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ABSTRACT
We introduce a notion ofuniversalityin the context of optimization
problems with partial information. Universality is a framework for
dealing with uncertainty by guaranteeing a certain qualityof good-
ness for all possible completions of the partial information set. Uni-
versal variants of optimization problems can be defined thatare
both natural and well-motivated. We consider universal versions of
three classical problems: TSP, Steiner Tree and Set Cover.

We present a polynomial-time algorithm to find a universal tour
on a given metric space overn vertices such that for any sub-
set of the vertices, the sub-tour induced by the subset is withinO(log4 n= log log n) of an optimal tour for the subset. Similarly,
we show that given a metric space overn vertices and a root ver-
tex, we can find a universal spanning tree such that for any subset
of vertices containing the root, the sub-tree induced by thesubset is
within O(log4 n= log log n) of an optimal Steiner tree for the sub-
set. Our algorithms rely on a new notion of sparse partitions, that
may be of independent interest. For the special case of doubling
metrics, which includes both constant-dimensional Euclidean and
growth-restricted metrics, our algorithms achieve anO(log n) up-
per bound. We complement our results for the universal Steiner
tree problem with a lower bound of
(log n= log log n) that holds
even forn vertices on the plane. We also show that a slight gen-
eralization of the universal Steiner Tree problem is coNP-hard and
present nearly tight upper and lower bounds for a universal version
of Set Cover.
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1. INTRODUCTION
Consider a courier who delivers packages to different houses and

businesses in a city every day. One challenge faced by the courier
is to determine a suitable route every day, given the packages to be
delivered that day. A natural question that the courier may ask is
the following: is there a universal tour of all locations, such that
for any subset, when the locations in that subset are visitedin the
order of their appearance in the universal route, then the resulting
tour is close to optimal for that subset? Such a tour can be viewed
as auniversalTSP tour.

Moving to a much larger scale, consider Walmart, which has
thousands of stores spread throughout the world. Headquarters in
Bentonville, Arkansas, may often have a need to teleconference
with various subsets of these stores. They may not wish to setup a
new multicast network for each possible subset; instead they may
wish to come up with oneuniversaltree such that for any subset
they simply restrict this tree to that subset to create the desired mul-
ticast network. And, they may wish to ensure that for every subset
it is the case that the network so generated is not much more expen-
sive than the optimal network (for the subset under consideration).

A universal solution to the Steiner tree problem described above
is also useful for sensor networks where nodes have limited mem-
ory. Low cost trees are required for data aggregation and informa-
tion dissemination for subsets of the sensor nodes. It is, however,
not realistic to expect sensors to compute and memorize optimal
trees for each subset. Universal trees provide a practical solution; a
sensor node only needs to know its parent in the universal tree while
being oblivious to the other nodes involved in the data movement.

A unifying theme among the above three scenarios is that each
seeks the design of a single structure thatsimultaneously approx-
imatesan optimal solution for every possible input. We refer to
such problems as universal problems and their solutions as univer-
sal approximations. Universal problems and approximations have
applications in scenarios where the input is uncertain; such un-
certainty may arise, for instance, due to limited knowledgeabout
the future or limited access to global information that may be dis-
tributed among multiple sources.

1.1 Our results
In this paper, we introduce a notion ofuniversalityin the context

of optimization problems with uncertain inputs, and study universal
versions of classical optimization problems.� We develop a general framework for universal versions of op-



timization problems. Our framework, which is described in
Section 2, allows the definition of a universal version of any
optimization problem, given two additional notions: a subin-
stance relation that is a partial ordering among instances,and
a restriction function that takes a solution for a given instance
and a subinstance, and returns a solution for the subinstance.

We formulate and study the Universal Traveling Salesman (UTSP),
Universal Steiner Tree (UST), and Universal Set Cover (USC)
problems. Our main technical results concern the UTSP and UST
problems.� For UTSP problem, we obtain a universal tourC for a given

metric space overn vertices such that for any subsetS of the
vertices, the sub-tour ofC induced byS is withinO(log4 n= log log n) of an optimal tour forS. For the spe-
cial case of doubling metrics, which includes both constant-
dimensional Euclidean and growth-restricted metrics, oural-
gorithm yields anO(log n) bound. These results appear in
Section 4.� We adapt our UTSP algorithm to the UST problem, and
show that given a metric space overn vertices and a root ver-
tex, one can find a spanning treeT in polynomial-time such
that for every subsetS of vertices containing the root, the
sub-tree ofT induced byS is within O(log4 n= log log n)
of an optimal Steiner tree forS. As for UTSP, our algo-
rithm achieves anO(log n) upper bound for doubling met-
rics. We complement these results with a lower bound of
(log n= log log n) for UST that holds even when all the
vertices are on the plane. These results appear in Section 5.
Our algorithms for UTSP and UST both rely on a new no-
tion of sparse partitions, defined in Section 3, that may be of
independent interest.� For USC, we show that given a weighted set cover instance
with n elements, we can compute an assignment from ele-
ments to sets such that, for any subset of the elements, the
weight of the sets to which the elements in the subset are
assigned is withinO(pn log n) of the weight of an optimal
cover for the subset. We improve the bound toO(pn) for
unweighted USC and present a matching lower bound for
this case. These results are described in Section 6.

Universal problems are naturally captured by�P2 , the second level
of the polynomial-hierarchy, since they have the followingform:
there exists (9) solution for a given instance such that for all (8)
subinstances the solution (suitably modified) is (close to)optimal.
We believe that UST and UTSP are, in fact,�P2 -hard and present
preliminary evidence towards this conjecture.� We establish the coNP-hardness of a slight generalization of

UST in which the universal tree is required to connect a
given subset of the vertices. We also establish that given a
spanning tree, finding a subset for which the tree has worst-
case performance is NP-hard. We discuss the complexity of
UST, UTSP, and USC problems in Section 7.

We hope this preliminary work will stimulate the reexamination
of classical problems in a universal context. It would be especially
interesting to identify problems for which there exist universal al-
gorithms that are almost as good (within a constant factor) as the
best algorithms in the standard approximation framework.

1.2 Related work
The existing literature contains numerous approaches for deal-

ing with the problems posed by an uncertain world. These include
competitive analysis, stochastic optimization, probabilistic approx-
imations, distributional assumptions on inputs and many others.
Here we survey a fraction of this vast body of work.

The word “universal” itself has been used many times before,no-
tably in the context of hash functions [9], and routing [27].Here,
universal has meant the use of randomization to convert a badde-
terministic performance guarantee to a good expected solution; fur-
ther the randomized solution is oblivious to (some aspects of) the
input.

