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Abstract

A graph G is said to bed-distinguishablef there is ad-coloring of G which no
non-trivial automorphism preserves. Thatdg,: G — {1,... ,d},

Voe Aut(G)\ {id}, v x(v) # X(@(V))-

It was conjectured that G| > |Aut(G)| and the AutG) action onG has no singleton
orbits, thenG is 2-distinguishable. We give an example where this faile. pAftially
repair the conjecture by showing that when “enough motiais;” the distinguishing
number does indeed decay. Specifically, defining
m(G) = i {veG:qv) #Vi|,
o#id

we show that whem(G) > 2log, |Aut(G)|, G is indeed 2-distinguishable. In general,
we show that ifin(G) Ind > 2In|Aut(G)| thenG is d-distinguishable.

There has been considerable interest in the computati@maplexity of thed-
distinguishability problem. Specifically, there has bearcmmusing on the computa-
tional complexity of the language

{(G,d) : Gisd-distinguishablé.

We show that this language lies in AM =5 NMNY. We use this to conclude that if
DisT is coNP-hard then the polynomial hierarchy collapses.

AMS Classification: Primary: 05C25; Secondary: 68Q15.
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1 Introduction

An undirected grapks is d-distinguishabléf there is ad coloring ofG which no non-trivial
automorphism preserves. Formally, we wee: G — {1,...,d},

Ve Aut(G) \ {id}, v, x(v) # X(®(V)),

where AufG) denotes the collection of automorphisms of the grgpdndid denotes the
identity map. One says that such a coloring “destroys the symmetri€3” Bivery graph
G is then|G|-distinguishable and a graph is 1-distinguishable exactly wherrigiis, i.e.
|Aut(G)| = 1. The smallestl for which G is d-distinguishable is dubbed tligstinguishing
numberof G, denotedd(G). An instantiation of this machinery, mentioned in [1], is the
problem of coloring keys on a (circular) key chain so that one can uniquely ideatify e
key. (In this case, one is interested in the distinguishing number of the dihedugsyy

A paper of Albertson and Collins [1] gracefully develops the theory of distinguishabili
in several directions. They conjectured thg@Gf > |Aut(G)| and the action of A4G) on
G has no singleton orbits, thetiG) = 2. Though there are graphs for which this fhilhe
idea thafew colors suffice if every automorphism moves many vedaebe substantiated.
Specifically, for an automorphisme Aut(G), define thenmotionof @ as

m(@) = [{ve G : q@(v) #V}|.
Themotionof a graphG is then

m(G) = %TJ{(‘G)“‘(“’)'
@id
We show that whem(G) > 2log, |Aut(G)|, G is 2-distinguishable. More generally, when
m(G)Ind > 2In|Aut(G)|, G is d-distinguishable.

Another natural question is that of the computational complexity of the graph distin-
guishability problem (see the discussion in [1]). Specifically, one would bkgldce the
language

DisT = {(G,d) : ?(G) < d},

as low in the natural hierarchy of complexity classes as possible. Thereotsvitmus NP
algorithm for this language; the only immediate conclusion is that D¢§E’ We show
that DIsT € AM c NEN 5.

2 Graphs with Large Motion can be Distinguished with
Few Colors

We now return to the first theorem advertised in the introduction, namely

Theorem 1. If m(G) > 2log, |Aut(G)| then G is 2-distinguishable.

1Select a large rigid grapH and letGy be the graph formed by the disjoint unionkef and 3 copies of
H. Then AutGh) = S3 x S3, Gy has no one cycles(Gn) = 3, and|Gn | can be arbitrarily large.
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Anticipating the proof, we define thgycle normas follows: decomposing an automor-
phism@into a product of disjoint cycles

¢= (V1;|_V;|_2. . .V;|_|l)(V21. . .V2|2) . (ij_. . -Vklk),

thecycle nornmof @is the quantity

The cycle norm is relevant to graph distinguishability in the following senagop&se
that a graphG is randomly two-colored by independently assigning each vertex a color
uniformly from {red black}. Then the probability that every cycle of an automorphigm
is monochromatic is exactly 2(®). When this event occurs, the automorphigpreserves
the coloring so chosen.

