
PhoneGuard: A smartphone in the coalmine

Nicolas Mayor

Mobile Systems

University of Applied Sciences of Western Switzerland

Fribourg, Switzerland

Jean-Frederic.Wagen@hefr.ch

Abhishek Samanta

College of Computer and Information Science

Northeastern University

Boston, USA

samanta@ccs.neu.edu

Jean-Frederic Wagen

Mobile Systems

University of Applied Sciences of Western Switzerland

Fribourg, Switzerland

Jean-Frederic.Wagen@hefr.ch

Ravi Sundaram

College of Computer and Information Science

Northeastern University

Boston, USA

koods@ccs.neu.edu

Abstract— In the short span of less than a decade the mobile

phone has become a ubiquitous feature of life in India.

Everyone from the chai-wallah to the CEO has a cell-phone

and in recent years many of these are smart-phones capable of

running smart-apps. Our focus is on conceiving a practical and

useful app that can aid in disaster prevention and actually

implementing and testing it. Towards this end we created

PhoneGuard – a smart-app that converts the phone into a

remote monitoring device – you leave the phone in a sensitive

location like on the banks of a river or inside a coal-mine and it

periodically takes pictures, does simple image analysis and

checks for coherence over time, if warranted (e.g. in case of

flooding of the river or buckling of beams in a coal-mine) it

raises an alarm and follows an escalation procedure to push

live images to a webpage. A complete working system was

developed using standardized software and tested using

realistic conditions. We believe that the image analysis and its

integration into an escalation procedure is a novel aspect of our

system.

Wireless networks, sensor networks, mobile networks, Wi-Fi,

cellular networks, smartphones, pattern-recognition, image-

recognition,

I. INTRODUCTION

A. Motivation

It was tragic to hear that as recently as last July 29, 2011

a family of five in Central India went on a picnic to

Patalpani near Indore city in central India when flash floods

swept them in a trice. News of death of humans and

livestock in flash floods are so routine, particularly in Bihar,

that even media, both print and TV, pays no more than

nominal attention. However, even flash floods have to have

a beginning and had information on changes to the

topography of upper reaches of water flow been available

the family would have been saved from going to a watery

grave.

Similarly floods and wall and roof collapse in

underground mines are frequent. Here too, early processes

leading to collapse, if captured in time, could save lives. The

mining community in India can never forget the Chasnala

Mine disaster in Bihar where 375 lives were lost.

Technology advances in communication can today

improve our ability and skills to improve the disaster

preparedness of the community, provide early warning to

all, track hazards and timely alert to vulnerable sections to

move to safer places with essentials. Any technology used

for such purposes should be, as simple as possible, easily

comprehensible, open and locally responsive. Such

technologies as National Disaster Warning System quite

often uses advanced and sophisticated technologies leading

to delivery of alerts to specialists and designated officials

first before dissemination to those who are the nearest to the

loci of the disaster. Effectiveness of disaster preparedness

systems should have in built capacity to receive monitoring

information, process changes as they occur on a real time

basis and convert results of such processing to credible and

timely alert to simple folks in their own language.
The one obvious choice of technology is the ubiquitous

mobile phone which, nowadays in India, even village folks
are getting used to, staying in touch with near and dear ones
across the country. In fact, the motivation for this project
came from an observation made by one of the authors when
recently visiting Bhedaghat [12], a beautiful location on the
banks of the Narmada River near Jabalpore, Madhya
Pradesh. Bhedaghat is famous for the colorful marble cliffs
that flank the river banks and tourists take boat cruises to
admire them. The author was chagrined to discover that
boats were not plying the river till October because the
boatmen were afraid of the sudden surges in the level of the
river caused by the release of water from the dam up-stream.