The study of online algorithms considers problems in which the
input is given one piece at a time, and upon receiving an input,
the algorithm must take an action without the knowledge of future
inputs [8, 12, 26]. In contrast, a universal algorithm computes a
single solution, whose performance is measured against allpos-
sible inputs. Several researchers have considered settings where
a certain distribution over the space of input is assumed [18, 16,
17, 21]. Stochastic optimization, studied in [16, 10], is a variant
where the input is allowed to be modified rather than just com-
pleted. In these situations the goal is to optimize the expectation
over the input distribution. Recently, incremental variants of fa-
cility location problems have been introduced and studied in [19,
20, 24]. These are similar in spirit to the universal problems we
consider in that they are oblivious to the number of facilities. In
fact, these problems fit within the framework of Section 2. Simi-
larly, the recent results on oblivious routing [4, 25], whenviewed
in terms of flows rather than routes, are analogous to the universal
results in this paper; the oblivious routing solution is universal over
all demand matrices much as the solutions in this paper are univer-
sal over all subinstances of a given problem. We note that oblivious
flows are exactly computable in polynomial time [4], whereasour
problems are intractable and appear to be much harder.

Of particular relevance to our results on UST is the substantial
body of work on tree-embeddings of metric spaces [5, 6, 11]. It
follows from these results that one can construct a spanningtree
over any metric ofn vertices such that for any subset of the ver-
tices, theexpected costof the subtree induced by the subset is
within O(log n) of the optimal. From a technical standpoint, our
UST results are incomparable; while we obtain a single tree,rather
than a distribution over trees, that achieves adeterministicpoly-
logarithmic performance guarantee, our guarantee appliesonly for
subsets containing a distinguished root. It is worth notinghere
that a version of UST without a fixed root does not admit ano(n)
performance guarantee. Also related to our work is [14], which
constructs a single aggregation tree for a fixed set of sinks that si-
multaneously approximates the optimal for all concave aggregation
functions.

For the special case of UTSP on the plane, ourO(log n) bound
also follows from an early work of Platzman and Bartholdi [23].
(See also the related work of [7].) Their result is, in fact, stronger
than ours for this special case; they show that any space-filling
curve within a certain class yields a solution with anO(log n)
performance guarantee. Our overall results for UTSP are more
general, however, since ourO(log n) bound applies to doubling
metrics, and we also obtain a polylogarithmic bound for arbitrary
metrics.

As mentioned in Section 1.1, our UST and UTSP algorithms
rely on a new notion of sparse partitions. Our definition is closely
related to the sparse partitions and covers of Awerbuch and Pe-
leg [22, 3]. Indeed, the sparse covers of [3] form an integralpart of
our partitioning scheme.



2. A FRAMEWORK FOR UNIVERSAL
APPROXIMATION

In this section, we introduce a framework for universal approx-
imation of optimization problems. Let� denote any optimization
problem. LetInsts(�) denote the set of instances of�, and for any
instanceI 2 Insts(�), let Sols(I) denote the set of feasible solu-
tions for I. For a feasible solutionS of an instance, letCost(S)
denote the cost of the solution.

We develop a universal version of� in terms of two additional
notions: asubinstancerelation� and arestrictionfunctionR. The
relation� is a partial order onInsts(�); we say thatI 0 is a subin-
stance ofI wheneverI 0 � I. A restrictionR takes an instanceI
of � (I 2 Insts(�)), a subsinstanceI 0 of I (I 0 � I), and a feasi-
ble solutionS of I (S 2 Sols(I)), and returns a feasible solutionR(I; I 0; S) of I 0 (R(I; I 0; S) 2 Sols(I 0)). A universal version of� is given by the triple�,�, andR.

We now define universal approximation. Fix a minimization
problem� and an associated subinstance relation� and a restric-
tionR. Let I be an instance of� andS be any feasible solution ofI. We define thestretchof S for instanceI asmaxI0�I Cost(R(I; I 0; S))

OptCost(I 0) ;
whereOptCost(I 0) is the cost of an optimal solution forI 0. LetA denote an algorithm for�; it takes as input an instanceI and
outputs a solutionS 2 Sols(I). We say thatA has a universal ap-
proximation off for h�;�; Ri, wheref is a function from positive
integers to reals, if for every instanceI of � of sizen sufficiently
large, the stretch is at mostf(n). The definition of universal ap-
proximation can be extended to maximization problems by appro-
priately redefining the stretch.

3. SPARSE PARTITIONS
We introduce a new notion of sparse partition, which is used in

our algorithms for UST and UTSP.

DEFINITION 1 ((r; �; I)-PARTITION). A (r; �; I)-partition of
a metric space(V; d) is a partitionfSig of V such that (i) the di-
ameter of every setSi in the partition is at mostr � � and (ii) for
every nodev 2 V , the ballBr(v) intersects at mostI sets in the
partition, whereBr(v) = fu 2 V jd(u; v) � rg.

A (�; I)-partition scheme is a procedure that computes a(r; �; I)-
partition for anyr > 0.

3.1 General metric spaces
We present a polynomial-time(O(log n); O(log n))-partition

scheme for general metric spaces. This is obtained using the sparse
cover construction of Awerbuch-Peleg [3]. A cover of someU �V is defined to be a collection of subsets ofV , such that for anyv 2 U , there is a subset containing it in the collection. Given a
metric space(V; d), and a realr, and a coverfBr(v)jv 2 V g,
Awerbuch and Peleg give a polynomial-time algorithm to compute
a (coarsening) coverC such that (see Theorem 3.1 of [3]): (1) for
eachv 2 V , Br(v) is contained in at least one set inC; (2) every
vertexv is contained in at most4dlog ne sets inC; (3) each set inC has radius at most2rdlog ne.

We compute a partitionP from C as follows. For eachv we
select an arbitrary setS(v) in C that containsBr(v). We setP =ffv : S(v) = Sg : S 2 Cg � f;g.

LEMMA 1. The collectionP is a(r; 4dlog ne; 4dlog ne)-partition.

