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ABSTRACT

We introduce a notion afniversalityin the context of optimization
problems with partial information. Universality is a framark for
dealing with uncertainty by guaranteeing a certain qualityood-
ness for all possible completions of the partial informaget. Uni-
versal variants of optimization problems can be defined #nat
both natural and well-motivated. We consider universasiegis of
three classical problems: TSP, Steiner Tree and Set Cover.

We present a polynomial-time algorithm to find a universarto
on a given metric space over vertices such that for any sub-
set of the vertices, the sub-tour induced by the subset isirwit
O(log* n/ loglog n) of an optimal tour for the subset. Similarly,
we show that given a metric space ovewertices and a root ver-
tex, we can find a universal spanning tree such that for angesub
of vertices containing the root, the sub-tree induced bythiset is
within O(log* n/ log log n) of an optimal Steiner tree for the sub-
set. Our algorithms rely on a new notion of sparse partitidmest
may be of independent interest. For the special case of mhgubl
metrics, which includes both constant-dimensional Eeelidand
growth-restricted metrics, our algorithms achieve(¥og n) up-
per bound. We complement our results for the universal 8tein
tree problem with a lower bound 6f(log n/ log log n) that holds
even forn vertices on the plane. We also show that a slight gen-
eralization of the universal Steiner Tree problem is colPRdtand
present nearly tight upper and lower bounds for a universalion
of Set Cover.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

General Terms
Algorithms, Theory

Information Science,
MA 02115. Email:
}@ccs.neu.edu

*College of Computer and
Northeastern University, Boston
{lujunjia,lingl,noubir,rraj,koods

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuiees prior specific
permission and/or a fee.

STOC’05May 22-24, 2005, Baltimore, Maryland, USA.

Copyright 2005 ACM 1-58113-960-8/05/0005$5.00.

Rajmohan Rajaraman Ravi Sundaram

Keywords

Approximation Algorithms, TSP, Steiner Tree, Set CoverarSp
Partition, Universal Approximation

1. INTRODUCTION

Consider a courier who delivers packages to different hoasd
businesses in a city every day. One challenge faced by thiecou
is to determine a suitable route every day, given the packimgiee
delivered that day. A natural question that the courier nelyis
the following: is there a universal tour of all locationschuthat
for any subset, when the locations in that subset are vigitéoe
order of their appearance in the universal route, then theltirg
tour is close to optimal for that subset? Such a tour can heede
as auniversalTSP tour.

Moving to a much larger scale, consider Walmart, which has
thousands of stores spread throughout the world. Headggant
Bentonville, Arkansas, may often have a need to teleconfere
with various subsets of these stores. They may not wish topsat
new multicast network for each possible subset; insteay rireey
wish to come up with on@niversaltree such that for any subset
they simply restrict this tree to that subset to create tiseeld mul-
ticast network. And, they may wish to ensure that for evetyssii
itis the case that the network so generated is not much mpenex
sive than the optimal network (for the subset under conataer).

A universal solution to the Steiner tree problem describiEma
is also useful for sensor networks where nodes have limiteghm
ory. Low cost trees are required for data aggregation aruarimd-
tion dissemination for subsets of the sensor nodes. It isgher,
not realistic to expect sensors to compute and memorizenapti
trees for each subset. Universal trees provide a practtien; a
sensor node only needs to know its parent in the universaihide
being oblivious to the other nodes involved in the data mamsm

A unifying theme among the above three scenarios is that each
seeks the design of a single structure thiatultaneously approx-
imatesan optimal solution for every possible input. We refer to
such problems as universal problems and their solutionsiasr
sal approximations. Universal problems and approximatizeve
applications in scenarios where the input is uncertainh aut
certainty may arise, for instance, due to limited knowledgeut
the future or limited access to global information that maydis-
tributed among multiple sources.

1.1 Our results

In this paper, we introduce a notion whiversalityin the context
of optimization problems with uncertain inputs, and studiyvarsal
versions of classical optimization problems.

¢ \We develop a general framework for universal versions of op-



We formulate and study the Universal Traveling SalesmangB)[
Universal Steiner Tree (UST), and Universal Set Cover (USC)
problems. Our main technical results concern the UTSP andl US
problems.

timization problems. Our framework, which is described in 1.2 Related work

optimization problem, given two additional notions: a subi  jng with the problems posed by an uncertain world. Theseide!
stance relation that is a partial ordering among instare&s,  competitive analysis, stochastic optimization, probiati approx-

a restriction function that takes a solution for a givenanse imations, distributional assumptions on inputs and mamerst

and a subinstance, and returns a solution for the subirstanc Here we survey a fraction of this vast body of work.

The word “universal” itself has been used many times befuoe,
tably in the context of hash functions [9], and routing [2Fere,
universal has meant the use of randomization to convert albad
terministic performance guarantee to a good expectedanojdtir-
ther the randomized solution is oblivious to (some aspeRtthe
input.

The study of online algorithms considers problems in whiah t
input is given one piece at a time, and upon receiving an jnput
the algorithm must take an action without the knowledge tirki
inputs [8, 12, 26]. In contrast, a universal algorithm cotegua
single solution, whose performance is measured againgtoaH
sible inputs. Several researchers have considered settihgre
a certain distribution over the space of input is assumed 168
17, 21]. Stochastic optimization, studied in [16, 10], iseaiant
where the input is allowed to be modified rather than just com-
pleted. In these situations the goal is to optimize the egpien
over the input distribution. Recently, incremental vatgaaf fa-
cility location problems have been introduced and studiefl9,
20, 24]. These are similar in spirit to the universal proldene
consider in that they are oblivious to the number of faefti In
fact, these problems fit within the framework of Section 2miSi
rics. We complement these results with a lower bound of |arly, the recent results on oblivious routing [4, 25], wheewed
Q(logn/loglogn) for UST that holds even when all the  in terms of flows rather than routes, are analogous to theetsay
vertices are on the plane. These results appear in Section 5.results in this paper; the oblivious routing solution isuemsal over
Our algorithms for UTSP and UST both rely on a new no- gl demand matrices much as the solutions in this paper averdn
tion of sparse partitions, defined in Section 3, that may be of sa| over all subinstances of a given problem. We note thatiobs
independent interest. flows are exactly computable in polynomial time [4], whereas
problems are intractable and appear to be much harder.

Of particular relevance to our results on UST is the subistant
body of work on tree-embeddings of metric spaces [5, 6, 1t]. |
follows from these results that one can construct a spaninegy
over any metric ofn vertices such that for any subset of the ver-
tices, theexpected cosbf the subtree induced by the subset is
within O(log n) of the optimal. From a technical standpoint, our
UST results are incomparable; while we obtain a single tegber
than a distribution over trees, that achievedeterministicpoly-
logarithmic performance guarantee, our guarantee apmtilysfor

e For UTSP problem, we obtain a universal t@tifor a given
metric space ovet vertices such that for any subsebf the
vertices, the sub-tour @' induced bysS'is within

O(log* n/ loglogn) of an optimal tour forS. For the spe-
cial case of doubling metrics, which includes both constant
dimensional Euclidean and growth-restricted metrics abur
gorithm yields anO(log n) bound. These results appear in
Section 4.

