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Abstract

In this paper, we consider the following question: what is the maximum number of entries
that can be added to a partially filled latin square? The decision version of this question is
known to be NP-complete. We present two approximation algorithms for the optimization
version of this question. We first prove that the greedy algorithm achieves a factor of 1/3. We
then use insights derived from the linear relaxation of an integer program to obtain an algorithm
based on matchings that achieves a better performance guarantee of 1/2. These are the first
known polynomial-time approximation algorithms for the latin square completion problem that
achieve non-trivial worst-case performance guarantees. Our motivation derives from applications
to the problems of lightpath assignment and switch configuration in wavelength routed multihop
optical networks.

1 Motivation

1.1 Optical Networks

Developments in fiber-optic networking technology using wavelength division multiplezing (WDM)
have finally reached the point where it is being considered as the most promising candidate for
the next generation of wide-area backbone networks. These are highly flexible networks capable of
supporting tens of thousands of users and capable of providing capacities on the order of gigabits-
per-second per user [4, 11, 17]. WDM optical networks utilize the large bandwidth available in
optical fibers by partitioning it into several channels each at a different optical wavelength [1, 4,
14, 15].

The typical optical network consists of routing nodes interconnected by point-to-point fiber-
optic links. Each link supports a certain number of wavelengths. The routing nodes are capable
of photonic switching, also known as dynamic wavelength routing which involves the setting up of
lightpaths [3, 5, 21]. A lightpath is an optical path between two nodes on a specific wavelength.
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The optical switch at a node assigns the wavelengths from an incoming port to an outgoing port.
This assignment is changeable and can be controlled electronically.

Conflict-free wavelength routing in wide-area optical networks is achieved by utilizing latin
routers [2]. These are routing devices that employ the concept of a latin square (LS). A latin
router with »n input ports, n output ports, and n wavelengths is associated with a partial latin
square (PLS), an n x n matrix that specifies the wavelength connections from the n input ports to

the n output ports. The matrix contains elements from the set {0} ({1,2,...,n} (0 is used as a
placeholder to denote emptiness) such that each row and each column never contains an element
from the set {1,2,...,n} more than once. (see Figure 1 for an example). A non-zero entry L;;

of L implies that the wavelength L;; is routed from input port ¢ to output port j. A zero entry
denotes an unassigned entry. An LS is a PLS that has no zero entries.
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Figure 1: A 4 x 4 PLS

Reducing the number of unassigned or zero entries in the PLS associated with a router is of the
utmost practical importance in optical networks as this ensures reduced wastage of the valuable
resources of ports and wavelengths. This motivates the following definitions:

Definition 1 A PLS 5y is said to extend or be an extension of @ PLS S5 if 51 can be obtained by
altering only zero entries of 9.

Definition 2 A PLS is said to be completable if it can be extended to an LS.

See Figure 2 for an LS obtained by extending the PLS of Figure 1. Not all PLSs can be completed
(see Figure 3).

1121413
214131
3111214
413112

Figure 2: A 4 x 4 LS

Definition 3 Partial Latin Square Extension Problem (PLSE): Given a PLS Sy find the largest
number of zero entries that can be changed to obtain a PLS Sy that is an extension of 5.

The PLSE problem as stated above is an optimization problem. The natural decision version of
the problem — namely, given a PLS establish whether it is completable — has been shown to be
NP-complete [6]. We present the first known polynomial-time approximation algorithms for the
PLSE problem with nontrivial worst-case performance guarantees.



1.2 Other Applications

This study also has applications to the more classical areas of statistical designs and error-correcting
codes (which were in fact the original drivers of the research into LSs). We refer the interested
reader to the (extensive) literature that exists on the subject [7, 8].

2 Previous Work

The subject of LSs has been extensively developed by many eminent combinatorialists. Some of
the most famous conjectures concerning LSs were in fact proposed by no less than Euler himself.
Denes and Keedwell, [7, 8], provide comprehensive and encyclopedic collections of results on the
combinatorial aspects of LSs. Of special interest to us are results concerning the completion of
PLSs. The most famous conjecture in this area was the Evans conjecture [9] which was proved
after a period of over 20 years by Smetaniuk [19]. An excellent survey of the ongoing attempt to
characterize completable PLSs appears in [16].