PROOF. Since eachv is assigned to a uniqueS(v), P is a parti-
tion. Also, since every set inP is a subset of a set inC, and every
set inC has radius at most2rdlog ne by property 3, every set inP has diameter4rdlog ne. It remains to show that for every nodev, Br(v) intersects� 4dlog ne sets inP. Consider two distinct
setsX andY in P that intersectBr(v); let x andy be nodes inX \ Br(v) andY \ Br(v), respectively. It follows that nodev
belongs to bothBr(x) andBr(y), which are contained inS(x)
andS(y), respectively. SinceX andY are distinct, so areS(x)
andS(y). Thus the number of sets inP that intersectBr(v) is at
most the number of sets inC that containv, which is bounded by4dlog ne by property 2 above.

3.2 Special metric spaces
We present an improved partition scheme for doubling metric

spaces, which include constant dimensional Euclidean spaces and
growth-restricted metric spaces. A metric space(V; d) is called
doubling if every ball inV can be covered by at most� balls of
half the radius [15]. The minimum value of such� is called the
doubling constantof the space.

LEMMA 2. For a doubling metric space(V; d) with doubling
constant�, a (r; 1; �3)-partition can be computed efficiently for
anyr > 0.

PROOF. Given the metric space(V; d) andr, we compute the
partition as follows. Start fromi = 1, pick some arbitrarysi 2V 0 = V , let Si = fv 2 V 0 : d(si; v) � r=2g. V 0  V 0 �Si; i = i + 1. Repeat untilV 0 is empty. LetS be the collection
of the centers, si, of the partition subsets. Obviously,8x; y 2S; d(x; y) > r=2. We verify the two conditions. The diameter
of each partition subset is at mostr by construction; As for the
intersection condition, consider any ballBr(v); v 2 V , and assume
that it intersectsm partition subsetsSi. Now,B2r(v) completely
contains these subsets, and it can be covered by at most�3 balls
of radiusr=4 due to the doubling property. But coveringS, them centers of these subsets, requires at leastm balls of radiusr=4.
Hencem � �3.

While the existence of(O(1); O(1))-partition schemes for con-
stant dimensional Euclidean and growth-restricted metricspace fol-
lows from the lemma above, we obtain slightly better parameters by
a more direct argument.

LEMMA 3. If the points are ink-dimensional Euclidean space,
a (�;pk(2 + �); 2k)-partition can be computed efficiently for any� > 0.

PROOF. Divide the space intok-cubes with edge size(2 + �)�,
where� is any positive real. Eachk-cube is a potential set of the
partition we want, each nodev is assigned to somek-cube that
contains it. It is easy to see that the resulting nonemptyk-cubes
form a(�;pk(2 + �); 2k)-partition.

It is known that growth-restricted metrics form a subclass of dou-
bling metric space [15].

For the sake of completeness, we provide a proof below.

LEMMA 4. A growth-restricted metric space(V; d)with expan-
sion rate is a doubing metric space with doubling constant� �4.

PROOF. Consider anyr > 0 and letB0 be any ball of radiusr,B be the concentric ball with radius54 r. We want to coverB0 by
balls of radiusr=2 and bound the number of such balls used. LetS � B0 be a set of maximally separated points, such that8x; y 2



S; d(x; y) > r=2. The balls centered at points ofS with radiusr=2 coverB0. Once we show thatjSj � 4, the lemma is proved.
Note for eachsi 2 S, B3r(si) coversB, hencejB3r(si)j � jBj.
By the growth restriction property,jBr=4(si)j � jB3r(si)j=4 �jBj=4. Observe thatBr=4(si) � B andBr=4(si) is disjoint fromBr=4(sj) if i 6= j. Therefore,jBj � jSjXi=1 jBr=4(si)j � jSj � jBj=4
We conclude thatjSj � 4, and this completes the proof.

Lemmas 2 and 4 imply that for a growth-restricted metric space(V; d) with expansion rate, a (�; 1; 12)-partition can be com-
puted efficiently for any� > 0. We show slightly better parameters
in the following lemma.

LEMMA 5. For a growth-restricted metric space(V; d)with ex-
pansion rate, a (�; 4; 3)-partition can be computed efficiently for
any� > 0.

PROOF. Given the metric space(V; d) and�, we compute the
partition as follows. Start fromi = 1, pick some arbitrarysi 2V 0 = V , letSi = fv 2 V 0 : d(si; v) � 2�g. V 0  V 0 � Si; i =i+ 1. Repeat untilV 0 is empty. LetS be the collection of thecen-
ters, si, of the partition subsets. Obviously,8x; y 2 S; d(x; y) >2�. We verify the two conditions. The diameter of each parti-
tion subset is at most4� by construction; As for the intersection
condition, consider any ballB�(v); v 2 V , and assume that it in-
tersectsm partition subsets. Wlog, let the subsets beSi centered
at si, i = 1; : : : ;m. Let B = [mi=1B2�(si). For eachsi, we
haveB � B8�(si). Hence, by the growth-restriction property,jB�(si)j � jB8�(si)j=3 � jBj=3. ButB�(si) � B andB�(si)
is disjoint fromB�(sj) for i 6= j. Therefore,jBj � mXi=1 jB�(si)j � m � jBj=3
from which we conclude thatm � 3. This proves the intersection
condition and hence the lemma.

4. UNIVERSAL TSP
We present a polynomial-time algorithm for UTSP that achieves

polylogarithmic stretch for arbitrary metrics and logarithmic stretch
for doubling metrics.

DEFINITION 2 (UTSP). An instance ofUTSPis a metric space(V; d). For any cycle (tour)C containing all the vertices inV and
a subsetS of V , let CS denote the unique cycle overS in which
the ordering of vertices inS is consistent with their ordering inV .
The stretch ofC is defined asmaxS�V kCSk=kOptTrSk, where
OptTrS denotes the minimum cost tour on setS. The universal
traveling salesman problem is to find a tour onV with minimum
stretch.

In the framework of Section 2, we have: (i) for any instanceI =(V; d), Sols(I) is the set of Hamiltonian cycles overV ; (ii) a subin-
stance of(V; d) is (V 0; d0), whereV 0 � V andd0 is the restric-
tion of d to V 0; and (iii) for any instanceI = (V; d), subinstanceI 0 = (V 0; d0), and solutionC for I,R(I; I 0; C) isCV 0 .

Our polynomial-time algorithm, UTSP-ALG defined below, ob-
tains a spanning tree by applying a subroutine CONSTRUCTTREE

to the underlying set of vertices and then returns a tour obtained by
traversing the vertices inorder, according to the tree. Theconstruc-
tion of the spanning tree relies on a hierarchical decomposition of

the vertices by iteratively applying the partitioning scheme intro-
duced in section 3. Also, the output from CONSTRUCTTREE(U)
can be viewed as a decomposition tree ofU , where the vertices
of U are the leaves located at the bottom level, and all the inter-
nal vertices (leaders) arecopiesof some vertices ofU . Physical
treesT (i) can be trivially obtained from the tree returned from
CONSTRUCTTREE(U) by collapsing copies of each vertex. This
view of a leveled decomposition tree is helpful for the analysis of
UTSP and the presentation of our UST algorithm.

