
Unweaving a Web of Documents

R. Guha
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

guha@almaden.ibm.com

Ravi Kumar
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

ravi@almaden.ibm.com

D. Sivakumar
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

siva@almaden.ibm.com

Ravi Sundaram∗

College of Computer and Information Science
Northeastern University

Boston, MA 02115.

koods@ccs.neu.edu

ABSTRACT
We develop an algorithmic framework to decompose a col-
lection of time-stamped text documents into semantically
coherent threads. Our formulation leads to a graph decom-
position problem on directed acyclic graphs, for which we
obtain three algorithms — an exact algorithm that is based
on minimum cost flow and two more efficient algorithms
based on maximum matching and dynamic programming
that solve specific versions of the graph decomposition prob-
lem. Applications of our algorithms include superior sum-
marization of news search results, improved browsing par-
adigms for large collections of text-intensive corpora, and
integration of time-stamped documents from a variety of
sources. Experimental results based on over 250,000 news
articles from a major newspaper over a period of four years
demonstrate that our algorithms efficiently identify robust
threads of varying lengths and time-spans.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Miscellaneous

General Terms
Algorithms, Experimentation, Measurements

Keywords
News threads, Graph algorithms, Graph decomposition

∗Part of this work was done while the author was visiting
the IBM Almaden Research center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
The science of organizing and searching document collec-

tions for the purpose of perusal by human users is emerging
into a mature discipline. The body of work in this field has
evolved to a point where several basic paradigms — rele-
vant elements of information retrieval, link analysis, synthe-
sis of ranking functions, and clustering techniques — may
be considered fairly well understood. On the other hand,
the ubiquity of search as the single most important entry
point into users’ interaction with large repositories of infor-
mation has brought to the fore a new class of questions for
scientific inquiry. Some of the prominent issues include de-
veloping methodologies for searching and organizing specific
collections of information — for example, enterprise data, e-
commerce data, medical/legal libraries, news sources, desk-
top data, etc. Each of these focused problems has its unique
set of characteristics in terms of scale, relevant data mod-
els, robustness requirements, and tolerance to spam, among
other features.

In this paper, we provide an algorithmic framework for the
analysis of large collections of time-stamped text documents.
The primary goal of our framework is to decompose a col-
lection of documents into semantically significant threads.

Before we state the specific technical aims of our work,
let us pause and explore the space of potential applications,
some of which will influence the choice of algorithmic mod-
els and ideas we employ, as well as help us delineate our
approach from prior relevant work.

Motivation.
At a fairly broad level, we consider collections of doc-

uments of text in a single but arbitrary language; the only
significant requirement we make is that each document have
a unique time-stamp. We do not assume that the documents
are drawn from a single source, nor do we assume that all
documents in the collection pertain to a single theme. A few
motivating examples follow.

Consider an archive of news articles from one or more
fairly generic sources (e.g., news feed from AP or Reuters).
A convenient means to organize, summarize, browse, and
search such data would benefit greatly from the decomposi-
tion of the collection into threads of relevant articles. The
notion of a thread is rather pervasive in the news media;

in fact, during the evolution of USENET news as a forum
for exchange of ideas, an important step was the develop-
ment of “threaded news readers.” Surprisingly, the search
facility at common sources of news articles (CNN, The New
York Times, etc.) do not offer a threaded interface to their
archives — “sort by date” and “sort by relevance” appear
to be the most commonly available ranking options.

As an example, the query “Colin Powell” produces a few
thousand responses, and neither of these sorting criteria
is quite adequate, especially considering the fact that arti-
cles about Mr. Powell can be naturally organized into news
threads corresponding to various time periods of his career
(e.g., the Gulf war of 1990, his appointment as Secretary
of State in 2001, his recent resignation, etc.). Furthermore,
this organization is not unique, and depends on the “granu-
larity” of the decomposition — a long thread often consists
of several shorter threads that are loosely bound together.
For example, a collection of articles describing preparations
for a war on Iraq emerges as a natural sub-thread of the
longer thread during his tenure as Secretary of State, and
within this, a European tour by Colin Powell emerges as a
finer sub-thread.

A somewhat more interesting example in this genre is the
case of news articles from a variety of media that match
a given keyword (e.g., IBM). These have a natural tempo-
ral flavor; they also admit natural partitioning not just in
terms of the news source, but also in terms of the empha-
sis of the content. For example, articles about IBM can be
divided into business articles about the performance of the
IBM stock, articles containing reviews and descriptions of
IBM products, etc.

