an easy adaptation of the result of [7, 8] that the language

NGI = f(G1;G2) : G1 6' G2g
is in AM. In the formulation of AM given above, Merlin observes Arthur’s coin tosses.
This scenario is aptly dubbed the “public” coin model. In fact, in the formalization above,
Arthur’s questions to Merlin are exactly his coin tosses (the random variables Xi in the
above definition). Since Arthur is deterministic aside from his coin tossing, any question
he might wish to have answered can be anticipated and duly answered by Merlin.In the
alternative model, involving “private” coin tosses, Arthur’s questions maynot completely
reveal the coins he has tossed so far. It is rather remarkable that the two models are in fact
equivalent [8]. We shall allow ourselves the flexibility of a private coin inour constructions.
Our goal is to show that RIGID 2 AM. Given inputG = ([n];E), consider the following
protocol:

1. Arthur generates a random permutationσ 2 Sn, and sends Merlin the graphGσ =([n];Eσ), where
Eσ = f(σ(u);σ(v)) : (u;v) 2 Eg :

2. Arthur expects Merlin to respond with an element ofSn. Given any other response,
Arthur rejects. Upon receivingτ 2 Sn. Arthur accepts exactly ifτ = σ.
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Notice that whenG is rigid, there is a unique isomorphism betweenG andGσ, so that Mer-
lin does indeed have a strategy which always convinces Arthur to accept. Suppose instead
thatG is non-rigid so thatjAut(G)j > 1. In this case, there are exactlyjAut(G)j isomor-
phisms betweenG andGσ and, furthermore, conditioned on Arthur asking the questionGσ
to Merlin, each of these isomorphisms is equally like to be the one used by Arthur to con-
structGσ. Hence no strategy of Merlin can induce accepting behavior in Arthur for more
than ajAut(G)j�1� 1

2 fraction of Arthur’s coin tosses.

Theorem 4. DIST 2 AM .

Proof. Let (G= ([n];E);k) be the common input, and consider the following protocol:

1. Arthur expects Merlin to send himχ : G ! [k], a k-coloring of G. On any other
message, Arthur rejects.

2. Arthur builds a new graphG0 follows. Starting withG, Arthur adds for every vertex
v of G a fresh(n+χ(v))-clique, calledKv. Each vertexv, aside from maintaining its
old connections insideG is attached to each vertex ofKv. An easy argument shows
that the isomorphisms ofG0 are in one-to-one correspondence with isomorphisms of
G which fix χ. Specifically, ifχ destroyed all of the symmetries ofG, G0 is rigid.
Arthur now uses the protocol described above for RIGID .

It is now easy to check that this protocol satisfies the requirements in the definition of
AM.

Based on constructions like those of [12, 10, 11], one has AM� ΣP
2 \ΠP

2, completing
the claim in the introduction.

One naturally wonders at the relationship of DIST to more familiar classes such as NP
andCONP. In this direction, applying the machinery of [6], we can argue that it is unlikely
that DIST is CONP-hard. Specifically, from [6], we have the following theorem:

Theorem 5. If CONP� AM , then the polynomial hierarchy collapses toΣP
2, specifically

ΣP
k � ΣP

2 for all k.

In our case, were DIST to beCONP-complete,CONP� AM, and we could apply the
above theorem. Complementing, this shows that the language

ROBUST= f(G;k) : 8χ : G! [k];9γ 2 Aut(G)nfidg;γ preservesχg
is unlikely to be NP hard.

4 An Open Problem

An outstanding open question is whether the language DIST is in fact NP-hard.
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ume 11 ofEATCS Monographs on Computer Science. Springer-Verlag, Berlin, 1988.
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