We adapt our UTSP algorithm to the UST problem, and
show that given a metric space ovevertices and a root ver-
tex, one can find a spanning tréein polynomial-time such
that for every subse$ of vertices containing the root, the
sub-tree ofT" induced bysS is within O(log* n/ loglog n)

of an optimal Steiner tree fof. As for UTSP, our algo-
rithm achieves a®(log n) upper bound for doubling met-

For USC, we show that given a weighted set cover instance
with n elements, we can compute an assignment from ele-
ments to sets such that, for any subset of the elements, the
weight of the sets to which the elements in the subset are
assigned is withiD(v/n log n) of the weight of an optimal
cover for the subset. We improve the bound¢,/n) for
unweighted USC and present a matching lower bound for
this case. These results are described in Section 6.

Universal problems are naturally capturedy, the second level
of the polynomial-hierarchy, since they have the followfiogm:
there existsq) solution for a given instance such that for afl) (
subinstances the solution (suitably modified) is (closeof)mal.
We believe that UST and UTSP are, in fa&f -hard and present
preliminary evidence towards this conjecture.

e \We establish the coNP-hardness of a slight generalizafion o

subsets containing a distinguished root. It is worth notiege
that a version of UST without a fixed root does not admibém)
performance guarantee. Also related to our work is [14],ciwhi
constructs a single aggregation tree for a fixed set of simdssi-
multaneously approximates the optimal for all concave eggpion
functions.

For the special case of UTSP on the plane, @(iog n) bound

UST in which the universal tree is required to connect a also follows from an early work of Platzman and Bartholdi]j23
given subset of the vertices. We also establish that given a (See also the related work of [7].) Their result is, in fattpsger
spanning tree, finding a subset for which the tree has worst- than ours for this special case; they show that any spamgfill
case performance is NP-hard. We discuss the complexity of curve within a certain class yields a solution with @flog n)
UST, UTSP, and USC problems in Section 7. performance guarantee. Our overall results for UTSP areamor
general, however, since od@(logn) bound applies to doubling

We hope this preliminary work will stimulate the reexamioat
of classical problems in a universal context. It would beeesgly
interesting to identify problems for which there exist wersal al-
gorithms that are almost as good (within a constant fac®tha
best algorithms in the standard approximation framework.

metrics, and we also obtain a polylogarithmic bound for taaby
metrics.

As mentioned in Section 1.1, our UST and UTSP algorithms

rely on a new notion of sparse partitions. Our definition @sely
related to the sparse partitions and covers of Awerbuch and P
leg [22, 3]. Indeed, the sparse covers of [3] form an integaat of
our partitioning scheme.



2. AFRAMEWORK FOR UNIVERSAL
APPROXIMATION

In this section, we introduce a framework for universal appr
imation of optimization problems. L&T denote any optimization
problem. LetinstgII) denote the set of instancesIéf and for any
instancel € InstqII), let Sol{I) denote the set of feasible solu-
tions for I. For a feasible solutio$' of an instance, le€os{S)
denote the cost of the solution.

We develop a universal version Bf in terms of two additional
notions: asubinstanceelation< and arestrictionfunction R. The
relation< is a partial order omnstg(IT); we say thatl’ is a subin-
stance oflf wheneverI’ < I. A restrictionR takes an instancé
of II (I € Inst{II)), a subsinstanc& of I (I' < I), and a feasi-
ble solutionS of I (S € SolqTI)), and returns a feasible solution
R(I,T',S) of I' (R(I,I',S) € Sol{I")). A universal version of
ITis given by the tripldI, <, andR.

We now define universal approximation. Fix a minimization
problemII and an associated subinstance relatioand a restric-
tion R. LetI be an instance dfl andsS be any feasible solution of
1. We define thestretchof S for instancel as

Cos(R(I,I',S))
maxX —————~———>—
1'<1  OptCos(I’) ’
whereOptCostI’) is the cost of an optimal solution far'. Let
A denote an algorithm fofI; it takes as input an instandeand
outputs a solutior$' € SolgI). We say thatd has a universal ap-
proximation off for (IT, <, R), wheref is a function from positive
integers to reals, if for every instandeof IT of sizen sufficiently
large, the stretch is at mogi{n). The definition of universal ap-
proximation can be extended to maximization problems by@pp
priately redefining the stretch.

3. SPARSE PARTITIONS

We introduce a new notion of sparse partition, which is used
our algorithms for UST and UTSP.

DEFINITION1 ((r,0,I)-PARTITION). A(r, o, I)-partition of
a metric spac€V, d) is a partition{S;} of V' such that (i) the di-
ameter of every se§; in the partition is at most - o and (ii) for
every nodev € V, the ball B, (v) intersects at mosf sets in the
partition, whereB, (v) = {u € V|d(u,v) < r}.

A (o, I)-partition schemeis a procedure that compute§rao, I)-
partition for anyr > 0.

3.1 General metric spaces
We present a polynomial-timgO(log n), O(log n))-partition

PROOF. Since each is assigned to a uniqug(v), P is a parti-
tion. Also, since every set if is a subset of a set ii, and every
set inC has radius at mostr[log n] by property 3, every set in
P has diametedr[log n]. It remains to show that for every node
v, B, (v) intersects< 4[log n] sets inP. Consider two distinct
setsX andY in P that intersectB, (v); let z andy be nodes in
X N B,(v) andY N B, (v), respectively. It follows that node
belongs to bothB,(z) and B, (y), which are contained i (z)
and S(y), respectively. Since&X andY” are distinct, so aré&(xz)
andS(y). Thus the number of sets i that interseciB, (v) is at
most the number of sets (i that containw, which is bounded by
4[log n] by property 2 above. [J

3.2 Special metric spaces

We present an improved partition scheme for doubling metric
spaces, which include constant dimensional Euclideanespaicd
growth-restricted metric spaces. A metric spdted) is called
doublingif every ball in V' can be covered by at moatballs of
half the radius [15]. The minimum value of sughis called the
doubling constanobf the space.

LEMMA 2. For a doubling metric spacéV, d) with doubling
constant), a (r, 1, A\*)-partition can be computed efficiently for
anyr > 0.

PROOF Given the metric spacéV, d) andr, we compute the
partition as follows. Start fromi = 1, pick some arbitrary; €
V=V, letS; = {v eV :d(s,v) <r/2}. VI « V' -
S;,i = i+ 1. Repeat until”’ is empty. LetS be the collection
of the centers s;, of the partition subsets. Obviouslyz,y €
S,d(z,y) > r/2. We verify the two conditions. The diameter
of each partition subset is at mastby construction; As for the
intersection condition, consider any b&ll (v), v € V, and assume
that it intersectsn partition subsetss;. Now, Bz, (v) completely
contains these subsets, and it can be covered by at Xidsalls
of radiusr/4 due to the doubling property. But coverirff the
m centers of these subsets, requires at leabtlls of radius-/4.
Hencem < A3, O

While the existence ofO(1), O(1))-partition schemes for con-
stant dimensional Euclidean and growth-restricted mepéce fol-
lows from the lemma above, we obtain slightly better paransdiy
a more direct argument.