A second motivating example stems from medical and le-
gal case histories that practitioners of these fields routinely
consult. While the importance of semantic coherence is
fairly obvious, the role of temporal coherence requires a few
words of explanation. In fields that are constantly under-
going evolution (as law and medicine certainly are), it is
useful to access information sequenced meaningfully along
the time axis; for example, in medicine, the identical set
of symptoms has led, over time, to rather different conclu-
sions about potential causes and treatments. In such cases,
it is not enough to produce (in response to a query that
consists of the symptoms) all “relevant” prior cases; it is
equally important to order them temporally and find logical
“break points” in the sequence at which the various threads
of analyses (diagnosis, treatment, etc.) can be divided. The
notion of threads is fairly natural in scientific literature and
patent databases as well.

Our framework.
We propose a novel algorithmic framework that captures

the essence of the thread decomposition problem. One of the
highlights of our approach is a crisp combinatorial modeling
of the problem as a graph decomposition problem for di-
rected acyclic graphs. Loosely speaking, the graph problem
is to decompose a given directed acyclic graph into as few
node-disjoint paths as possible while ensuring that as many
nodes as possible participate in at least one path. While
this formulation is not particularly surprising, the main ad-
vantage of our rendition as a graph decomposition problem
is the fact that the “modeling” and “computational” as-
pects of the thread extraction problem are decoupled — one
may plug and play algorithms for either part of the prob-

lem depending on the characteristics of the instances at hand
and/or the computational capabilities and limitations of the
available resources.

The graph decomposition problem we develop in this pa-
per exhibits, as many graph problems do, an amazing spec-
trum in terms of its computational complexity, from NP-
hard incarnations to ones that admit efficient algorithms
— not just polynomial-time efficiency but efficient in the
stream–sort model of computation. We show that the class
of instances we are interested in — directed and acyclic
graphs — admits polynomial-time algorithms for the graph
decomposition problem; this algorithm is based on minimum
cost flow. We also propose a more efficient two-pronged al-
gorithmic attack for two special cases of the problem, one
based on maximum matching in bipartite graphs, and the
other based on dynamic programming. Each approach has
its own advantages, depending on the scale of the problem
instances. The matching-based algorithm needs sufficient
memory to hold the graph and so is applicable only if the
underlying graph is small. On the positive side, matching is
a well-understood graph algorithmic primitive, which allows
us relatively easy use of (publicly) available and fairly well-
optimized code. The dynamic programming approach we
develop is tailored to be efficient in the stream–sort model
[1], therefore admits implementations that require substan-
tially less memory than would be required to hold the graph.

The work of [1] places the spotlight on streaming and sort-
ing as general computational primitives. Indeed, our dy-
namic programming algorithm highlights the importance of
developing stream–sort algorithms for problems on directed
and acyclic graphs in the context of search, organization,
and mining of document collections.

A remark on relationship of our work to clustering. Threads
in temporally ordered corpora offer a clean notion of clus-
ters, and it is natural to ask if one may simply cluster the
documents according to standard clustering algorithms, and
order the documents within each cluster according to their
timestamps. While this is possible in principle, in practice,
one needs to examine all pairs of documents to determine
their similarity or dissimilarity; in the special case of tempo-
rally ordered document collections, one may take advantage
of the sparsity of the term–document relation and devise
algorithms where the document–document similarity rela-
tion has on average O(nt) entries, where n is the number
of documents and t is the average thread length. Our algo-
rithms take special advantage of the temporal structure of
documents and indices, and work with relations with O(n)
entries. This is not only more compact, but it has the ad-
vantage that the clustering algorithms (in our case, graph
algorithms) run much more efficiently. For example, if a col-
lection of n documents with roughly

√
n threads of length√

n, the difference in the size of the relation is a factor of√
n, a significant savings in practice.
A second advantage of our approach compared to tradi-

tional clustering is that news threads often have a natural
drift of topic over time and our algorithms gracefully allow
for this, whereas in traditional clustering methods a primary
objective is to keep each cluster tightly focused.

Experimental results.
We illustrate the performance of our algorithms by pre-

senting experimental results from a fairly large corpus of
news articles (roughly 250,000 news articles that span a time

period of over four years). Our experiments were conducted
on the corpus of all articles, as well as on subcollections
that contain specific query terms. These experiments indi-
cate the feasibility of our algorithms at fairly large scale, and
also demonstrate the efficacy of our framework in allowing
the identification of several natural threads of news stories,
some that span several months, and some that have rather
large “dormant gaps” in the middle, which makes the task
algorithmically quite challenging.