The boatmen were confronted with the Hobbesian choice of
endangering their own and their customers’ lives or giving
up their livelihood and facing poverty. At the same time the
author observed that almost all the idle boatmen had cell
phones, some of them even smart phones. Thus was born the
idea of creating an app whereby a boatman could leave a
smart phone upstream and automatically get notified, in
advance, of a water level increase so that he could get back
to shore (or prepare otherwise) for the impending surge.
Such an app could also be utilized for other disaster
notifications such as fires, floods, building/bridge collapses
etc. The app would be of particular value where the
monitoring has to be done on a one-off basis, is localized and
small-scale (requiring inexpensive solutions) and
underground or indoors (hence inaccessible to satellites) .

B. Related Work

There has been much work on the use of wireless sensor

networks for disaster management. A wireless sensor

network consists of autonomous sensors that are spatially

distributed. The sensors can be used to monitor physical or

environmental conditions, such as temperature, sound,

vibration, pressure, motion or pollutants and to

cooperatively pass their data through the network to a main

location. Wireless sensor networks are an intensive area of

research with numerous workshops and conferences

arranged each year. Entire books have been written on the

subject [1, 2]. [3] focuses on network protocols for the

collection of information (regarding earthquakes) from a

network of sensors. [6] designs a sensor network for the

detection of gas leaks from pipelines. [4] studies the use of

sensor network for ongoing monitoring and assessment of

underwater pollution in the oceans. A common property of

these various studies is the use of specialized sensor nodes.

However there are genuine drawbacks with using networks

of specialized sensor nodes. They require extensive

maintenance. When batteries run out then the nodes need to

be accessed and the batteries replaced. But most importantly

they require a considerable amount of initial capital

investment to get the basic infrastructure off the ground. For

these (and other) reasons wireless sensor networks have not

really gotten off the ground. The fact that even today there

is no large scale commercial deployment is testimony to the

drawbacks of this style of infrastructure development. By

contrast the uptake and growth of cellular infrastructure (in

a country like India) has been remarkable [11]. Our focus is

therefore on using off-the-shelf infrastructure such as the

cellular network and the use of mobile devices such as smart

phones. In the context of smart phones and personal devices

such as tablets there has been tremendous development in

the commercial world in the areas of entertainment (e.g.

games such as “Angry Birds”) and personal productivity

(e.g. social networking apps). However, due primarily to a

lack of natural business models there has been less effort

devoted to the development of apps in the area of disaster

management. There are a number of apps for remote

monitoring such as baby monitors and pet monitors [5].

However these apps are little more than webcams that

remote the audio and video signal captured from a remote

location. Our app is different in that it does image

processing using the (limited) on-board computational

capabilities of the device and then generates alarms based

on an escalation procedure and the device’s assessment of

the situation.

C. Our Contributions

Our main contributions are as follows:

 We conceived of an essentially standalone app
that can transform a smart phone into a tool for
disaster prevention. Unlike complex solutions
involving wireless sensor networks and
satellites, ours is a simple cheap off-the-shelf
solution that can be easily utilized by an
individual for preventing even small-scale
localized crises and disasters.

 The smart phone has many sensing capabilities
– audio, video, motion-detection etc. We
focused on the video aspect since image
analysis is very compute-intensive and typically
considered to be excessive for smart phones. We
identified a key attribute of many disaster
scenarios where the base image is relatively
static and the advent of the disaster is
characterized by a sudden and radical
transformation in the base image. Even though
actual image analysis (e.g. identifying
individuals or features) is difficult we show that
radical transformations in the base image can
easily be detected even with the limited on-
board compute-capabilities of the smart phone –
we term this Coherence Disruption Detection
(CDD). We believe that the realization that in
the common case it is adequate to track the
coherence, or lack thereof, in the time-sequence
of images is an important contribution.

 We have built a fully functional prototype that
implements CDD on existing smart phones. We
have tested the prototype in real-world
conditions and demonstrated that it is possible
to detect substantive and sudden disruptions
without triggering false positives (such as when
the ambient lighting changes). Image analysis is
one of the hardest problems in terms of
computational requirements. By demonstrating
the feasibility of this problem with COTS
(commercial, off the shelf) products we have
validated the concept and its effectiveness in
terms of cost and performance.