LEmMMA 3. If the points are ink-dimensional Euclidean space,
a (p, VE(2 + €), 2F)-partition can be computed efficiently for any
p> 0.

ProOF Divide the space intg-cubes with edge siz€ + ¢€)p,
wheree is any positive real. Each-cube is a potential set of the

scheme for general metric spaces. This is obtained using the sparsePartition we want, each node is assigned to som-cube that

cover construction of Awerbuch-Peleg [3]. A cover of sobieC
V is defined to be a collection of subsetsiof such that for any
v € U, there is a subset containing it in the collection. Given a
metric spacgV,d), and a real, and a coved{ B, (v)|v € V},
Awerbuch and Peleg give a polynomial-time algorithm to catep
a (coarsening) cove? such that (see Theorem 3.1 of [3]): (1) for
eachv € V, B,(v) is contained in at least one set@n (2) every
vertexwv is contained in at most[log n] sets inC; (3) each set in
C has radius at mogtr[log n].

We compute a partitior® from C as follows. For each we
select an arbitrary sef(v) in C that containsB,. (v). We setP =

{{v: S(v) = S}: S ecC}— {0}

LEMMA 1. The collectiorP is a(r, 4[log n], 4[log n])-partition.

contains it. It is easy to see that the resulting noneniptybes
form a(p, Vk(2 + ), 2")-partition. [J

Itis known that growth-restricted metrics form a subclasion-
bling metric space [15].
For the sake of completeness, we provide a proof below.

LEMMA 4. A growth-restricted metric spad&’, d) with expan-
sion ratec is a doubing metric space with doubling constanK
4

PrROOF Consider any- > 0 and letB, be any ball of radius,
B be the concentric ball with radiusr. We want to coveB, by
balls of radiusr/2 and bound the number of such balls used. Let
S C By be a set of maximally separated points, such thaty €



S,d(z,y) > r/2. The balls centered at points Sfwith radius
r/2 cover Bo. Once we show thdiS| < ¢*, the lemma is proved.
Note for eachs; € S, Bs,(s;) coversB, hence|Bs,(s;)| > |B|.
By the growth restriction propertyB,/4(s:)| > |Bsr(s:)|/c*
|B|/c*. Observe thaB, 4(s;) C B andB,.;4(s;) is disjoint from
B, ,4(s;) if i # j. Therefore,

IS|

|B| > ZIBM )| >8] |Bl/c"

We conclude thaltS| < ¢*, and this completes the proof]

Lemmas 2 and 4 imply that for a growth-restricted metric spac
(V,d) with expansion rate, a (p, 1, c'?)-partition can be com-
puted efficiently for any > 0. We show slightly better parameters
in the following lemma.

LEMMA 5. For a growth-restricted metric spad@’, d) with ex-
pansion rate:, a(p, 4, ¢*)-partition can be computed efficiently for
anyp > 0.

PROOF Given the metric spacé/, d) and p, we compute the
partition as follows. Start fromi = 1, pick some arbitrary; €
V=V, letSi={v eV :d(siv)<2p}. V' « V' =S ,i=
i + 1. Repeat untiV’ is empty. LetS be the collection of theen-
ters s;, of the partition subsets. Obviouslz,y € S,d(z,y) >
2p. We verify the two conditions. The diameter of each parti-
tion subset is at mostp by construction; As for the intersection
condition, consider any baB,(v),v € V, and assume that it in-
tersectgn partition subsets. Wlog, let the subsets$ecentered
ats;, i = 1,...,m. Let B = U Bs,(s;). For eachs;, we
have B C Bs,(s:). Hence, by the growth-restriction property,
|By(s)] > | By (s:)|/c* > |B|/c*. But B,(s:) C B andB,(s;)
is disjoint fromB,(s;) for i # j. Therefore,

|B|>Z|B

from which we conclude thah < ¢3
condition and hence the lemmal]

i)l >m-|B|/c’

. This proves the intersection

4. UNIVERSAL TSP

We present a polynomial-time algorithm for UTSP that achsev
polylogarithmic stretch for arbitrary metrics and loghanitic stretch
for doubling metrics.

DEFINITION 2 (UTSP). Aninstance oUTSPis a metric space

(V,d). For any cycle (tour)C' containing all the vertices i¥” and

a subsetS of V, let C's denote the unique cycle ov&rin which
the ordering of vertices it$' is consistent with their ordering i#v".
The stretch ofC' is defined asnaxscy ||Cs||/||OptTrg||, where
OptTrg denotes the minimum cost tour on gt The universal
traveling salesman problem is to find a tour ®hwith minimum
stretch.

In the framework of Section 2, we have: (i) for any instadce-
(V,d), SolgT) is the set of Hamiltonian cycles ovef; (ii) a subin-
stance of(V, d) is (V',d'), whereV' C V andd' is the restric-
tion of d to V'; and (iii) for any instancd = (V, d), subinstance
= (V',d"), and solutiorC for I, R(I,I',C) is Cy.
Our polynomial-time algorithm, UTSP-ALG defined below, ob-
tains a spanning tree by applying a subroutim@NGTRUCTTREE
to the underlying set of vertices and then returns a tourioétsby
traversing the vertices inorder, according to the tree. cdmestruc-
tion of the spanning tree relies on a hierarchical decontiposof

the vertices by iteratively applying the partitioning soteeintro-
duced in section 3. Also, the output frorD8STRUCTTREEU)

can be viewed as a decomposition treelfwhere the vertices

of U are the leaves located at the bottom level, and all the inter-
nal vertices (leaders) ampiesof some vertices ot/. Physical
treesT™ can be trivially obtained from the tree returned from
CONSTRUCTTREEU) by collapsing copies of each vertex. This
view of a leveled decomposition tree is helpful for the apeyof
UTSP and the presentation of our UST algorithm.

Algorithm 1 UTSP-ALG
Input: Metric spaceV, d).
1. T = CONSTRUCTTREHYV).

2. Output: Recall thatT’ is a leveled decomposition tree where the vertices
of V' are located at the bottom level, and all the other verticeg(\ar-
tual) copies of some vertices &f. Return a tourC' on V' obtained by
traversing?’ in a depth-first manner, starting from the root of the tree.

CONSTRUCTTREEU)
1. Initialization. SetD to diameter o/, Sog = U, j = 0, andT = 0.
2. Levels of hierarchyWhile |S;| > 1 do
a. Using a(o, I)-partitioning scheme, compute(a;, o, I)-partition P
of S;, with r; = min{D, p’}, wherep = 40.
b. For every sefX in P, select an arbitrary vertex iX as leadefX);
add to7" an edge between each vertein S; and the leader of the

set in/P that containw. If v = leadefX), the edge between themis
virtual and of cost zero.

c. SetS;;1 = {leadefX) : X € P},andj =j + 1.
3. ReturnT'.

The following theorem is the main result of this section.