Algorithm 1 UTSP-ALG
Input: Metric space(V; d).

1. T = CONSTRUCTTREE(V ).
2. Output: Recall thatT is a leveled decomposition tree where the vertices

of V are located at the bottom level, and all the other vertices are (vir-
tual) copies of some vertices ofV . Return a tourC on V obtained by
traversingT in a depth-first manner, starting from the root of the tree.

CONSTRUCTTREE(U)
1. Initialization. SetD to diameter ofU , S0 = U , j = 0, andT = ;.
2. Levels of hierarchy. While jSj j > 1 do

a. Using a(�; I)-partitioning scheme, compute a(rj ; �; I)-partitionP
of Sj , with rj = minfD; �jg, where� = 4�.

b. For every setX in P , select an arbitrary vertex inX as leader(X);
add toT an edge between each vertexv in Sj and the leader of the
set inP that containsv. If v = leader(X), the edge between them is
virtual and of cost zero.

c. SetSj+1 = fleader(X) : X 2 Pg, andj = j + 1.

3. ReturnT .

The following theorem is the main result of this section.

THEOREM 1. Given a metric space(V; d)withn vertices and a(�; I)-partitioning scheme,UTSP-ALGreturns a tour with stretchO(�2I log� n) in polynomial time.

It is clear that the above algorithm is polynomial-time. We assume,
without loss of generality, that the minimum distance between any
pair of vertices is 1.

We first analyze the procedure CONSTRUCTTREE, called on an
input setU of vertices. For any vertexv in U and j, we define`(v; j) as the unique vertex inSj that is an ancestor ofv in T .
Note that`(v; 0) is v. We place an upper bound ond(v; `(v; j))
as follows. Since the cost of an edge between a vertex inSk and
its parent vertex inSk+1 is at most�k� (by property (i) of the
partition), we obtain (wlog, assume� � 3)d(v; `(v; j)) � j�1Xk=0 d(`(v; k); `(v; k + 1)) � j�1Xk=0 �k� � 32�j�1�

(1)
LetT denote the tree returned by CONSTRUCTTREE(U). LetS be
any subset ofU . Our analysis of the stretch achieved by UTSP-ALG
relies on an upper bound on the cost ofTS, which is obtained by
bounding the cost of the edges at each level ofTS separately as
follows. For anyj � 1, letPSj be a maximal subset of vertices ofS that are pairwise separated by distance at least�j�1�.

LEMMA 6. For j � 2, the cost of edges inTS at levelj is at
mostjPSj�1j�j�I.

PROOF. Consider the setX = f`(v; j � 1) : v 2 PSj�1g
andY = f`(v; j � 1) : v 2 Sg. Note thatX is a subset ofY , which is a subset ofSj�1. SincePSj�1 is a maximal subset
with pairwise separation at least�j�2�, each vertex inS is within�j�2� of some vertex inPSj�1. By Equation 1, each vertexv



in S (resp.,PSj�1) is within 1:5�j�2� of `(v; j � 1), which lies
in Y (resp.,X). Therefore, each vertex inY is within 4�j�2� of
a vertex inX (for n, sufficiently large). Thus the balls of radius�j�1 = 4�j�2� around the vertices inX coverY . Consider the
partitioning ofSj�1. The balls of radius�j�1 around vertices inX, taken together, intersect all the sets in the partition that contain
the vertices inY . By property (ii) of the partitioning scheme, the
number of such sets is at mostjXjI. The total cost of edges at levelj is at mostjXjI�j� � jPSj�1j�j�I.

The following technical lemma is useful in our analysis.

LEMMA 7. If mi � 1; i = 1; : : : ; k,  � 2, thenkXi=1mi � i � �log(maxi mi) + 3� �maxi (mi � i)
PROOF. Let M = maximi, N = maxi(mi � i), andi0 =dlog NM e. Sincek � mk � k � N , we havek � logN . NowkXi=1mi � i = i0�1Xi=1 mi � i + kXi=i0mi � i� 2M � i0�1 + (k � i0 + 1)N� 2N + (logN � log NM + 1)N= (logM + 3)N

Proof of Theorem 1: Let S � V , T be the tree constructed by
CONSTRUCTTREE(V ), andTS be the induced subtree ofT by S.
It is easy to see thatCS can be obtained directly fromTS by an
inorder walk from root ofTS. Hence the cost ofCS is at most
twice that ofkTSk. In fact we can say something more general.
LetSj denote the set of vertices at levelj of TS and letmj = jSj j.
For anyk � 1, if the pairwise distance between any two vertices inSk is at mostB, thenkCSk � mk � B + 2 k�1Xj=0mjrj� (2)

For j = 0 or 1, mjrj� is O(jSj�2), which isO(�2kOptTrSk).
Recall that for anyj � 1, PSj is a maximal subset of vertices ofS that are pairwise separated by distance at least�j�1�. Let j�
denote the smallest value ofj at whichjPSj�1j = 1; if no suchj
exists, then letj� be the value ofj at the root ofTS. By Lemma 6,
we obtain that forj < j�, mjrj� is at mostjPSj�1j�j�I. On
the other hand, the cost of an optimal tour overS has cost at leastjPSj�1j�j�2�. Thus, forj < j�, mjrj� is O(kOptTrSk�2I).
Plugging this bound into Equation 2 withk = j� and invoking
Lemma 7, we obtainkCSk � mj�B +O(log� jSj � �2I � kOptTrSk);
whereB is the maximum pairwise distance between vertices inXj� .

By the definition ofj�, eitherjPSj��1j = 1 or jSj� j = 1. In
the former case,B is at most(1:5 + 2 + 1:5)�j�1� = 5�j�1�,
andmj�B � 5mj��1�j�1� = 5mj��1rj�1�. In the latter case,mj� = 1 andB = 0. Thus, we havemj�B isO(�2IkOptTrSk).
Therefore,kCSk isO(log� jSj � �2I �kOptTrSk), completing the
proof of the theorem.

Applying the parameters from Lemmas 1, 2, 3 and 5 to The-
orem 1, we derive the stated bounds on the stretch achieved by
UTSP-ALG in general and special metric spaces.