The computational aspect of completing PLSs was initiated by Rosa [18] and Giles, Oyama
and Trotter [10]. The issue was finally resolved by Colbourn [6] who proved that the problem of
deciding whether a PLS is completable is NP-complete.

Barry and Humblet [2] were the first to recognize the applicability of LSs to the problem of
wavelength assignment in optical networks. The question of approximating the PLSE problem
was considered at great length by Chen and Banerjee in [3]. They provide an algorithm and a
heuristic for approximating the PLSE problem. The algorithm, however, takes exponential time in
the worst case. And the heuristic in certain cases could modify the pre-existing entries in the PLS
thus rendering it unfit for use in many situations of practical interest.

The rest of the paper is organized as follows: Section 3 contains notation and some basic
lemmas; Section 4 contains the factor 1/3 approximation algorithms; Section 5 contains the factor
1/2 approximation algorithms; Section 6 answers some natural questions regarding extensions of
certain PLSs; and Section 7 closes with a conjecture that we would be interested in seeing settled.

3 Preliminaries

3.1 Definitions and Notations

Let L be a PLS. If L; ; = 0, we say the cell (z,7) is empty. Conversely, if L; ; # 0, we say the cell
(i,7) is filled. Two PLSs L and M are said to be compatible if

L Vi,j, Lij =0or Mij = 0, and
o [+ M is a PLS.

When L and M are compatible LSs we shall denote L + M by L & M. For a PLS L, let | L| denote
the number of non-empty cells of L. We write L C M (L C M) for two PLSs when M = L& A for
some (non-trivial) PLS A. This is equivalent to saying that I may be extended to M. We call L
blocked if AL' O L. For PLS I, define L* to be a compatible LS such that |L1| is the largest over
all compatible LSs.

The problem of extending a PLS can also be viewed graph-theoretically as a coloring problem.
Associate with an n x n PLS L the colored graph with n? vertices (i,5),1 < 7,7 < n and edges
{({2,7), (", j")|i = ¢ or j = j'} such that vertex (i,7) is assigned color L;; # 0; vertices corre-
sponding to zero entries of L are considered to be uncolored. The problem of PLS extension can



now be viewed equivalently as the problem of coloring additional vertices given the corresponding
partially colored graph. This motivates our use of the terminology color for the entries of a PLS.

3.2 Extending and Completing PLSs - some Combinatorial Lemmas

Colbourn’s result, [6], showing that PLS-completability is NP-complete has effectively put paid
to our hopes of discovering a polynomial time algorithm for recognizing completable PLSs. But it
remains an intriguing problem to understand what can be salvaged. We take a combinatorial step
in this direction by providing a quantitative characterization of minimally non-completable PLSs
and minimally non-extendable or blocked PLSs.

Definition 4 Let f(n) be the largest number such that every n x n PLS L with |L| < f(n) is
completable.

Lemma 1 f(n)=n- 1.

Proof: The Evans conjecture, ([9]) made in 1960, states that any n x n PLS L with |L| <n —11is
completable. It was finally settled in the affirmative by Smetaniuk ([19]) in 1981. This gives us that
f(n) > n—1. That f(n) < n is easily seen by the PLSs of Figure 3 which cannot be completed.
Hence f(n)=n—-1. 0

Definition 5 Let g(n) be the largest number such that every m x n PLS L with |L| < g(n) is
extendable.