THEOREM 1. Given a metric spacéV, d) withn vertices and a
(o, I)-partitioning schemelJ TSP-ALGreturns a tour with stretch
O(0®Ilog, n) in polynomial time.

Itis clear that the above algorithm is polynomial-time. VEsuame,
without loss of generality, that the minimum distance betwany
pair of vertices is 1.

We first analyze the procedureo®STRUCTTREE called on an
input setU of vertices. For any vertex in U and j, we define
£(v,7) as the unique vertex i§; that is an ancestor aof in T'.
Note thatl(v, 0) is v. We place an upper bound attv, £(v, j))
as follows. Since the cost of an edge between a verte. iand
its parent vertex inSy is at mostp*o (by property (i) of the
partition), we obtain (wlog, assume> 3)

Z (v, k+1)) Z

k=0 k=0

d(v, £(v,j)) o

NIOJ

1)
LetT denote the tree returned byo®STRUCTTREEU). Let S be
any subset of/. Our analysis of the stretch achieved by UTSP-ALG
relies on an upper bound on the costZaf, which is obtained by
bounding the cost of the edges at each leveTl'efseparately as
follows. For anyj > 1, let P.S; be a maximal subset of vertices of
S that are pairwise separated by distance at le&sto.

LEMMA 6. For j > 2, the cost of edges iffis at levelj is at
most|PS;_1|p’ 1.

PrROOF. Consider the seX = {{(v,5 —1) : v € PS;_1}
andY = {{(v,j — 1) : v € S}. Note thatX is a subset of
Y, which is a subset of; 1. SincePS] 1 is a maximal subset
with pairwise separation at legst™ 2¢, each vertex i is within
P’ %o of some vertex inPS;_,. By Equation 1, each vertex



in S (resp.,PS;_1) is within 1.5p?~2¢ of £(v, j — 1), which lies
inY (resp.,X). Therefore, each vertex i¥f is within 4p’ 2o of

a vertex inX (for n, sufficiently large). Thus the balls of radius
p' 1 = 4p’2¢ around the vertices iX coverY. Consider the
partitioning of S;_1. The balls of radiug’ ~* around vertices in
X, taken together, intersect all the sets in the partitioh¢batain
the vertices inY”. By property (ii) of the partitioning scheme, the
number of such sets is at m¢af|I. The total cost of edges at level
jisatmostX|Ip'o < |PS;_1|p’ol. O

The following technical lemma is useful in our analysis.
LEMMA 7. Ifm; >1,i=1,...,k,¢c>2,then

k
Z mi-c < (logc(m_ax m;) + 3) -max(m; - ¢')
i=1

PROOF Let M = max; m;, N = max;(m; - ci), andip =
[og, 2£1. Sincec® < my, - ¥ < N, we havek < log, N. Now

k
m; - C =
=1

ig—1 k

E m; - ¢ + E m; - ¢
i=1

1=1ig
IM -7 4 (k—ip + 1)N

IN

IA

2N + (log. N —log,. % +1)N
(log. M + 3)N

O

Proof of Theorem 1. LetS C V, T be the tree constructed by
CoNsSTRUCTTREHV), andT’s be the induced subtree @f by S.

It is easy to see thaf's can be obtained directly frofii's by an
inorder walk from root ofT's. Hence the cost of's is at most
twice that of||Ts||. In fact we can say something more general.
Let S; denote the set of vertices at leyedf T's and letm; = |Sj|.

For anyk > 1, if the pairwise distance between any two vertices in
S is at mostB, then

k—1
||CS|| < my - B+ szﬂ“]‘o’

Jj=0

Forj = 0 or1, mjrjo is O(|S|o?), which isO(a?||OptTrs]|).
Recall that for anyj > 1, PS; is a maximal subset of vertices of
S that are pairwise separated by distance at lgasto. Let j*
denote the smallest value gfat which|PS;_1| = 1; if no suchj
exists, then lej* be the value of at the root ofl’s. By Lemma 6,
we obtain that forj < j*, m;r;jo is at most|PS;_1|p’cI. On
the other hand, the cost of an optimal tour o$ehas cost at least
|PS;_1]p’ %0. Thus, forj < j*, mjrjo is O(||OptTrg|lo*I).
Plugging this bound into Equation 2 with = j* and invoking
Lemma 7, we obtain

ICs < mj«B + O(log, |S] - I x [|OptTrs ),

@)

where B is the maximum pairwise distance between vertices in
X

By the definition ofj*, either|PS;~_1| = 1 or |S;=| = 1. In
the former caseB is at most(1.5 + 2 + 1.5)p’ ~'o = 50 7',
andmj« B < bmj«_1p' " to = bmj«_1r;j_10. In the latter case,
mj+ = 1andB = 0. Thus, we haven;- B is O(a>I||OptTrg]|).
Therefore|Cs|| is O(log, |S] - oI x ||OptTrg||), completing the
proof of the theorem. [

Applying the parameters from Lemmas 1, 2, 3 and 5 to The-

COROLLARY 1. For any metric space over vertices, the algo-
rithm UTSP-ALGreturns a tour with stretcid (log* n/ log log n).

COROLLARY 2. For any doubling, Euclidean, or growth-restricted
metric space oven vertices UTSP-ALGreturns a tree with stretch
O(log n).

We remark here that if the underlying verticds)(are in Eu-
clidean space, we can give a succinct description of ourenséal
ordering, which is, in fact, independent ©f. This property is a
key aspect of the work of [23] on the use of space-filling carfce
TSP on the plane. We omit the details from this extended attstr

5. UNIVERSAL STEINER TREES

We present a polynomial-time algorithm for UST that achéeve
polylogarithmic stretch for arbitrary metrics and loghnitic stretch
for doubling metrics (Section 5.1), and also derive a ndaggrith-
mic lower bound for the optimal stretch achievable in thelBean
plane (Section 5.2).

We begin by introducing some notation and definitions. Gaen
metric spac€V, d), whereV is the underlying set of vertices add
is the metric distance function over, let A = maxy vev {d(u,v)}
denote the diameter 6f andv = [log(A)]. We assume, without
loss of generality, that the minimum distance between anygfa
vertices is 1. For any grapf = (V, E) over the vertices in the
metric spacéV, d), we define the cost @, ||G||, to be the sum of
the distances of the edges Gfaccording to the metrid; that is,
IGIl = >, ,1)em d(u,v). Forany tre€l’ spanningl” and subset
S of V, let Ts denote the minimal subtree @f that connectsS.
For notational convenience, we uSet z to denoteS U {z}, for
any setS. We denote by OptSta minimum Steiner tree spanning
S.

DerINITION 3 (UST). An instance of the Universal Steiner
Tree UST) problem is a triple(V, d, r) where(V, d) forms a met-
ric space, and- is a distinguished vertex i that we refer to as
theroot For any spanning tre@ of V, define thestretchof T' as
maxscy ||Ts++||/||OptSt ., ||. The goal of theJST problem is
to determine a spanning tree with minimum stretch.