COROLLARY 1. For any metric space overn vertices, the algo-
rithm UTSP-ALGreturns a tour with stretchO(log4 n= log log n).

COROLLARY 2. For any doubling, Euclidean, or growth-restricted
metric space overn vertices,UTSP-ALGreturns a tree with stretchO(log n).

We remark here that if the underlying vertices (V ) are in Eu-
clidean space, we can give a succinct description of our universal
ordering, which is, in fact, independent ofV . This property is a
key aspect of the work of [23] on the use of space-filling curves for
TSP on the plane. We omit the details from this extended abstract.

5. UNIVERSAL STEINER TREES
We present a polynomial-time algorithm for UST that achieves

polylogarithmic stretch for arbitrary metrics and logarithmic stretch
for doubling metrics (Section 5.1), and also derive a nearlylogarith-
mic lower bound for the optimal stretch achievable in the Euclidean
plane (Section 5.2).

We begin by introducing some notation and definitions. Givena
metric space(V; d), whereV is the underlying set of vertices andd
is the metric distance function overV , let� = maxu;v2V fd(u; v)g
denote the diameter ofV and� = blog(�). We assume, without
loss of generality, that the minimum distance between any pair of
vertices is 1. For any graphG = (V;E) over the vertices in the
metric space(V; d), we define the cost ofG, kGk, to be the sum of
the distances of the edges ofG according to the metricd; that is,kGk = P(u;v)2E d(u; v). For any treeT spanningV and subsetS of V , let TS denote the minimal subtree ofT that connectsS.
For notational convenience, we useS + x to denoteS [ fxg, for
any setS. We denote by OptStS a minimum Steiner tree spanningS.

DEFINITION 3 (UST). An instance of the Universal Steiner
Tree (UST) problem is a triplehV; d; ri where(V; d) forms a met-
ric space, andr is a distinguished vertex inV that we refer to as
the root. For any spanning treeT of V , define thestretchof T asmaxS�V kTS+rk=kOptStS+rk. The goal of theUST problem is
to determine a spanning tree with minimum stretch.

In the framework of Section 2: (i) the set of solutions of any in-
stanceI, Sols(I), is the set of spanning trees; (ii) a subinstance of a
UST instancehV; d; ri is a triplehV 0; d0; ri, whereV 0 is a subset
of V that containsr, andd0 equalsd restricted to the subsetV 0;
and (iii) for any instanceI = hV; d; ri, a spanning treeT of V , and
any subinstanceI 0 = hV 0; d0; ri,R(I; I 0; T ) is given byTV 0 .
5.1 A UST with polylogarithmic stretch

Our algorithm, UST-ALG defined below, begins by organizing
the vertices of the metric space in “bands”, according to thedis-
tance from the root, and then computing, for each band, a treethat
spans the vertices within the band and the root using the subroutine
CONSTRUCTTREE introduced in UTSP-ALG. We formalize the
notion of bands in the following.

For a nonnegative integeri, we define abandof level i, denoted
by Bandi, to be a set of vertices with distance fromr of at least2i
and less than2i+1; thus, Bandi = fv 2 V j2i � d(r; v) < 2i+1g.
A setS is said to bebandedif all the vertices ofS lie in Bandi, for
somei; 0 � i � �. A tree is said to berooted if it containsr. A
rooted tree is said to bebandedif all the vertices inT � frg lie in
Bandi for somei; 0 � i � �. A rooted tree is said to bebandwise
if it is the edge disjoint union of banded trees with at most one
banded tree for eachi; 0 � i � �.



THEOREM 2. Given a metric space(V; d) with n vertices, a
root r 2 V , and a(�; I)-partitioning scheme for(V; d), a spanning
tree with stretchO(�2I log� n) can be constructed in polynomial
time.

Algorithm 2 UST-ALG
Input: Metric space(V; d) and a rootr.

1. Bandwise decomposition. PartitionV into bands, Bandi for 0 � i � �.
2. Bandwise tree. For0 � i � �, T (i) = CONSTRUCTTREE(Bandi).
3. Output. Connect the root ofT (i) to r, for 0 � i � �, and return the

union of the resulting trees.

It is clear that our algorithm is polynomial-time. The approxi-
mation guarantee ofO(�2I log� n) is obtained in two steps. We
first show that for any subsetS there exists an equivalent bandwise
rooted tree whose value is within a constant factor of the optimal
rooted Steiner tree onS. This allows us to restrict our attention
only to banded sets. We then show that for any banded setU ,
CONSTRUCTTREE(U) returns a tree with cost withinO(�2I log� n)
of the optimum.

LEMMA 8. For any subsetS of V containingr, there exists a
bandwise rooted tree spanningS with cost within a constant factor
of kOptStSk.

PROOF. Let Si = (S \ Bandi) + r for 0 � i � �. LetSo = [i oddSi andSe = [i evenSi. Do an Euler walk on the
tree OptStS that visits all vertices inS and split the walk into
two trees, using shortcuts, one spanningSo and the other span-
ning Se. Let these trees beTe andTo. Since the Euler walk tra-
verses each edge at most twice and shortcuts do not increase cost,
we obtain thatkTek � 2kOptStSk andkTok � 2kOptStSk, i.e.kTek + kTok � 4kOptStSk. Observe thatTe andTo are disjoint.
Let T = Te [ To.

Define an inter-band edge to be any edge such that neither of
the endpoints is the root and the two endpoints are not in the same
band. Lete = (u; v) 2 T be such an inter-band edge. Letu be in
Bandi andv in Bandj wherei � j � 2. Note thatkek � 2j�1.
Consider the two edges(r; v) and (r; u). Note thatk(r; u)k �2i+1 � 2j�1 � kek. Thus,k(r; u)k + k(r; v)k � 2k(r; u)k +k(u; v)k � 3kek. Hence, if we removee and replace it with the
two edges(r; v) and(r; u), then we increase the cost by at most3kek. Observe that while the resulting graph may not be a tree, it
continues to be connected. We perform this operation of replacing
every inter-band edge by two edges from the root to its endpoints
to yield a graph that spans all the vertices inS and has cost at most3kTk. We select an arbitrary spanning treeT � of the resulting
graph. TreeT � has no inter-band edges and hence is a bandwise
rooted tree. Thus we have a bandwise rooted tree spanningS with
cost at most12kOptStSk.

LEMMA 9. Let T denote the rooted tree obtained after con-
necting the root ofCONSTRUCTTREE(Bandi) to r, for somei,0 � i � �. For any subsetSr � Bandi + r containingr, kTSrk is
at mostO(�2I log jSrjlog � kOptStSrk).