 We have developed an escalation procedure that
the smart phone can activate in stand-alone
mode. The general philosophy of the escalation
procedure is akin to that of the alarm clock. –
the clock sets off an alarm, the user can

deactivate (hit stop), gather additional
information (look outside or look at the time) or
schedule for re-escalation. When the CDD
algorithm initially triggers, it uses a low-cost
low-reliability channel such as Wi-Fi or VoIP.
Then based on the feedback from the user it can
de-escalate, hyper-escalate and/or provide
additional information such as a still feed or a
live video feed. We have developed an archival
server that can push information to clients such
as browsers. But the phone is self-contained and
controls the entire escalation procedure in
conjunction with the user by employing
different modalities and transmitting varying
levels of information for generating situational
awareness.

II. DESIGN CONSIDERATION & SYSTEM CHOICES

A. Project Requirements

At the outset we set forth some basic project

requirements. The mobile cell phone or smart phone must

be a phone which can be used in USA, Europe (with EDGE,

UMTS, HSDPA, a plus) and India. This requirement was

based on the location of the authors and the intended target

use of the application. We should utilize only the

computational power of the cell phone for image processing.

The cell phone must be highly independent (i.e. no

permanent connection between cell phone and server).

As part of our project feasibility study we had to

investigate which technologies (Operating systems, APIs)

are required to automatically take pictures. We had to list

and compare available compatible phones and standardize

on one of them for the project. We had to do research on

various image recognition/comparison algorithms and

analyze the problem of coherence disruption detection. We

had to develop, implement and test the image processing

algorithms. We were required to develop the mobile

application to develop the server application, and last but

not least to test the complete application in real conditions

B. Basic Architecture

As per the requirements laid out at the outset, most of the

time, the cell phone should not be connected to the server,

because we want the cell phone to be highly independent.

So, when the cell phone must trigger an alarm to the server,

it has to connect to the server, using WiFi network (if

available), otherwise using the GPRS/UMTS network. The

server should also be able to contact the cell phone for

example to change the configuration of the cell phone (start,

stop, change interval time, etc). Consequently both the

server and the cell phone) have to be able to initiate

connections with each other.

See Fig 1 for the basic network architecture. We assume that

the server is always up and connected to the Internet and the

cell phone is localized in a GPRS/UMTS cell (or in a Wi-Fi

network range). The cell phone (CP) and the server (S) can

contact each other by connecting through a TCP socket, the

IP address of the server is obtained through DNS resolution.

There are two bidirectional channels, because the server

must be able that are completely independent, and each of S

and CP implements a client and a server. We adopt a simple

authentication using a shared secret key, same as a

challenge-handshake protocol (CHAP) and OpenSSL based

encryption.
We use AJAX on the server to implement an interactive

GUI.

Fig 1. Basic Network Architecture.

C. CellPhone Choices

There were several constraints about the phone. The phone

must have a camera, because the camera is the heart of the

project. It must be usable in USA, EU and India. And it

should be cheap. Furthermore, the phone should

communicate via WiFi and possess a relatively powerful

processor to perform image processing. It should also have

extension possibilities (ROM, memory)

Our investigation indicated that the biggest differentiator

was that some system allowed the phone to take pictures

automatically while others required explicit manual

intervention rendering them useless for this project.

Platform Remarks

Windows Mobile Version

5.0 (Pocket PC or

Smartphone)

Native (c++) or managed

code source (C# or

VB.net). The API allows to

take still pictures (.jpeg but

can be converted into

another formats) or videos

(.WMV) via the Camera

Capture API

Blackberry Java JDE or .NET

compatible. The API does

not permit to take pictures

(only a Listener can used to

trigger an application when

a picture is manually
taken)

Palm OS 5.0 In C language, the API

allows to take pictures via

the Cameralib library in a

bitmap formats and videos

in various format (QVGA,

QQVGA, QCIF, CIF). No

image or video conversion

function in the API

Table 1. Comparison of different cell phone platforms.

Based on our comparison we shortlisted the HTC

Cingular 8525 and a Palm Treo 750. We obtained a

Cingular 8125 cheaply from eBay and proceeded to test it.