2

Lemma 2 g(n)= [%] - L

Proof: We first show that g(n) > ”2—2 > [”2—2} — 1. Consider any n x n PLS L such that |L| < ”2—2
Let 7; (¢;)be the set of non-zero entries in row 7 (column j) of L. If we show that there exists an
i,j such that L;; = 0 and |r;| + |¢;| < n, then we are done because it implies that L can extended
by setting L;; to a value in {1,2,...,n} —r; — ¢;. It remains to show that there exists an ¢, j such
that L;; = 0 and |r;| + |¢;| < n. We do this by invoking the Cauchy-Schwartz inequality to show

that the expectation

Eln—ril+n—lejl : Lij = 0] = () (Ciln = [ril)? + 35(n — lej])?)
> (n2i|L|)((n2_n|L|)2 n (n2_n|L|)2)
=2(n - &)
>n

It is easy to see that g(n) < [%W by considering the general versions of the examples in Figure
4.
a
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Figure 3: Blocked n x n LS with n entries
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Figure 4: Blocked LS with [%-] entries

4 Greedy Algorithms

4.1 A Greedy Algorithm Based on Linear Programming

The problem of maximally extending a PLS I may be expressed as an integer program:
maXZ x5k subject to
ik

Vi k> wijr <1

Vi,kZ%’jk <1

J
Vi, Y wir <1
%

Vi, g,k such that L;j; =k # 0,255 =1 (1)
Vivjvkvxijk € {07 1}

The association of a feasible point m with the PLS M;; =k <= m;j;; = 1 is a natural correspon-
dence between those LSs which extend L and the feasible points of the integer program. A variable
which shares no constraint with any variable of (1) shall be called free.

Relaxing this integer program to a linear program yields a natural greedy algorithm:



GREEDY (LP):
1. Set t:=0. Set A?j = 0.

2. If L® A'is blocked, return A'. Otherwise let 2* be an optimal solution to the linear
program for L @& A® and (i,], k) be so that x 1s a maximum free variable. Set

k if (4,7) = (2 j)
t41 ’ ’
Aij = {

Af otherwise.

Increment ¢ and begin step 2 again.

If L is not blocked there exists a free variable so that step 2 may proceed. Furthermore, if x”k
is free, k is a consistent assignment to cell L;; so that each augmentation made by step 2 results in

a (larger) PLS L ¢ A

Lemma 3 Let L be a PLS and t the number of iterations performed by GREEDY (LP) on L. Then
2 (2L

Proof: Yor a PLS L, let ¢r be the optimal value of the associated linear program. Notice that
during each iteration of the algorithm, at least one constraint containing a free variable is tight,
so that the Lish selected has value at least 1/n. Examine iteration s of the algorithm. Let 2* be

an optimal solution to the linear program for L ¢ A° having value ¢rga- and (i,j,l%) the triple
selected in this iteration. Define

1 if (4,5, k)= (1,5, k)

0 1f27£2and (. k) = (7, k)
aiir =40 if j # 7 and (i,k) = (i, k)

0 if k # kand (i) = (1,7)

x7;, otherwise.

Notice that a is a feasible solution to the linear program for L & A*T! with value at least ¢raas —
(2 - —) Each iteration, then, depresses the objective function of the associated linear program by
at most (2 — 2) whence
N LA | L]

3+2 T 342

Recall that |A?| = ¢ so that GREEDY (LP) achieves a 3_1z approximation factor. This proves

the following theorem.
Theorem 4 GREEDY (LP) is a £ + Q(1) approzimation algorithm.

4.2 The Naive Greedy Algorithm

Lemma 5 Let L be a PLS and A, B two PLSs, each compatible with L, so that L & B is blocked.
Then |B| > $]A.



Proof: For each pair (7, j) with B;; # 0, let

S5 = {0 U{(,57) | Bij = Aig } UL ) | Bij = Avj}
Then [S;;| < 3. If [A] > 37,; 5] then there is a pair (u,v), appearing in no 5;;, so that A,, is
non-empty. In this case, (L & B),, may be consistently set to A,,, contradicting that L & B is
blocked. Hence [A] <37, [5] < 3|B|. O

Consider the greedy algorithm defined as follows:

GREEDY:
1. Set t:=0. Set A, = 0.
2. If L & A? is blocked, return A*. Otherwise, select a pair (7,) with (L & At);}, =0
and a color k so that R o
kit (d,5) = (2,])
41 ’ ’

A, otherwise.

is compatible with L. Increment ¢ and begin step 2 again.