In the framework of Section 2: (i) the set of solutions of any i
stancel, SolgI), is the set of spanning trees; (ii) a subinstance of a
UST instancgV, d, r) is a triple{V', d’,r), whereV" is a subset

of V that containg-, andd’ equalsd restricted to the subséf’;

and (iii) for any instancd = (V,d, r), a spanning tre& of V', and
any subinstancé’ = (V',d’,r), R(I,I', T) is given byT.

5.1 A UST with polylogarithmic stretch

Our algorithm, UST-ALG defined below, begins by organizing
the vertices of the metric space in “bands”, according todise
tance from the root, and then computing, for each band, gtiege
spans the vertices within the band and the root using theatibe
CoNsTRUCTTREEIntroduced in UTSP-ALG. We formalize the
notion of bands in the following.

For a nonnegative integérwe define @andof level i, denoted
by Band, to be a set of vertices with distance fronof at least2?
and less thaR'™!; thus, Band = {v € V2! < d(r,v) < 2'T'}.
A setS is said to bébandedf all the vertices ofS lie in Band, for
somei,0 < i < v. Atree is said to beootedif it containsr. A
rooted tree is said to Heandedif all the vertices i’ — {r} lie in
Band for somei, 0 < i < v. Arooted tree is said to beandwise

orem 1, we derive the stated bounds on the stretch achieved byif it is the edge disjoint union of banded trees with at mosg¢ on

UTSP-ALG in general and special metric spaces.

banded tree for each0 < i < v.



THEOREM 2. Given a metric spacéV, d) with n vertices, a
rootr € V, and a(o, I)-partitioning scheme fofV, d), a spanning
tree with stretchO(o?I'log, n) can be constructed in polynomial
time.

Algorithm 2 UST-ALG

Input: Metric spaceV, d) and a rootr.

1. Bandwise decompositiofPartition V" into bands, Bangdfor 0 < i < v.
2. Bandwise treeFor0 < i < v, T(!) = CONSTRUCTTREEBand}).

3. Output. Connect the root of'(9) to r, for 0 < ¢ < v, and return the
union of the resulting trees.

It is clear that our algorithm is polynomial-time. The apfro
mation guarantee o (o7 log, n) is obtained in two steps. We
first show that for any subsétthere exists an equivalent bandwise
rooted tree whose value is within a constant factor of thénogit
rooted Steiner tree 0f. This allows us to restrict our attention
only to banded sets. We then show that for any banded/set
CONSTRUCTTREETU) returns a tree with cost withi® (o> I log,. n)
of the optimum.

LEMMA 8. For any subsefS of V' containingr, there exists a
bandwise rooted tree spannirfgwith cost within a constant factor
of || OptSt||.

PROOF Let S; = (SNBand) +rfor0 < i < v. Let
So = U; 0dgS: and Se = U; evenS;. Do an Euler walk on the
tree OptS¢ that visits all vertices inS and split the walk into
two trees, using shortcuts, one spannffigand the other span-
ning S.. Let these trees b&. andT,. Since the Euler walk tra-
verses each edge at most twice and shortcuts do not incresise ¢
we obtain thaf|T.|| < 2||OptSt|| and||T,|| < 2||OptSt ], i.e.
|Te|| + || To]] < 4||OptSt||. Observe thafe andT, are disjoint.
LetT =T. UT,.

(e.g.,mo = |S]). Using Lemma 7]|Ts||, the cost of tred’s can
be bounded as follows:

ijrja < ijpjo < (log, mo + 3) maxm;p'oc  (3)
i i !

The strategy of our proof is to show that at each Igyehe bound
on the cost of the edges selected Tay, m; p? o, does not exceed
||OptSt;, || by more than a factor @ (o>I). Hencemax; m]‘ij’ <
O(c”1)||OptSt, || and the total cost df’s is (o T5E5) times
that of ||OptSY, ||.

The arguments foj = 0 andj = 1 differ from those at the
third and higher levels. Consider the leyel= 0. Observe that
|IOptSt; || > |S] since there are at leals| edges in OptSt and
each edge has cost at ledstThe cost of the edges Gfs at level
0 is at most|S|roo = |S|o, while at levell is at most|S|rioc =
4|S|a*. Therefore, the total cost of edges at both levels 0 and 1 is
O(o*T||optSt ).

For levelj > 2, we have an upper bound on the cost of the edges
of T's from Lemma 6. We now place a lower bound on the cost of
the optimal Steiner tree afi,. If |PS;_1| > 1, we derive a lower
bound as:

IOptSts, || > lOptSt || > (|PSj-1l0" *o)/2.
If |[PS;_1| = 1, we derive a lower bound as:
loptSt, [| > 2° > p7 1 /4 > |PS; 1|/ 0 /2.

Using the bound from Lemma 6, we obtain thatfor 2, m;rjo <
2p”I|OptSt, || = 320°I||OptSt, ||. And using Equation 3 men-
tioned above, we obtain thif's || is within a factor of
O(o*1%8151) of |OptSt, || Since|S,| = |S| + 1, the lemma is

logo

proved.

Proof of Theorem 2: Putting Lemma 8 and Lemma 9 together, we

Define an inter-band edge to be any edge such that neither ofcan now prove the main theorem. Construct the bandwisedoote

the endpoints is the root and the two endpoints are not inahees
band. Lete = (u,v) € T be such an inter-band edge. Lkebe in
Band andv in Band wherei < j — 2. Note that|je|]| > 277!,
Consider the two edge@,v) and (r,u). Note that||(r,u)|| <
2+ < 9171 < le|l. Thus,[|(r, w)ll + ll(r, o)l < 20I(r,w)]| +
[|(u,v)|] < 3|le]|. Hence, if we remove and replace it with the

spanning tred* on the sel” as specified in the algorithm above.
Consider any subsef of the vertices containing. First observe
that by Lemma 8 there exists a bandwise rooted een the
setS such that]|Z|| is within a constant factor dfOptSt;||. Let
S; = (SNBand) + rfor0 < i < v. Let Z; denote the rooted
banded subtree af spanningS; for 0 < i < v. By Lemma 9,

two edges(r,v) and (r,u), then we increase the cost by at most |73, | is within O(c*I'log, |S:]) of ||OptSt; || and hence within
3|lel|. Observe that while the resulting graph may not be a tree, it O(o>I'log, |S;|) of || Z;||. But by definition|| Z|| = So<i<v||Zi||

continues to be connected. We perform this operation ofoépd
every inter-band edge by two edges from the root to its emdgoi
to yield a graph that spans all the verticesSiand has cost at most
3||T||. We select an arbitrary spanning tr&é of the resulting

and||Ts|| = Xo<i<»||T3,||. Hence by summing over all bands we
get that||T3|| is within O(a®I log,, |S]) of || Z|| and hence within
O(a*Ilog, |S|) of ||OptSL||. O

We can instantiate Theorem 2 with parameters from Lemma 1,

graph. Treel'™ has no inter-band edges and hence is a bandwise . — 4[log n] andI = 4[log n], to derive the following corollary.

rooted tree. Thus we have a bandwise rooted tree spashith
cost at mosi2||OptSt;||. O

LEMMA 9. Let T denote the rooted tree obtained after con-
necting the root ofCONSTRUCTTREEBand) to r, for somes,
0 < <. Forany subsef, C Band + r containingr, ||Ts,. || is
at mostO(o2 %1521 Opts, ||).

log o

PROOF WIlog, we assume th&$| > 2. LetS beS, —{r}. The
cost of the edge connectimgo the root of @NSTRUCTTREEBand)
is clearly at mosg||OptSt; ||. So we focus our attention on the re-
maining subtred’s of T’s,.. Our algorithm starts with a radius of
1 and increases the radius at each level by a factgr wftil the
radius exceed®, which is at mose**?, after which|S;| will be
1. Consider the tre€s, letm; be the number of vertices at levgl

COROLLARY 3. For any metric space oververtices UST-ALG
returns a tree with stretcid (log? n/ log log n).