We found that MMAPI was not implemented on it but

reference code from the Windows Mobile Demo projects

successfully compiled and allowed us to take pictures

remotely. So the decision was made to develop the cell

phone software on C# [10] on the .NET Platform with the

Cingular 8125 phone.

D. Server Alternatives

The server is divided in two parts. The back-end of the

server must receive the pictures and alarms from the cell

phone. Therefore the software must listen for an incoming

connection. To implement the remote control of the

application, the server should also be able to actively open a

socket to the cell phone. The front-end of the server must

interact with the client through a web server and Ajax. We

chose to split the server into two independent parts with the

back-end being Java-based and the front-end based on an

open source PHP library. The communication between the

two parts is based on the OS file system and a database. The

front-end of the server is client-agnostic so long as the

browser is Javascript (AJAX) compliant.

E. Complete Architecture

See Fig 10 at the end of this paper for the complete

network architecture.

III. COMPARATIVE IMAGE ANALYSIS

A. Overview of the Coherence Disruption Detection

(CDD) Algorithm

The graphic in Fig 11 at the end of the paper shows the

entire image processing chain. The following is the list of

algorithms to be implemented on the phone:

 Conversion to gray scale

 Histogram equalization

 Image difference

 Low pass filter (smoothing filter)

 Enhanced 8-neighborhood weighted algorithm

One of the main tasks of the project is the image

comparison. The reliability of the alarm system depends on

the quality of these image comparisons.

If it is relatively easy to compare two completely different

pictures, it is much more complicated to distinguish

between two slightly different pictures [9]. In the digital

world, a picture can be considered different from another if

at least one of the pixels is different. Two pictures taken

back to back are almost always different, even if the

conditions are the same. However, a good image

comparison method should only detect relevant errors or

coherence disruptors. A coherence disruptor can be crudely

described as a relatively large object appearing in the

picture. Moreover, the image comparison should not be

disturbed by brightness modification or other noise. Rather

than present the final Coherence Disruption Detection

Algorithm we present it in two stages, a basic version

followed by an enhanced version, as this will enable the

reader to better understand the design decisions.

B. Basic CDD Algorithm Chain

The first step is to quantify our intuitive notion of a

qualitative difference and later, set an adjustable threshold

to decide whether an alarm must be triggered [7]. For the

analysis we consider 8-bits gray level pictures (512x512

pixels), and compare two pictures (A and B) between them.

Considering the pictures as matrices, a difference picture

(D) can be made by computing the difference for each pixel

Dm,n = |Am,n – Bm,n| for all m ε [1..M], n ε [1..N]

where the picture is M x N pixels large. The naive approach

to quantify this difference (S, for score) would be simply to

sum all the values of the difference picture D :

S = Σm=1 to M Σn=1 to N Dm,n

But the problem is that all the error pixels are not of equal

importance. One aspect of the human perception of

differences between two pictures is that greater the size of

the difference object the greater is the perceptible

difference. To increase the impact of wide area errors, the

error of a given pixel is multiplied (weighted) by the

number of error neighbors. The idea is to increase the

impact of large objects, which are relevant differences or

valid coherence disruptions. This way, the impact of small

areas error will be negligible compared to wide area errors.

Furthermore, a completely isolated error pixel will have no

impact (because it has no direct neighbors, it is multiplied

by 0). Thus, it is possible to define the partial score for each

pixel:

 [oi,om] = imread('lena.bmp') ; // original image

[mi,mm] = imread('lena2.bmp') ; // image to compare with

odiff = abs(oi-mi) ; // compute error image

score=0 ;
threshold=10 ;

for i = 2:x-1,

 for j = 2:y-1,

 if odiff(i,j) > threshold then

 neighbor = 0;

 for k=i-1:i+1,

 for l=j-1:j+1,

 if odiff(k,l) > threshold then

 neighbor = neighbor+1 ;

 end;

 end;

 end;

 score = score + (neighbor-1)*odiff(i,j)/255 ;// -1 :

remove central point

 end;

 end;
end ;

Sm,n = Dm,n[(Σi=m-1 to m+1Σj=n-1 to n+1(1 - δ(Di,j,0)))-1]

where δ is the Kronecker delta function and the outer -1

serves to eliminate the considered pixel itself. Then, the

total score is the sum of all partial scores of the picture:

S = Σm=1 to M Σn=1 to N Sm,n

An advantage of this algorithm is that isolated (no

neighbors) error pixels are ignored. The default behavior of

this algorithm is that a pixel is considered as an error even if

the error is very small. In reality, almost all pixels are

slightly different from one picture to another, due to noise.