Since GREEDY computes an extension A* so that L ¢ A¥ is blocked, |A¥| > L|L+|. This proves
the following theorem.
Theorem 6 GREEDY is a %-appmmmatz'on algorithm.

The following example (Figure 5) demonstrates that our analysis of the performance of the
greedy algorithm is tight. This PLS can be filled to completion. However, an incorrect choice by
GREEDY to fill 21in (1,1) blocks the LS.
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Figure 5: Worst-case Scenario for the Naive Greedy Algorithm

The greedy algorithm can be implemented very efficiently in practice. For each row i (column
J), maintain an n-length bit vector R; (C;) marking the empty cells in that row (column). The
greedy algorithm goes through each empty square (7, j), picks a number to be filled (if possible)
using R;,C;, and updates R;,C; to reflect the change. This single operation takes O(n) time,
yvielding an overall running time of O(n?).

5 Approximation Algorithms Based on Matching

5.1 A Linear Programming Based Algorithm Using Matching

We again consider the linear program associated with a PLS L.



MatrcHING (LP):

1. Set A?j = 0. Carry out the following for k € {1,...,n}. Let 2* be a solution to the
linear program associated with L@ A*~1. If Vi, jal, = 0, define A* = A*1 and move
on to the next k. Construct the weighted bipartite graph G = (U, V, F,w: E — Q1)
withU =V ={1,...,n}, E = {(u,v)| 2, # 0}, w(u,v) =z, .. Select amatching
M which maximizes m where | M| is the cardinality of the matching, || M|
is the weight of the matching, and ||G[| = 3. cpw(e) = 32;; 7, is the total weight
of G. Since M is a matching, the variables associated with the edges of M are
independent (that is, none of these variables occur together in a constraint) and we
may define

k if (¢,7)e M
AZ’ _ { (4,7)

Afj_l otherwise.

Furthermore, each edge of M corresponds to a non-zero variable so that L and A*
are compatible.

2. Return A*.

Notice that a matching optimizing the quantity m may be computed in polynomial
time by computing a maximum weight matching of each cardinality ¢ € {1,...,n} for which a
matching exists and selecting the optimum (see [20], for example). Hence the algorithm runs in
polynomial time.

We use the following lemma to analyze the algorithm:

Lemma 7 Let G = (U,V,E,w: E — Q%) be a weighted bipartite graph with Yu,y ", w(u

?
Then for any mazimum cardinality matching M, |M| > ||G||. Hence maxps m >

v) < 1.
1

5.
Proof: To begin with, we show that for any maximum matching M in G, there is a subset of
vertices W such that:

(i) W covers each edge in I, and
(ii) each edge in M is covered by exactly one vertex in W.

It is easy to see that picking either of the vertices of every edge in M always satisfies the second
requirement trivially. Suppose the first requirement is not met. In other words, an edge (ug,v1) ¢ M
is not covered by any vertex in the current W. By maximality of M, there is some (uy,v1) € M
such that u; € W, by condition (ii). Now, let W = W\{uq1} U{v1}. If the first condition is met,
we are done. Otherwise, it implies there is an edge (uy,v2) ¢ M such that it is not covered by
the current W. We repeat the same process now. It is clear that we cannot go indefinitely. When
we terminate, we see that (ug,v1),(v1,u1),...,(ug—1,v%) is an augmenting path, contradicting the
maximality of M.
Since for any vertex u, Y., w(u,v) < 1, the above shows that |M| > ||G||. O

We now consider the effect that stage ¢ of the above algorithm has had on the optimal solution
to the linear program. Let ¢pq4¢-1 be the optimal value of the linear program associated with



L@ A1 and 2* a vector achieving this optimal value. Consider the vector

1 ifk=tand (i,j) e M
ifk=tand (i,j)¢ M
if k#tand (1,5) e M

N .
T3k otherwise.

o

Qi =

o

a is a feasible solution to the linear program associated with L ¢ A* and

> ik > Srga-t — |G|+ [|M]].

ik
Hence ¢rgat > ¢pamar—1 — |G| + [|M|]. In this case we have set |M| variables and depressed the
optimum value of the linear program by at most ||G||—||M||. From the above lemma m >

%, so that the above algorithm is a %—approximation algorithm.