For special metrics, we can apply the parameters from Len?nas
3 and 5 to derive the following bound.

COROLLARY 4. For any doubling, Euclidean, or growth-restricted
metric space oven vertices,UST-ALG returns a tree with stretch
O(log n).

As in the case of UTSP, for the special case of vertices in Eu-
clidean space, we can give a succinct description of oureusél
tree, which is, in fact, independent of even the globalsef ver-
tices.



5.2 A lower bound for usTt

We exploit a straightforward relation between universalirgir
tree problem and online Steiner tree problem to prove a lbaend
for UST.

THEOREM 3. There exists a set afvertices in two-dimensional
; ; ; log n
Etuctlldhean space, for which every spanning tree haQaﬁﬁ)g—n)
stretch.

We derive the above theorem from a result of Alon and Azartfer t
online Steiner tree problem [2]:

THEOREM4 ([2], THEOREM1.1). No on-line algorithm can
achieve a competitive ratio which is better tiaflog n/ log log n)
for the Steiner tree problem of vertices in the plane, or even for
n vertices in then by n grid.

We make use of the lower bound farx n grid. Given any algo-
rithm A for contructing a UST with stretch, we obtain an online
algorithm as follows. Let; be the first vertex given. Build a UST
T spanning thex? grid vertices with root;. For each vertex;
given, connect it to the previous ones by following edged of
SinceT has a stretch of, the competitive ratio thus achieved for
the online Steiner tree problem is at mesBut according to Alon
and Azar’s result presented above, this rati@ (&g n/ log log n).
Hences is alsof2(log n/ log log n).

6. UNIVERSAL SET COVER

In this section, we define the universal set cover problem and
present nearly tight upper and lower bounds for the problem.

DEFINITION4  (UNIVERSAL SET CoVER (USC)). Aninstance
of USCiis a triple (U,C,c), whereU = {ei,e2,...,en} is a
ground set of element§, = {51, S>,...,Sx} is a collection of
sets, and: is a cost function mapping to Q. We define ams-
signmentf as a function fronT to C that satisfiesz € f(e) for
all e in U. We extend the definition gfto apply to anyS C U
as follows: f(S) is the set{f(e) : e € S}. We next define the
cost of f(S), [|£(S)Il, as3_x¢ (s ¢(X) and thestretchof an as-

signmentf asmaxscy Cgit(fs); whereOpt(S) is the cost of the
optimal (minimum) set cover solution £ And the goal is to com-

pute an assignmenft with minimum stretch.

In the framework of Section 2, we have: (i) the set of solwifor
any instancd, Solg7), is the set of assignments for (ii) a subin-
stance of a USC instand@/, C, c) is a triple(U’, C, c) satisfying
U’ C U; and (iii) for any instancd = (U, C, c), a assignmenf
for I, and any subinstancE = (U’,C,c), R(I,I', f) is given by
f restricted to the domaify”.

Algorithm 3USC-ALG
1. D+ 0.

2. While D # U, do
Find the sefS that minimizes&; we refer to this ratio as the cost-
AER]
effectiveness of. For everye € S — D, we setf(e) = S.
3. Outputf.

THEOREM 5. For any USC instance withn elementsUSC-
ALG has a stretch 00(vnInn).

PROOF Let S be an arbitrary subset &f and lets = |S|. We
consider two cases. The first case is wittis in C. Let k be the

number of iterations performed by the algorithm in skejand let
S1,8S2,---, Sk be the sets selected in that order. For a given set
S, let N; (resp.,n;) be the number of elements Ui (resp.,S)

that are assigned t§; by the algorithm. That isV; = [{e € U :

f(e) = S;} andn; = |{e € S: f(e) = S;}|. SinceS is always a
candidate set, our selection®faccording to the cost-effectiveness
criteria implies that

o(5) (S)
VN S Vemmi— =i

By reordering, summing up, and invoking Schwarz inequality
get

IN

(A

IN

We now consider the second case wled C. LetS:, S, -, Sk
be an optimal collection of sets that together caveFrom the first
case, we know that( f(S;)) < O(nlnn)c(S;). Hencec(f(S)) <
>, c(f(Si)) £O(nlnn) >, c(S:). O

For the special case of USC in which every set in the collactio
C has the same cost, a slightly more careful analysis of USGAL
achieves an upper bound ¢n.

The proof is similar to that for USC and we just provide a brief
sketch here. We only consider the first case. The second aase ¢
ries over similarly from the first as in USC. Using the samenot
tions as in the proof of Theorem 5, we obtain for the first case:

1 1

vN; Vi F i+ g
N, > ni+nipi+--+ng>k—i+1

Summing them up, we have
n>Ni+-+ N > k(k+1)/2 > k/2
cU(S) — | < /am.

'Opt(S)
THEOREM 6. There exists am-element instance dj SCwith
uniform costs for which the best stretch achievabl@(ig/n).

Hence

PROOF. Letq be some prime number betwe¢fr/2 and/n,
whose existence is justified by the well known Bertrand pgastu
We now describe the elements of the ground sét. We include
q° elements, each represented(lyy), for all z andy belonging
to the finite fieldZ,. We also include an additional—¢> elements,
denoted byes, ..., e,_,2, respectively, to complete the definition
of U.

We now describe the covering set collecti6n Consider the
collections of subsets defined as follows:

Sa,b,c = {(ﬂf,y) eU:zxe Zq,y = Pa,b,c(m)}

wherea, b, ¢ € Z, andP, ;. .(z) = az® + bx + ¢ is a polynomial
of degree at most 2 ovef,, which uniquely identifiesS, 4 .. With
a,b, c ranging overZ,, we obtaing® distinct subsets af. We also
add one more subsh = {e; : 1 < i < n — ¢°} to complete the
definition ofC. And let the cost of each subset be 1.



Let f be any assignment for the above USC instance. We focus B =

our attention on thg? elements. Since each elementldfis as-
signed to a single subset 6fandq® > ¢*, we know that at least
one of Sg.5,c IS NOt assigned to by. The optimal cost foiS, s, .

is 1. Since no two distinct polynomials of degree at most 2 can
intersect at more than 2 pointS, ;. does not intersect with any
otherS,: ;» »» on more than 2 elements. Therefore, the actual cost
incurred by the assignmeifitis c¢(f(S)) > 4. This proves that the
achievable stretch is lower bounded @iz = Q(v/n). O

Thus our lower bound is within a constant factor of the upper
bound for the unweighted USC and within @g+/log n) factor in
general.