An enhancement of this algorithm is that only pixels with an

error above a specific threshold are considered errors. A

solution is to replace the Kronecker delta function by the

Heaviside delta function:

H(x; th) = 1 if x > th and 0 otherwise

We can now consider only the pixels greater than a fixed

error threshold, instead of all pixels :

Sm,n = Dm,n[(Σi=m-1 to m+1Σj=n-1 to n+1(1 - H(Di,j, th)))-1]

Again, the total score is the sum of all pixels’ partial scores:

S = Σm=1 to M Σn=1 to N Sm,n

This is the final version of the 8 neighborhood algorithm.

Note that now there is a threshold parameter to the scoring

process. This algorithm has been implemented using Scilab-

4.0 [13] and the SIP Toolbox (Scilab Image Processing

Toolbox) [14], see Box 1.

The score is not an absolute value and can be expressed as a

ratio of the maximal score. The advantage of using a relative

score is that it is independent of the image size. A small

score refers to a small difference (score is 0 if the pictures

are exactly the same, considering the error threshold).

Fig 2. Lena original (score 0%) and Lena inverted (score
30.56%).

The disadvantage of the basic version of the algorithm is

that it is too sensitive to brightness modifications. We

therefore consider a normalization in the enhanced version.

C. Enhanced CDD Algorithm Chain with Histogram

Equalization

In order to reduce the impact of brightness on the image,

we perform an histogram equalization before the weighted

8-neighbors algorithm scoring process. First, we compute

the histogram of the picture, defined as follows:

hist(k) = Σm=1 to M Σn=1 to N δ(xm,n,k)

Here vector hist contains the number of appearances for

each possible k value between 0 and 255. Histogram

equalization serves to increase the dynamic range of the

histogram. The goal is to get an uniform distribution of the

intensities on the image. As the process is discrete, a

completely uniform distribution is not possible in the most

of the cases. The effect of a histogram equalization is a sort

of normalization of the brightness intensity of the picture.

After the equalization, the images comparison is less

sensitive to brightness modifications. Mathematically,

histogram equalization can be defined as a cumulative sum,

including a correction factor :

Hist(k) = {Σi=1 to 256 hist(k)}*255/MN

 Box 1. Scilab implementation of basic version

function [imn, hist,

mhist]=hist_equalization(im)

hist = [0:1:255] ;

for i=1:256, hist(i)=0 ;

end;

// build histogram

[x,y]=size(im) ;

for i = 1:x,

for j = 1:y,

hist(im(i,j)) = hist(im(i,j))+1 ;

end;

end;

// compute new histogram values

mhist(1) = hist(1)*255/(x*y) ;

prev = mhist(1) ;

for i = 2:256,

prev = prev+hist(i) ;

mhist(i)= int(prev*255/(x*y)) ;

end;

// modify image with LUT

for i = 1:x,

for j = 1:y,

imn(i,j) = mhist(im(i,j)) ;

end;

end;

endfunction [oi,om] = imread('lena.bmp') ; //

original image

[mi,mm] = imread('lena2.bmp') ; // image to

compare with

odiff = abs(oi-mi) ; // compute error image

score=0 ;
threshold=10 ;

for i = 2:x-1,

 for j = 2:y-1,

 if odiff(i,j) > threshold then

 neighbor = 0;

 for k=i-1:i+1,

 for l=j-1:j+1,

 if odiff(k,l) > threshold then

 neighbor = neighbor+1 ;

 end;

 end;

 end;

 score = score + (neighbor-

1)*odiff(i,j)/255 ;// -1 : remove central point

 end;

 end;

end ;

This process is also known as the accumulated normalized

histogram. Now the new histogram Hist(k) can be assigned

to the image, using a lookup table:

Deqm,n = Hist(Dm,n)

See Box 2 for the Scilab implementation of the histogram

equalization. Now we can compare the score for image

comparison with and without histogram equalization.