For convenience, the cycle norm of a grapis defined

G)= min
(G)=_min_ (@)
@id
Notice that for any automorphisni®) > m(¢)/2. Of course, then(G) > m(G)/2. With
this observation, Theorem 1 above is an easy consequence of the following theorem:

Theorem 2. If ¢(G)Ind > In|Aut(G)| then G is d-distinguishable.

Proof. We study the behavior of a randodacoloring of G, the probability distribution
given by selecting the color of each vertex independently and uniformly in tHé set ,d}.

Fix an automorphisnp # id and consider the bad event that the random coloxingin

fact preserved by: an easy calculation shows that

PIYUX(¥) = X(9(V)] = ()@ < ().

Collecting together these bad events, we have

P30 id, W X(¥) = X(#V)] < [AU(G)|(5)C).

The hypothesis of the theorem is exactly that this quantity is less than one, in edseh
there exists a coloring for which V@ # id, 3v, X (v) # X(®(v)), as desired. O

For a delightful survey of the probabilistic method, of which the above is an example,
see [2].

It is interesting to notice that the above theorem is actually tight in tise cé the
dihedral group®3,Dy4,... mentioned in the introduction (and in [1]). (The answers are
D(D3) = 37D(D4) = 4,D(D5) = 2,0(D6) =2,...)
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3 Diste AM

Though we will discuss the definition of AM in some detail, for a general introducton t
complexity theory and detailed discussions of the polynomial time hierarchy andv&M,
refer the reader to [9] and [4, 5].

The polynomial time hierarchy is the “polynomial time bounded variant” of the Kleene
hierarchy of recursive function theory. One defii§s= M = P, and, in general, € =
if there is a polynomiap andD € M§_; for which

L={w: 3| < p(jw]), (w, ) € D}.

Finally, define the cIasEIl'f to consist of all languagés for which L € ZE. Above, the
notation(-,-) refers to some canonical pairing function. With these definitions =N,
coNP =%, and the classeX, andr}, form a neat hierarchy containing P and lying inside
PSPACE.

Considering the quantifier alternation in the definition of the distinguishability pnopl
it is not surprising that BT € X5, as an easy argument shows. Our goal here is to show
that DIST € AM C 35nn&.

AM is the class of languages for which there amghur—Merlingames (see [3]). Intu-
itively, an Arthur—Merlin game for a languagdss played by two playerdrthur, equipped
with a random coin and only modest (polynomial-time bounded) computing power and
Merlin, who is computationally unbounded. Both Arthur and Merlin are supplied with a
word X, and the goal of the game is for Arthur to determine & L. Arthur, based on
his coin flips, may ask Merlin a constant number of questions, and, having heard Mer-
lin's answers, must then decide @&oceptthatx € L or reject this statement. Of course, a
natural question for Arthur to ask isxe L?” Unfortunately, rather than being the trust-
worthy advisor we might hope, Merlin actually has a vested interest in sdsahd@rthur
accept the predicate. An Arthur—Merlin game, then, is a strategy for ArHoilow in his
guestioning of Merlin so that:

e Whenx € L, regardless of Arthur’s coin tosses (which may determine the questions
he asks of Merlin under this strategy), Merlin can answer satisfactoolyincing
Arthur to accept that € L.

e Whenx ¢ L, regardless of way in which Merlin answers, the discussion ends with
Arthur rejecting thak € L a constant fraction of the time. (The probability distribu-
tion is taken over Arthur’s coin tosses.)

The number of questions which Arthur is allowed to ask may depend on the language, but
not the specific input. Furthermore, the entire conversation must have length padymomi
the length of the input. In the above model, Arthur’s coin flipsaublic- Merlin can see
them.