7. ON THE COMPLEXITY OF usT, UTSP,
AND usc

In this section, we analyze the complexity of the universabp
lems studied in this paper. We begin by establishing the Be-N
hardness of a slight generalization of the UST problem inctvhi
the input terminals are constrained to be selected from eifsgue
subset of nodes.

DEFINITION5 (TCUST). We are given ametri¢V, d), ar €
V,asetU C V (of allowed terminals), a boun® € Q. Is there
an undirected tred’ that connects-, U, and possibly other ver-
tices, such that

Ty
e ol _
WU [|OptStyy |l

(Recall that for any seX of edges,||X]|| is the sum of the met-
ric distances of the edges and for any SeOptSt, is an optimal
Steiner tree foiS.)

THEOREM 7. TCUSTis coNP-hard.

PrROOF Our proof is by a reduction from the unweighted undi-
rected minimum Steiner tree problemNWEIGHTED-STEINER-
TREE[13, page 208]. An instance of theN\WEIGHTED-STEINER-
TREEproblem consists of an undirected gragh= (V, E), a sub-
setR C V, and a positive integek, and we are asked whether
there exists a subtree ¢f that includes all the vertices d? and
uses no more thahedges.

We now describe the reduction fromNWEIGHTED-STEINER-
TREEto TCUST. Given an MWEIGHTED-STEINER-TREE in-
stanceG; = (V;, E;) and anR C V; and ak (letn = |Vs|,m =
|R|), we construct a metric spa¢é’,d) of TCUST as follows.
The vertex seV includes the seY;, a new vertex:, and for each
r; € R,i = 1,...,m, a pair of new verticesg;, y;. For conve-
nience, we denote the collection of all's andy;’s asX andY
respectively. We now describe the distance functiokive classify
the edges of the complete graph oVéinto two categories.

e Physical edges: For eadh,v) € E;, we setw(u,v)
1. We setw(r,r1) = L = n*. w(ri,z;) = w(ri,y:)
20, w(zi,y;) = C, whereC = n?.

¢ Virtual edges: For any other edge, v) whose weight has
not been defined, we set(u, v) to the lightest path weight
betweenu andv using only physical edges.

By construction, the functiod is a metric. To complete the con-
struction of an instance of TCUST we need to specify the root,
the setU of allowable terminals, and the bourl®. We taker

as the root, and tak® U X U Y as the setU. Let the bound

L+k+144C-m
L+k+143C-m
polynomial time.

We now prove that there exists a tree for the TCUST instance
with stretch at mosB if and only if the minimum Steiner tree for
the UNWEIGHTED-STEINER-TREE instance has at leagtedges,
thus establishing the coNP-hardness of TCUST.

Let ST(Gs) be a minimum Steiner tree for theNWEIGHTED-
STEINER-TREEIinstance. Consider the tree

. This completes the reduction, which is clearly

T = ST(G2) U {(rr)} U L)} U L)

By constructionT” connects all the terminals il and the root-.

In the following, we show thal” is an optimal tree for the TCUST
instance in the sense that it achieves minimum stretch. &k fir
observe that for tre®, a subsetW’ C U that maximizes the stretch
of T'isW = U, and thus

_ L+w(ST(Gs)) +4C - m
T L+w(ST(Gs))+3C-m

which is a decreasing function af and equald in the limit. We
assume henceforth thatis large enough that(7") < 1.01.

Now consider any tre@’ that connect€/ andr. If T' contains
two edges incident on, then we letiV consist of two vertices in
U that belong to two different branches Bf rooted atr. The ra-
tio [| Ty ¢, 11/ OPtSYy (., @approached asn increases, implying
that the stretch of” is at least that of".

In the remainder, we assume tfidtcontains only one edge adja-
cent tor. Consider some pair;, y;, and letz} (resp.y; denote the
first hop on the path i’ fromz; (resp.y;) tor. Letz;, (resp.y;)
denote the first hop on a lightest path, using only physicgesd
from z; to z; (resp.,y; to y;). If both 2 andy; are equal to-;,
then we denote the scenario by < y;. If only z; = r; (resp.,
yi = r;), theny; = z; (resp.,z; = y;); we denote such a sce-
nario byy; - z; (resp.,z; F ;). Itis easy to see that; = y; and
y; = x; can not happen at the same time.

We pick a subset¥ C U for T’ as follows. For each: if
x; > y;, we add bothe; andy; to W if z; F y;, addy; to W;
otherwise ¢; - z;), we addz; to W. Out of them pairs ofz;, yi,
let ¢ be the number of pairs such thatt y; or y; - z;. Note that
0 <t < m. We now estimate the ratio & onT".

p(T)

err(WU{r}) > L+w(ST(Gs))+4C-(m—1t)+3C -t
= L4+w(ST(Gs))+4C-m—C -t

IOptSty Il < L+w(ST(Gs)) +3C - (m—1t)+2C -t
= L+w(ST(Gs))+3C-m—-C-t

Hencep(T") > p(T).

We have thus shown that the optimal stretch achievable #or th
TCUST instance ig(T'). Sincep(T) is a decreasing function of
w(ST(Gs)), it follows that the optimal stretch for the TCUST
instance is at modB if and only if the optimal Steiner tree for the
UNWEIGHTED-STEINER-TREE instance has more than edges.
This completes the proof of coNP-hardness of TCUS[T

In studying the complexity of UST, a natural problem to con-
sider is the following: given a spanning tree, determinesthigset
of vertices (containing the root) for which the tree has thersy
performance, when compared with an optimal Steiner tre¢hfor
subset. The formal definition is as follows:

DEFINITION 6  (MAX RATIO SUBSETPROBLEM (MRS)). An
instance of the MRS problem is a finite metric spéged), with



vertex sefi” and metric functiond : (V,V) — Q¥, some span-
ning treeT’, with edge weights specified by, -), a specified ver-
texr € V and a lower boundB € QT. The decision ques-
tion is whether there is a nonempty sub$gt C V, such that
Sl > B, whereer (W U {r}) is the cost of connect-
ing W andr using only the edges @f, andOpt(W U {r}) is the
cost of minimum spanning tree @f U {r} in the sub-metric space
(WU {r},d)?

Using a reduction very similar to that in the proof of Theorgm

we can prove that this problem is NP-hard. We defer the proo

to the full paper. On the basis of this NP-hardness resultthed
coNP-hardness of TCUST, we conjecture that USI¥shard.

For the UTSP problem, our preliminary work suggests that the
strategy of the coNP-hardness proof for the UST problem ean b

applied to a variant of UTSP in which a distinguished vertax to
be on every tour. We defer the details to the full paper.

We finally show that USC is in NP. Consider the decision ver-
sion of USC in which we are asked whether there exists a fieasib

assignment for a USC instance with stretch at ni®stor a given

numberB. The upper bound proof for USC (Theorem 5) shows

that the stretch for any assignment is, in fact, achieved seta

in C. Thus, the decision version of USC can be solved in non-

deterministic polynomial time by first guessing the assigntand
then verifying that it achieves the desired bound for eadch@tets
inC.