PROOF. Wlog, we assume thatjSj � 2. LetS beSr�frg. The
cost of the edge connectingr to the root of CONSTRUCTTREE(Bandi)
is clearly at most2kOptStSrk. So we focus our attention on the re-
maining subtreeTS of TSr . Our algorithm starts with a radius of1 and increases the radius at each level by a factor of� until the
radius exceedsD, which is at most2i+2, after whichjSj j will be
1. Consider the treeTS , letmj be the number of vertices at levelj

(e.g.,m0 = jSj). Using Lemma 7,kTSk, the cost of treeTS can
be bounded as follows:Xj mjrj� �Xj mj�j� � (log�m0 + 3)maxj mj�j� (3)

The strategy of our proof is to show that at each levelj, the bound
on the cost of the edges selected forTS, mj�j�, does not exceedkOptStSrk by more than a factor ofO(�2I). Hencemaxjmj�j� �O(�2I)kOptStSrk and the total cost ofTS isO(�2I log jSjlog � ) times
that ofkOptStSrk.

The arguments forj = 0 and j = 1 differ from those at the
third and higher levels. Consider the levelj = 0. Observe thatkOptStSrk � jSj since there are at leastjSj edges in OptStSr and
each edge has cost at least1. The cost of the edges ofTS at level0 is at mostjSjr0� = jSj�, while at level1 is at mostjSjr1� =4jSj�2. Therefore, the total cost of edges at both levels 0 and 1 isO(�2IkOptStSrk).

For levelj � 2, we have an upper bound on the cost of the edges
of TS from Lemma 6. We now place a lower bound on the cost of
the optimal Steiner tree onSr. If jPSj�1j > 1, we derive a lower
bound as:kOptStSrk � kOptStSk � (jPSj�1j�j�2�)=2:
If jPSj�1j = 1, we derive a lower bound as:kOptStSrk � 2i � �j�1=4 � jPSj�1j�j�2�=2:
Using the bound from Lemma 6, we obtain that forj � 2,mjrj� �2�2IkOptStSrk = 32�2IkOptStSrk. And using Equation 3 men-
tioned above, we obtain thatkTSk is within a factor ofO(�2I log jSjlog � ) of kOptStSrk. SincejSrj = jSj + 1, the lemma is
proved.

Proof of Theorem 2: Putting Lemma 8 and Lemma 9 together, we
can now prove the main theorem. Construct the bandwise rooted
spanning treeT � on the setV as specified in the algorithm above.
Consider any subsetS of the vertices containingr. First observe
that by Lemma 8 there exists a bandwise rooted treeZ on the
setS such thatkZk is within a constant factor ofkOptStSk. LetSi = (S \ Bandi) + r for 0 � i � �. Let Zi denote the rooted
banded subtree ofZ spanningSi for 0 � i � �. By Lemma 9,kT �Sik is within O(�2I log� jSij) of kOptStSik and hence withinO(�2I log� jSij) of kZik. But by definitionkZk = �0�i��kZik
andkT �Sk = �0�i��kT �Sik. Hence by summing over all bands we
get thatkT �Sk is withinO(�2I log� jSj) of kZk and hence withinO(�2I log� jSj) of kOptStSk.

We can instantiate Theorem 2 with parameters from Lemma 1,� = 4dlog ne andI = 4dlog ne, to derive the following corollary.

COROLLARY 3. For any metric space overn vertices,UST-ALG
returns a tree with stretchO(log4 n= log log n).
For special metrics, we can apply the parameters from Lemmas2,
3 and 5 to derive the following bound.

COROLLARY 4. For any doubling, Euclidean, or growth-restricted
metric space overn vertices,UST-ALG returns a tree with stretchO(log n).

As in the case of UTSP, for the special case of vertices in Eu-
clidean space, we can give a succinct description of our universal
tree, which is, in fact, independent of even the global setV of ver-
tices.



5.2 A lower bound for UST

We exploit a straightforward relation between universal Steiner
tree problem and online Steiner tree problem to prove a lowerbound
for UST.

THEOREM 3. There exists a set ofn vertices in two-dimensional
Euclidean space, for which every spanning tree has an
( log nlog log n )
stretch.

We derive the above theorem from a result of Alon and Azar for the
online Steiner tree problem [2]:

THEOREM 4 ([2], THEOREM 1.1). No on-line algorithm can
achieve a competitive ratio which is better than
(log n= log log n)
for the Steiner tree problem ofn vertices in the plane, or even forn vertices in then byn grid.

We make use of the lower bound forn � n grid. Given any algo-
rithm A for contructing a UST with stretchs, we obtain an online
algorithm as follows. Letv1 be the first vertex given. Build a USTT spanning then2 grid vertices with rootv1. For each vertexvi
given, connect it to the previous ones by following edges ofT .
SinceT has a stretch ofs, the competitive ratio thus achieved for
the online Steiner tree problem is at mosts. But according to Alon
and Azar’s result presented above, this ratio is
(log n= log log n).
Hences is also
(log n= log log n).
6. UNIVERSAL SET COVER

In this section, we define the universal set cover problem and
present nearly tight upper and lower bounds for the problem.

DEFINITION 4 (UNIVERSAL SET COVER (USC)). An instance
of USC is a triple hU;C; i, whereU = fe1; e2; : : : ; eng is a
ground set of elements,C = fS1; S2; : : : ; Smg is a collection of
sets, and is a cost function mappingC to Q+. We define anas-
signmentf as a function fromU to C that satisfiese 2 f(e) for
all e in U . We extend the definition off to apply to anyS � U
as follows: f(S) is the setff(e) : e 2 Sg. We next define the
cost off(S), kf(S)k, as

PX2f(S) (X) and thestretchof an as-

signmentf asmaxS�U (f(S))Opt(S) , whereOpt(S) is the cost of the
optimal (minimum) set cover solution toS. And the goal is to com-
pute an assignmentf with minimum stretch.

In the framework of Section 2, we have: (i) the set of solutions for
any instanceI, Sols(I), is the set of assignments forI; (ii) a subin-
stance of a USC instancehU; C; i is a triplehU 0; C; i satisfyingU 0 � U ; and (iii) for any instanceI = hU; C; i, a assignmentf
for I, and any subinstanceI 0 = hU 0; C; i, R(I; I 0; f) is given byf restricted to the domainU 0.
Algorithm 3 USC-ALG

1. D ;.
2. WhileD 6= U , do

Find the setS that minimizes (S)pjS�Dj ; we refer to this ratio as the cost-

effectiveness ofS. For everye 2 S �D, we setf(e) = S.
3. Outputf .