The great improvement is that now the images

comparison is not sensitive to image contrast and brightness

difference.

Fig 3. Lena low-brightness (score 0%) and Lena high brightness
(score 0%).

Fig 4. Lena low-contrast (score 1.5%) and Lena high-contrast
(score 20.81%).

IV. IMPLEMENTATION

The architecture has been realized using Object Oriented

concepts, enabling easy reuse. The source code is well-

structured and well documented.
The image processing required a number of hacks and
tweaks to obtain the requisite performance. One of the major
hacks was the use of the unsafe directive [15]. Using unsafe
methods, the computation time was improved by a factor 8 to
10. The disadvantage though is that a more complex syntax
must be used to access the memory, using pointers. Pointers
offer great flexibility but greatly complicate programming
and debugging. C# .net hides most of memory management

 Box2: Scilab implementation of histogram equalization

A. CellPhone Development

 Fig 5. Cell phone architecture

which makes it much easier for the developer - thanks to the

Garbage Collector and the use of references. But to make

the language powerful enough in some cases in which we

need direct access to the memory, unsafe code was invented.

As a result of the use of this hack our project must be

compiled with /unsafe option to allow unsafe methods

B. Server Development

The server is the central part of the system. The main

tasks of the server are:

 Handle the incoming alarms/pictures sent by the

cell phone

 Push the information (alarms/pictures) to the client

 Send the remote control messages to the cell phone

Fig 6 Server architecture.

On the cell phone side of the server, a TCP server has

been developed in Java to listen to incoming connections.

The TCP server also has the functionality to actively open

connections to send commands. On the client side of the

server, an interesting and powerful library called Sajax [16]

was utilized to easily add Ajax features. In the middle, the

PHP/Java bridge connects both parts of the server.

C. Alarm Escalation Procedure

The alarm consists of an alarm source, a server and a

client monitor. When an alarm occurs, the information about

the alarm is uploaded to the server and pushed to the client.

The three basic situations are described in the following

figures.

Fig 7 Alarm triggering without escalation.

Fig 8 Alarm escalation with confirmation.

 Fig 9 Alarm escalation without confirmation.

The following are the different escalation procedures
implemented [8]:

 Phonecall using GSM network

 Phonecall using VoIP network

 Email

 SMS through GSM network

 SMS through a 3
rd

 party

 MMS through GPRS/3G network

 Video call using GSM /3G network

 Delayed video clips.

D. Testing

Testing was done using a diverse yet representative set of
pictures. The main finding from testing was that controlling
the percentage of false alarms is critical for a useful system.
In fact, the idea of histogram equalization arose from the first
round of testing where we discovered a false alarm rate as
high as 10%. The deployment of histogram equalization
subsequently brought the false alarm rate below 1%.

A large proportion of the testing time was spent tuning
the various parameters particularly the threshold. We call
the feasible region the k-zone.

Fig 10 k-zone

V. STRENGTHS AND WEAKNESSES

Our current design has a number of strengths and

weaknesses. We briefly elaborate on them.
The main strengths of our PhoneGuard system are

 It does not require any special infrastructure like
a wireless sensor network. It uses existing
cellular infrastructure which has widespread
coverage even in places such as India and
Africa.

 It can be deployed even by one person who
wishes to be notified of an impending disaster or
crisis.

 It is easily extensible to other kinds of sensing
modalities, e.g. use of audio for sound (e.g.
water leaks), accelerometer for motion (e.g.
earthquakes) etc.

 It is easy to setup and inexpensive to deploy
requiring just a smart phone with a cellular plan.

