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A cut of a graph is a subset of vertices of the graph. The edges of a cut arethe set of edges which go from vertices within the subset to vertices outside.2 ResultTheorem 1 Let E be any set of n distinct vertices v1; : : : ; vn in a hypercube.Let f(E) = Xi<jd(vi; vj) (where d(:; :) is the Hamming distance function).Then f(n) = minE f(E) = ( (n� 1)2 � 1 if n = 4; 8(n� 1)2 otherwise.Proof: It is clear that the minimum in the case of n = 4 and n = 8 isachieved by letting E be the set of all vertices in a two-dimensional andthree-dimensional hypercube, respectively. For all other n the minimum isachieved by taking a vertex and its n� 1 neighbours in an n� 1-dimensionalhypercube.It remains to show that we cannot do better. Consider any set with enodes of even Hamming weight and o nodes of odd Hamming weight, e+o =n. To prove our bound, we consider the (Hamming) distances between evennodes, between odd nodes, and then between even and odd nodes.It is clear that we have a lower bound of (n � 1)2 if either e or o is 1.Assume, then, without loss of generality that o � e � 2. At best, each pairof even nodes has distance 2. Similarly for the odd nodes. Consider thedistances between even and odd nodes. For each pair of even nodes e1 ande2, there are at most 2 nodes o1 and o2 which are each at distance 1 from e1and e2. The remaining o� 2 odd weight nodes are each an average distanceof at least 2 from both e1 and e2. Based on these averages one arrives (asshown below) at a lower bound for the minimum total Hamming distance of2 e2 !+ 2 o2 !+ (2(o� 2) + 2)o )eo = n2 � n � 2e:Note that n2 � n � 2e � n2 � 2n. Hence, if e 6= o, we arrive at a lowerbound of (n � 1)2. Now, consider the remaining case when e = o 6= 1.When e = 2; 4 we have explicit constructions which match the lower boundof n2 � 2n. It remains to consider the case e = o > 3. In order for the2



above argument concerning inter-node distances to be tight, the set musthave special structure. Speci�cally, any pair of nodes having the same paritymust have distance 2. This implies that the even weight nodes lie in aHamming ball of radius 1. Similarly for the odd weight nodes. The tightnessof the above argument also implies that for any two odd nodes, no even nodehas distance more than 3 from either of them.We show that this cannot occur (demonstrating that the lower boundincreases to (n�1)2). Without loss of generality, suppose 4 of the odd nodeshave addresses 0 : : : 01; 0 : : : 010; 0 : : : 0100 and 0 : : : 01000. Consider v, aneven node with non-zero weight (there must be such a node). Consideringthe cases weight(v) = 2 and weight(v) > 2 we see that v is at distance atleast 3 from some pair of these nodes.3 ApplicationThe original motivation for solving the problem of embedding complete graphsin hypercubes arose from the Mulitway or n-Way Cut problem. In the n-WayCut we are given an edge-weighted graph and n distinguished vertices calledterminals and asked for a minimum weight set of edges that separates everyterminal pair. This problem is simply the min-cut max-ow problem whenn = 2. In [DJP+ 92] it was shown that the problem becomes hard for n = 3.They also gave a simple approximation algorithm, the Isolation Heuristic,for arbitrary graphs that came within a factor of 2(1 � 1=n) of the optimal.They also gave a variant of the Isolation Heuristic which does does betterfor n = 4 and n = 8. They state in the paper, without proof, that similarapproaches are bound to fail for all other values of n. Below we formalizewhat exactly the Isolation Heuristic and related variants are doing and provethat improvements cannot be obtained, except for n = 4 and n = 8.The Isolation Heuristic (and its variant for the cases n = 4 and n = 8)can be thought of as essentially �nding a minimum cost collection of cutsthat separates all pairs of vertices in the unweighted complete graph, Kn, onn vertices. Here, the cost of a collection (of cuts) is the sum of the costs ofthe cuts in it, and the cost of a cut is just the number of edges in it.Lemma 1 If Kn has a cut collection of cost C separating all pairs of ver-tices then the n-Way Cut problem has an approximation within a factor of3



2C=n(n � 1).Proof: The proof is a straightforward averaging argument. We associateeach vertex of Kn one-to-one to a terminal of the graph in the n-Way Cutproblem. To a particular cut of Kn we correspond the equivalent min-costcut of the n-Way Cut problem graph. Consider all possible mappings of thevertices of Kn one-to-one to terminals of the graph. Since the average costis within a factor of 2C=n(n � 1) of the optimal to the n-Way Cut problemthere exists a mapping which achieves this bound. Note that we do not givean e�ective way to compute this approximate solution. At this point we areconcerned only with existence.Lemma 2 The minimum cost of any cut collection that separates all pairsof vertices of Kn is equal to f(n).Proof: Given any cut collection C = fc1; c2; : : : ; ckg we can create an em-bedding of equivalent cost in a hypercube of dimension k. We have onedimension per cut and a vertex of Kn gets mapped to that vertex of thehypercube with a 1 in the i'th position of the label i� the original vertex ofof Kn is in the ith cut. It is easy to see that if E is the set of mapped verticesthen f(E) is equal to the cost of C.Similarly, given any embedding E in a hypercube of dimension k one cancreate a cut collection of equivalent cost by having one cut for each dimensionand putting all those mapped vertices in the cut which have a 1 in the labelat the dimension corresponding to the cut.Corollary 1 The best that the Isolation Heuristic and its variants can do isto get within a factor of 2(1 � 1=n), except when n = 4 or 8 in which casethey can get within a factor of 2(1 � 1=n � 1=2n(n � 1)), of the optimal tothe n-Way Cut problem.Proof: Follows from Theorem 1 and Lemmas 2 and 3.4
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