5.2 A Combinatorial Algorithm Using Matching
Consider a PLS L and define L' = {(4,j) | Vs Lis # k,Vs Lsj # k} to be the collection of cells which

will admit a ¢. Consider the following algorithm:

MATCHING:

2. For each k € {1,...,n}, consider the bipartite graph G = (U,V, F) with U =V =
{1,...,n} and E = L*. Let M be maximum matching in G Set

koo if(ij)eM
4k ”
ij_{

Afj_l otherwise.

3. Return A™.

Consider stage k of the above algorithm. Define

if (L AFDE =k
if (i,j) € M
(L@ AF=1)L  otherwise.

y

0
k _
PE=20

Notice that P* is always compatible with L& A* so that |(L@& A%)L| > |PF| > |(L@ AP 1)L —2|M]|.
(Since M is a maximum matching, (L @ A*~!)L can have no more than |M| cells assigned to k.)
This proves the following lemma.

Lemma 8 MATCHING is a %-appmmmatz'on algorithm.

The following example (Figure 6) demonstrates that our analysis of the performance of the
MATCHING algorithm is in fact tight. The PLS (left) can in fact be filled to completion (right),
but a bad choice of matching can block it (middle).

We repeat the matching step for each of the n colors. Fach matching step can be performed in
O(n*®) by the Hopcroft-Karp algorithm ([13]). Therefore, this algorithm runs in O(n>®) time.
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Figure 6: Worst-case Scenario for the Matching Algorithm

6 Extending Blocked PLSs

In many applications, the problem of completing a blocked PLS with new available colors is signifi-
cant. A natural question is this: given a blocked n x n PLS L, how many extra colors are necessary
to complete it. This can be answered exactly (in polynomial time) by constructing the bipartite
graph G/, on the 2n vertices, R;,C;,1 < 4,5 < n, such that there is an edge between R; and C}
iff L;; = 0; and observing by Hall’s theorem ([12]) that the edge set of this bipartite graph can be
partitioned into £* disjoint matchings where k™ is the maximum degree of a vertex in the bipartite
graph defined above. By coloring each such matching with a new color, we ensure that there are
no conflicts generated. Thus, £* new colors suffice. Notice that £* colors are indeed necessary since
some node of Gz, has degree k™.

In fact, one can see that £* < n/2 by a proof similar to that of Lemma 2. And, in fact £* can
be equal to n/2, as can be seen from the example in Figure 4.

A related question is this: given a blocked I, and k new colors, what is the maximum number of
entries that can be filled using these new colors. For k = 1, it is equivalent to finding the maximum
matching in G, (defined above) and hence can be exactly computed. For k > 1, this problem
is equivalent to finding disjoint matchings Mj,..., My in G such that Y%, [M;| is maximized.
This number can be exactly computed by computing a maximum flow on the following graph G.
V(Gr) =V(GL)U{s,t}, E(Gp) = E(GL)UU?:l(S,Ri)UU?ZI(C]‘,t), and c(e) = 1if e € E(Gy)
and c(e) = k otherwise. It is easy to extract the actual color assignment to edges from the maximum
flow graph.

7 Further Work

Define the latin square polytope to be

Lp=A{z € (R | Vi, jk wijp > 0,V5, kY wie <LV kY wie < 1L,Vij Y wge < 1)
; ; %

We conjecture the following:
Conjecture 1 For every vertex v € £,, V1, j,k, vi;5 = 0 or v > %

This would show that the approximation algorithm of Section 5.1 achieves a factor of 1 + Q(1).
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