THEOREM 5. For any USC instance withn elements,USC-
ALG has a stretch ofO(pn lnn).

PROOF. LetS be an arbitrary subset ofU and lets = jSj. We
consider two cases. The first case is whenS is in C. Let k be the

number of iterations performed by the algorithm in step2, and letS1; S2; � � � ; Sk be the sets selected in that order. For a given setSi, let Ni (resp.,ni) be the number of elements inU (resp.,S)
that are assigned toSi by the algorithm. That is,Ni = jfe 2 U :f(e) = Sigj andni = jfe 2 S : f(e) = Sigj. SinceS is always a
candidate set, our selection ofSi according to the cost-effectiveness
criteria implies that(Si)pNi � (S)ps� n1 � � � � � ni�1
By reordering, summing up, and invoking Schwarz inequality, we
get (S1) + (S2) + � � � + (Sk)(S)� pN1ps + pN2ps� n1 + � � � + pNkps� n1 � � � � � nk�1� vuut kXi=1 Ni �r1s + 1s� n1 + � � �+ 1s� n1 � � � � � nk�1� pn �O(pln s)= O(pn lnn)

We now consider the second case whenS 62 C. LetS1; S2; � � � ; Sk
be an optimal collection of sets that together coverS. From the first
case, we know that(f(Si)) � O(n lnn)(Si). Hence(f(S)) �Pi (f(Si)) � O(n lnn)Pi (Si).

For the special case of USC in which every set in the collectionC has the same cost, a slightly more careful analysis of USC-ALG
achieves an upper bound of

p2n.
The proof is similar to that for USC and we just provide a brief

sketch here. We only consider the first case. The second case car-
ries over similarly from the first as in USC. Using the same nota-
tions as in the proof of Theorem 5, we obtain for the first case:1pNi � 1pni + ni+1 + � � �+ nkNi � ni + ni+1 + � � �+ nk � k � i+ 1
Summing them up, we haven � N1 + � � �+Nk � k(k + 1)=2 � k2=2
Hence,(f(S))Opt(S) = k � p2n.

THEOREM 6. There exists ann-element instance ofUSCwith
uniform costs for which the best stretch achievable is
(pn).

PROOF. Let q be some prime number between
pn=2 and

pn,
whose existence is justified by the well known Bertrand postulate.
We now describe then elements of the ground setU . We includeq2 elements, each represented by(x; y), for all x andy belonging
to the finite fieldZq. We also include an additionaln�q2 elements,
denoted bye1; : : : ; en�q2 , respectively, to complete the definition
of U .

We now describe the covering set collectionC. Consider the
collections of subsets defined as follows:Sa;b; = f(x; y) 2 U : x 2 Zq; y = Pa;b;(x)g
wherea; b;  2 Zq andPa;b;(x) = ax2 + bx+  is a polynomial
of degree at most 2 overZq which uniquely identifiesSa;b;. Witha; b;  ranging overZq , we obtainq3 distinct subsets ofC. We also
add one more subsetS0 = fei : 1 � i � n � q2g to complete the
definition ofC. And let the cost of each subset be 1.



Let f be any assignment for the above USC instance. We focus
our attention on theq2 elements. Since each element ofU is as-
signed to a single subset ofC andq3 > q2, we know that at least
one ofSa;b; is not assigned to byf . The optimal cost forSa;b;
is 1. Since no two distinct polynomials of degree at most 2 can
intersect at more than 2 points,Sa;b; does not intersect with any
otherSa0;b0;0 on more than 2 elements. Therefore, the actual cost
incurred by the assignmentf is (f(S)) � q2 . This proves that the
achievable stretch is lower bounded byq=2 = 
(pn).

Thus our lower bound is within a constant factor of the upper
bound for the unweighted USC and within anO(plog n) factor in
general.

7. ON THE COMPLEXITY OF UST, UTSP,
AND USC

In this section, we analyze the complexity of the universal prob-
lems studied in this paper. We begin by establishing the co-NP-
hardness of a slight generalization of the UST problem in which
the input terminals are constrained to be selected from a specified
subset of nodes.

DEFINITION 5 (TCUST). We are given a metric(V; d), ar 2V , a setU � V (of allowed terminals), a boundB 2 Q+. Is there
an undirected treeT that connectsr, U , and possibly other ver-
tices, such that maxW�U kTW[frgkkOptStW[frgk � B?
(Recall that for any setX of edges,kXk is the sum of the met-
ric distances of the edges and for any setS, OptStS is an optimal
Steiner tree forS.)

THEOREM 7. TCUSTis coNP-hard.

PROOF. Our proof is by a reduction from the unweighted undi-
rected minimum Steiner tree problem UNWEIGHTED-STEINER-
TREE[13, page 208]. An instance of the UNWEIGHTED-STEINER-
TREEproblem consists of an undirected graphG = (V;E), a sub-
setR � V , and a positive integerk, and we are asked whether
there exists a subtree ofG that includes all the vertices ofR and
uses no more thank edges.

We now describe the reduction from UNWEIGHTED-STEINER-
TREE to TCUST. Given an UNWEIGHTED-STEINER-TREE in-
stanceGs = (Vs; Es) and anR � Vs and ak (let n = jVsj; m =jRj), we construct a metric space(V; d) of TCUST as follows.
The vertex setV includes the setVs, a new vertexr, and for eachri 2 R; i = 1; : : : ;m, a pair of new vertices,xi; yi. For conve-
nience, we denote the collection of allxi’s andyi’s asX andY
respectively. We now describe the distance functiond. We classify
the edges of the complete graph overV into two categories.� Physical edges: For each(u; v) 2 Es, we setw(u; v) =1. We setw(r; r1) = L = n4. w(ri; xi) = w(ri; yi) =2C; w(xi; yi) = C, whereC = n2.� Virtual edges: For any other edge(u; v) whose weight has

not been defined, we setw(u; v) to the lightest path weight
betweenu andv using only physical edges.

By construction, the functiond is a metric. To complete the con-
struction of an instance of TCUST we need to specify the root,
the setU of allowable terminals, and the boundB. We taker
as the root, and takeR [ X [ Y as the setU . Let the bound

B = L+k+1+4C�mL+k+1+3C�m . This completes the reduction, which is clearly
polynomial time.