Hopefully, it is clear from this vague definition that every language in NP hésasy)
Arthur-Merlin game. We will show that there is an Arthur-Merlin gamettoe language
DisT. First, a formal definition:
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Definition 1. For a function M: {0,1}* — {0,1}P, and random variables XXy, ... , Xg €
{0,1}P, let

Mx = (M(X1),M((X1,X2)), ... ,M({(X1, ..., XRr)))-
AM consists of those languages L for which there exists a constant R, a polynomial p, and
a polynomial time bounded Turing machine A so that:

e xeL=3M:{0,1}* — {0, 1}PX),

{QE[A(X, X1,...,Xr,Mx) accept= 1,

where the Xare independent uniform random variables{)1}P.

e X¢&L=VYM:{0,1}* — {0, 1}P(X),

1
PriA(X, Xy, ... . Xp. M ts< =
mr}[ (%, X1,...,Xr,Mx) accept$ < >

where the Xare independent uniform random variables {1} P.

We start by showing that the language of rigid graphs is in AM. Let
RiGID = {G : |Aut(G)| = 1}.
Theorem 3. RIGID € AM

Proof. The proof is an easy adaptation of the result of [7, 8] that the language
NGl = {(Gl,Gz) : Gy ¢ Gz}

is in AM. In the formulation of AM given above, Merlin observes Arthur’s coin tosses
This scenario is aptly dubbed the “public” coin model. In fact, in the formatmaabove,
Arthur’'s questions to Merlin are exactly his coin tosses (the random vasiable the
above definition). Since Arthur is deterministic aside from his coin tossinggeaastion

he might wish to have answered can be anticipated and duly answered by Meitine
alternative model, involving “private” coin tosses, Arthur’s questions matycompletely
reveal the coins he has tossed so far. It is rather remarkable that theowesshare in fact
equivalent [8]. We shall allow ourselves the flexibility of a private coinum constructions.
Our goal is to show that RID € AM. Given inputG = ([n],E), consider the following
protocol:

1. Arthur generates a random permutatme S,, and sends Merlin the grapgBs; =
([n],Es), where
EO’ = {(G(U),O'(V)) : (U,V) < E}

2. Arthur expects Merlin to respond with an elemen&gf Given any other response,
Arthur rejects. Upon receivinge S,. Arthur accepts exactly if = o.
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Notice that wherG is rigid, there is a unique isomorphism betw&eandGg, so that Mer-

lin does indeed have a strategy which always convinces Arthur to accept. Supgieseli
thatG is non-rigid so thatAut(G)| > 1. In this case, there are exactut(G)| isomor-
phisms betwee andGg and, furthermore, conditioned on Arthur asking the quesgign

to Merlin, each of these isomorphisms is equally like to be the one used by Acticant
structGy. Hence no strategy of Merlin can induce accepting behavior in Arthur for more
than alAut(G)|~t < % fraction of Arthur’s coin tosses. O

Theorem 4. DIST € AM.
Proof. Let (G = ([n],E), k) be the common input, and consider the following protocol:

1. Arthur expects Merlin to send hi: G — [k|, ak-coloring of G. On any other
message, Arthur rejects.

2. Arthur builds a new grap®’ follows. Starting withG, Arthur adds for every vertex
v of G a fresh(n+ x(v))-clique, calledK,. Each vertew, aside from maintaining its
old connections insid& is attached to each vertex Kf. An easy argument shows
that the isomorphisms @' are in one-to-one correspondence with isomorphisms of
G which fix x. Specifically, ifx destroyed all of the symmetries & G’ is rigid.
Arthur now uses the protocol described above fasIR.

It is now easy to check that this protocol satisfies the requirements in thetidefiof
AM. O

Based on constructions like those of [12, 10, 11], one has@Bf, N M5, completing
the claim in the introduction.

One naturally wonders at the relationship aSDto more familiar classes such as NP
andcoNP. In this direction, applying the machinery of [6], we can argue that it is uglike
that DIST is CONP-hard. Specifically, from [6], we have the following theorem:

Theorem 5. If CONP C AM, then the polynomial hierarchy collapses38, specifically
sp c =5 for all k.

In our case, were BT to becoNP-completecoNP ¢ AM, and we could apply the
above theorem. Complementing, this shows that the language

RoBUST = {(G,Kk) : Vx:G — [k],Jy e Aut(G) \ {id},y preserveg}
is unlikely to be NP hard.

4  An Open Problem

An outstanding open question is whether the languaga 3 in fact NP-hard.
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