8. OPEN PROBLEMS

In this paper, we have introduced universal approximatians
new paradigm for approximation algorithms, and have studie-
versal approximations for three classic optimization peots: TSP,
(rooted) Steiner trees, and set cover. There are a numbesedirch
directions that merit further study.

e Tight bound for metridJST: An immediate open problem
for UST is to resolve th€ (log® n) factor gap between our
upper and lower bounds, for general metric spaces.

e Lower bound forUTSP: We believe that the best stretch

achievable for UTSP is at least logarithmic in the number of
nodes, even for the Euclidean case. The best lower bound we [

have thus far, however, is a constant. In this regard, M.1irig

has posed a very interesting conjecture (presented here in

terms of the notion of universality): Givet? points forming

ann x n grid on the plane, every universal tour has a stretch

of Q(log n) [1].

e A graph version otJST: Our formulation of the UST prob-

lem assumes that the universal tree can include an edge be-
tween any two nodes of the underlying metric space. A nat-

ural variant that we are currently investigating is where th

potential to yield insightful results on the approximatlyilof
diverse optimization problems, and plan to explore this lin
of research.

Acknowledgments

We would like to thank R. Ravi and A. Frieze for directing us to
the work on Euclidean TSP tours using space-filling curves, a
M. Goemans for pointers to some work on stochastic optintnat
The authors Jia, Lin, and Rajaraman were partially supddnte

f NSF awards Career CCR-9983901 and 11S-0330201, Noubir was

partially supported by NSF Career award CNS-0448330, and Su
daram was partially supported by a grant from DARPA.

9. REFERENCES

[1] http://www.mathcs.emory.eduic/interests.html.

[2] N. Alon and Y. Azar. On-line Steiner trees in the Euclidea
plane. InProceedings of the Eighth Annual ACM Symposium
on Computational Geometrpages 337—-343, 1992.

B. Awerbuch and D. Peleg. Sparse partitionsPhoceedings
of the Thirty-First IEEE Symposium on Foundations of
Computer Science (FOCS)ages 503-513, 1990.

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke.
Optimal oblivious routing in polynomial time. In
Proceedings of the Thirty-Fifth ACM Symposium on Theory
of Computing (STOCpages 383-388, 2003.

Y. Bartal. Probabilistic approximations of metric spaand

its algorithmic applications. IRroceedings of the
Thirty-Seventh IEEE Symposium on Foundations of
Computer Science (FOC3)ages 184-193, 1996.

Y. Bartal. On approximating arbitrary metrics by tree
metrics. InProceedings of the Thirtieth ACM Symposium on
Theory of Computing (STO(J)ages 161-168, 1998.

D. Bertsimas and M. Grigni. On the space-filling curve
heuristic for the euclidean traveling salesman problem.
Operations Research Lettei&241-244, October 1989.

[8] A. Borodin and R. El-YanivOnline Computation and
Competitive AnalysisCambridge University Press,
Cambridge, UK, 1998.

J. L. Carter and M. N. Wegman. Universal classes of hash
functions.Journal of Computer Systems and Sciences
(JCSS)18:143-154, 1979.

B. Dean, M. Goemans, and J. Vondrak. Approximating the
stochastic knapsack problem: the benefit of adaptivity. In
Proceedings of the Forty-Fifth IEEE Symposium on
Foundations of Computer Science (FOCX)04.

J. Fakcheroenphol, S. Rao, and K. Talwar. A tight bound o
approximating arbitrary metrics by tree metrics. In
Proceedings of the Thirty-Fifth ACM Symposium on Theory
of Computing (STOCpages 448-455, 2003.

(3]

(4]

(5]

(6]

(7]

[10]

[11]

metric space is induced by an undirected weighted graph and [12] A. Fiatand G. J. Woeginger, edito@nline Algorithms: The

the universal tree is required to include graph edges only. A
plausible approach to solving this graph version of UST is
to extend our partitioning scheme to graphs, a challenging
problem that is of independent interest.

e Complexity: We have shown that USC is in NP, and have
provided preliminary evidence that the UST and UTSP may
be = -hard. Resolving the complexity of UST and UTSP
is an important problem.

e Universal approximations for other problemBinally, we
believe that the universal approximations framework has th

[15]

State of the ArtSpringer, 1998.

M. R. Garey and D. S. Johnso@omputers and
Intractability: A guide to the theory of NP-completeneas
H. Freeman, San Francisco, 1979.

A. Goel and D. Estrin. Simultaneous optimization for
concave costs: single sink aggregation or single source
buy-at-bulk. InProceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-03)
pages 499-505, 2003.

A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings. In

[13]

[14]



[16]

[17]

[18]

[19]

[20]

Proceedings of the Forty-Fourth IEEE Symposium on
Foundations of Computer Science (FOCX)03.

A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling

Approximation algorithms for stochastic optimization. In

Proceedings of the Thirty-Sixth ACM Symposium on Theory

of Computing (STOCpages 417-426, 2004.
N. Immorlica, D. R. Karger, M. Minkoff, and V. S. Mirrokn

On the costs and benefits of procrastination: Approximation

algorithms for stochastic combinatorial optimization
problems. InProceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA-04)

pages 691-700, 2004.

D. R. Karger and M. Minkoff. Building steiner trees with
incomplete global knowledge. Proceedings of the
Forty-First IEEE Symposium on Foundations of Computer
Science (FOCSpages 613-623, 2000.

R. R. Mettu and C. G. Plaxton. The online median problem.

In Proceedings of the Forty-First IEEE Symposium on
Foundations of Computer Science (FOQ®)ges 339-348,
2000.

A. Meyerson. Online facility location. IfProceedings of the

Forty-Second IEEE Symposium on Foundations of Computer

Science (FOCSpages 426-433, 2001.

[21] M. Minkoff. Approximation Algorithms for Combinatorial
Optimization Under Uncertainty?hD thesis, M.1.T.,
Cambridge, MA, 2003.

[22] D. PelegDistributed Computing: A Locality-Sensitive
Approach SIAM, Philadelphia, PA, 2000.

[23] L. K. Platzman and I. J. J. Bartholdi. Spacefilling cus\and
the planar travelling salesman problefournal of the ACM
(JACM), 36(4):719-737, October 1989.

[24] C. G. Plaxton. Approximation algorithms for hierarchi
location problems. IfProceedings of the Thirty-Fifth ACM
Symposium on Theory of Computing (STQs2)ges 40-49,
2003.

[25] H. Racke. Minimizing congestion in general networks. |
Proceedings of the Forty-Third IEEE Symposium on
Foundations of Computer Science (FOO®)ges 43-52,
2002.

[26] D. D. Sleator and R. E. Tarjan. Amortized efficiency ct i
update and paging rule€ommunications of the ACM
28(2):202-208, 1985.

[27] L. G. Valiant and G. Brebner. Universal schemes for fpara
communication. IrProceedings of the Thirteenth ACM
Symposium on Theory of Computing (STQs2)ges
263-277, 1981.