We now prove that there exists a tree for the TCUST instance
with stretch at mostB if and only if the minimum Steiner tree for
the UNWEIGHTED-STEINER-TREE instance has at leastk edges,
thus establishing the coNP-hardness of TCUST.

Let ST (Gs) be a minimum Steiner tree for the UNWEIGHTED-
STEINER-TREEinstance. Consider the treeT = ST (Gs) [ f(r; r1)g [ m[i=1f(ri; xi)g [ m[i=1f(ri; yi)g:
By construction,T connects all the terminals inU and the rootr.
In the following, we show thatT is an optimal tree for the TCUST
instance in the sense that it achieves minimum stretch. We first
observe that for treeT , a subsetW � U that maximizes the stretch
of T isW = U , and thusp(T ) = L+w(ST (Gs)) + 4C �mL+w(ST (Gs)) + 3C �m
which is a decreasing function ofn and equals1 in the limit. We
assume henceforth thatn is large enough thatp(T ) < 1:01.

Now consider any treeT 0 that connectsU andr. If T 0 contains
two edges incident onr, then we letW consist of two vertices inU that belong to two different branches ofT 0 rooted atr. The ra-
tio kT 0W[frgk=OptStW[frg approaches2 asn increases, implying
that the stretch ofT 0 is at least that ofT .

In the remainder, we assume thatT 0 contains only one edge adja-
cent tor. Consider some pairxi; yi, and letx0i (resp.,y0i denote the
first hop on the path inT 0 fromxi (resp.,yi) tor. Letx�i , (resp.,y�i )
denote the first hop on a lightest path, using only physical edges,
from xi to x0i (resp.,yi to y0i). If both x�i andy�i are equal tori,
then we denote the scenario byxi ./ yi. If only x�i = ri (resp.,y�i = ri), theny�i = xi (resp.,x�i = yi); we denote such a sce-
nario byyi ` xi (resp.,xi ` yi). It is easy to see thatx�i = yi andy�i = xi can not happen at the same time.

We pick a subsetW � U for T 0 as follows. For eachi: ifxi ./ yi, we add bothxi andyi to W ; if xi ` yi, addyi to W ;
otherwise (yi ` xi), we addxi toW . Out of them pairs ofxi; yi,
let t be the number of pairs such thatxi ` yi or yi ` xi. Note that0 � t � m. We now estimate the ratio ofW onT 0.T 0 (W [ frg) � L+ w(ST (Gs)) + 4C � (m� t) + 3C � t= L+ w(ST (Gs)) + 4C �m� C � tkOptStW[frgk � L+ w(ST (Gs)) + 3C � (m� t) + 2C � t= L+ w(ST (Gs)) + 3C �m� C � t
Hencep(T 0) � p(T ).

We have thus shown that the optimal stretch achievable for the
TCUST instance isp(T ). Sincep(T ) is a decreasing function ofw(ST (Gs)), it follows that the optimal stretch for the TCUST
instance is at mostB if and only if the optimal Steiner tree for the
UNWEIGHTED-STEINER-TREE instance has more thank edges.
This completes the proof of coNP-hardness of TCUST.

In studying the complexity of UST, a natural problem to con-
sider is the following: given a spanning tree, determine thesubset
of vertices (containing the root) for which the tree has the worst
performance, when compared with an optimal Steiner tree forthe
subset. The formal definition is as follows:

DEFINITION 6 (MAX RATIO SUBSET PROBLEM (MRS)). An
instance of the MRS problem is a finite metric space(V; d), with



vertex setV and metric functiond : (V; V ) ! Q+, some span-
ning treeT , with edge weights specified byd(�; �), a specified ver-
tex r 2 V and a lower boundB 2 Q+. The decision ques-
tion is whether there is a nonempty subsetW � V , such thatT (W[frg)Opt(W[frg) � B, whereT (W [ frg) is the cost of connect-
ingW andr using only the edges ofT , andOpt(W [ frg) is the
cost of minimum spanning tree ofW [frg in the sub-metric space(W [ frg,d)?

Using a reduction very similar to that in the proof of Theorem7,
we can prove that this problem is NP-hard. We defer the proof
to the full paper. On the basis of this NP-hardness result andthe
coNP-hardness of TCUST, we conjecture that UST is�P2 -hard.

For the UTSP problem, our preliminary work suggests that the
strategy of the coNP-hardness proof for the UST problem can be
applied to a variant of UTSP in which a distinguished vertex has to
be on every tour. We defer the details to the full paper.

We finally show that USC is in NP. Consider the decision ver-
sion of USC in which we are asked whether there exists a feasible
assignment for a USC instance with stretch at mostB, for a given
numberB. The upper bound proof for USC (Theorem 5) shows
that the stretch for any assignment is, in fact, achieved on aset
in C. Thus, the decision version of USC can be solved in non-
deterministic polynomial time by first guessing the assignment and
then verifying that it achieves the desired bound for each ofthe sets
in C.

8. OPEN PROBLEMS
In this paper, we have introduced universal approximations, a

new paradigm for approximation algorithms, and have studied uni-
versal approximations for three classic optimization problems: TSP,
(rooted) Steiner trees, and set cover. There are a number of research
directions that merit further study.� Tight bound for metricUST: An immediate open problem

for UST is to resolve the
(log3 n) factor gap between our
upper and lower bounds, for general metric spaces.� Lower bound forUTSP: We believe that the best stretch
achievable for UTSP is at least logarithmic in the number of
nodes, even for the Euclidean case. The best lower bound we
have thus far, however, is a constant. In this regard, M. Grigni
has posed a very interesting conjecture (presented here in
terms of the notion of universality): Givenn2 points forming
ann� n grid on the plane, every universal tour has a stretch
of 
(log n) [1].� A graph version ofUST: Our formulation of the UST prob-
lem assumes that the universal tree can include an edge be-
tween any two nodes of the underlying metric space. A nat-
ural variant that we are currently investigating is where the
metric space is induced by an undirected weighted graph and
the universal tree is required to include graph edges only. A
plausible approach to solving this graph version of UST is
to extend our partitioning scheme to graphs, a challenging
problem that is of independent interest.� Complexity: We have shown that USC is in NP, and have
provided preliminary evidence that the UST and UTSP may
be�P2 -hard. Resolving the complexity of UST and UTSP
is an important problem.� Universal approximations for other problems: Finally, we
believe that the universal approximations framework has the

potential to yield insightful results on the approximability of
diverse optimization problems, and plan to explore this line
of research.
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