However, the PhoneGuard system also has its drawbacks.
Some of the major drawbacks are:

 It requires the presence of cellular infrastructure

 Mobile devices have limited battery life and
need to be recharged periodically. Alternately,
in remote monitoring scenarios the mobile
device must be tethered to a power source.

 Smart phone CPUs are limited in their
capabilities and cannot do compute-intensive
tasks such as sophisticated image processing. Of
course, the computational capabilities of smart
phones are improving all the time.

 If the smart phones are used in ad hoc fashion
for disaster notification without being secured
properly then they may get knocked over or
shifted around and thus may not function
properly.

 Smart phones are also vulnerable to Denial of
Service attacks such as by repeated phone calls
or by SMS/emails that may contain viruses,
worms and other Trojans. However security too
is improving all the time and it is possible to get
special plans (e.g. chaperone plans for kids) that
restrict phones only to communicating with a
pre-specified set of numbers.

VI. CONCLUSION

We conceived of a smart app to aid with disaster
prevention and created a fully working, comprehensively
tested prototype. A novel feature of our prototype is the fact
that we are able to carry out the entire image processing
chain on the mobile device.

In future work we propose to expand the set of sensing
modalities to include audio and motion. It is our belief that,
with the growing ubiquity of cellular infrastructure and smart
phones, such apps will be the future of disaster prevention
and management.

ACKNOWLEDGMENT

We thank Chancellor Venkat Rangan for informing us of
the conference on wireless technologies for humanitarian
relief.

REFERENCES

[1] W. Dargie, and C. Poellabauer, "Fundamentals of wireless

sensor networks: theory and practice", pp. 168–183, 191–192,
John Wiley and Sons, 2010.

[2] K. Sohraby, D. Minoli, and T. Znati, "Wireless sensor
networks: technology, protocols, and applications,” pp. 203–
209, John Wiley and Sons, 2007

[3] M. Mamun, Y. Koi, N. Nakaya, and G. Chakraborty, “A
novel integrated wireless sensor network architecture for
disaster prevention,” International J. on Smart Sensing and
Intelligent Systems, 2(2), 2009.

[4] A. Khan, and L. Jenkins, “Undersea wireless sensor network
for ocean pollution prevention”, in Proc. of Communication
Systems Software and Middleware and Workshops,
(COMSWARE 2008), IEEE, pp. 2-8.

[5] Pet Remote Monitoring through Smart Phone Application,
www.asmag.com/showpost/11810.aspx, 2011.

[6] D. Ryu, H. Na, and S. Nam, “Implementation of a USN-based
disaster prevention system in Korea,” International Journal of
Computers, 3(1) 2009.

[7] S. Egger, and M. Schrag, “Mobile Pattern Recognition,” EIA-
FR Semester project 2006.

[8] O. Caille, “Seamless and secured push service on
heterogenous networks,” EIA-FR Diploma work 2005.

[9] G. A. Baxes, Digital Image Processing, Principles and
applications, John Wiley & Sons, Inc., 1994

[10] C. Petzold, Programming in the key of C#, Microsoft Press,
2003.

[11] Wireless communications in India, Wikipedia,
http://en.wikipedia.org/wiki/Communications_in_India#Mobi
le_telephones.

[12] Bhedaghat, http://en.wikipedia.org/wiki/Bhedaghat.

[13] Scilab, http://www.scilab.org

[14] SIP (Scilab Image Processing) Toolbox,
http://siptoolbox.sourceforge.net/ .

[15] C# unsafe directive,
http://www.codersource.net/csharp_unsafe_code.html .

[16] Sajax, http://www.modernmethod.com/sajax ..

http://www.asmag.com/showpost/11810.aspx
http://en.wikipedia.org/wiki/Communications_in_India#Mobile_telephones
http://en.wikipedia.org/wiki/Communications_in_India#Mobile_telephones
http://en.wikipedia.org/wiki/Bhedaghat
http://www.scilab.org/
http://siptoolbox.sourceforge.net/
http://www.codersource.net/csharp_unsafe_code.html
http://www.modernmethod.com/sajax

Figure 10. Complete network architecture.

Figure 11. Complete image processing chain..