2. RELATED WORK
The related work falls into the following categories: topic

detection and tracking, analysis of news and news events,
automatic construction of hypertext and hyperlinks, and
clustering/automatic identification of communities.

Topic detection and tracking (TDT) refers to automatic
techniques for discovering, threading, and retrieving topi-
cally related material in streams of data. The literature on
TDT is extensive and we review only a few (see, for instance,
http://www.lt-world.org/elf/elf/collatequery?h search=

technology&c technology name=Topic+Detection&exakt=ja).
Clustering and text retrieval techniques were used by Yang
et al. [26, 5] to automatically detect novel events from
a temporally-ordered sequence of news stories. Statistical
methods were used by Swan and Allan [23] to automatically
generate an interactive timeline displaying major events in
a corpus. Most of the work in TDT is focused on detecting
new and significant events in a timeline; the usual tools are
clustering and machine learning. We, on the other hand,
are interested in detecting not just the novel/major events,
but all temporally and semantically connected set of events.
Automatically identifying threads in document collections is
also related to burst analysis and event analysis. Kleinberg
[17] models the generation of bursts by a two-state automa-
ton and proceeds to automatically detecting bursts in se-
quence of events; he looks for the burst of a single keyword.
We, however, are interested in enumerating all threads and
using all terms.

News articles and news groups have been analyzed in the
context of search and data mining. Agrawal et al. [2] study
the use of link-based and graph-theoretic methods to parti-
tion authors into opposite camps within a given topic in the
context of newsgroups. Finding news articles on the web
that are relevant to news currently being broadcast was ex-
plored by Henzinger et al. [15]. Uramoto and Takeda [25]
describe methods for relating multiple newspaper articles
based on a graph constructed from the similarity matrix.
Allan et al. [6] propose several methods for constructing
one-sentence temporal summaries of news stories. Smith
[22] examines collocations of dates/place names to detect
events in a digital library of historical documents.

There has been lot of work on automatically generating
hypertext, beginning with the thesis of Allan [4]. The work
most closely related to ours is that of Dalamagas and Dun-
lop [9] and Dalamagas [8]. They consider the problem of
automatic creation of hyperlinks for news hypertext that is
tailored to the domain of newspaper archives. Their method
is based on traditional clustering tools. Dalamagas [8] also
explores the use of elementary graph-theoretic tools such as
connected components to identify threads in news articles
and builds a prototype system. Smeaton and Morrissey [21]
use standard information retrieval techniques to compute a
graph that is based both on node-node similarity and overall

layout of the hypertext; they then use this graph to auto-
matically create hyperlinks. Blustein [7] explore the problem
of automatically creating hyperlinks between journal arti-
cles. Green [14] develops a notion of semantic relatedness to
generate hypertext. Most of these work, however, focus on
examining the text of a news article and adding hyperlinks
to other news articles based on terms, dates, events, people,
etc; they do not address the problem of identifying threads
in news collection and do not fully use the temporal nature
of the underlying data.

Our problem is also related to, yet different from, the
problem of identifying communities in large graphs. Com-
munity identification has been studied extensively in the
context of web pages, web sites, and search results. Trawling
refers to the process of automatically enumerating commu-
nities from a crawl of the web, where a community is defined
to be a dense bipartite subgraph; an algorithm to do trawl-
ing via pruning and the a priori algorithm [3] was presented
in [19]. A network flow approach to identifying web commu-
nities was given by Flake et al. [11]. Local search methods
were used to identify communities satisfying certain special
properties in the work of [18]; their interest was to extract
storylines from search results. Like clustering, none of these
algorithms, uses a temporal ordering of the documents.

3. ALGORITHMS FOR FINDING THREADS

3.1 Preliminaries
A directed graph G = (V, E) consists of a set V of nodes

and a set E ⊂ V × V of edges. A graph is weighted if there
is a weighting function w : E → R+. A directed path p from
u to v is a sequence of nodes u = w1, . . . , wk = v such that
(wi, wi+1) ∈ E for every i = 1, . . . , k − 1; it will be clear
from the context whether we refer to the nodes or edges in
a path. A directed cycle is a non-trivial directed path from
u to itself. A directed acyclic graph is a directed graph with
no directed cycles.

3.2 The relevance graph
We are given a collection of documents D = {D1, . . . , }

and the goal is to build a “relevance” graph that will help
us identify the threads in the collection. Let t(D) give the
timestamp of a document. For simplicity, we will assume
that the documents can be linearly-ordered according to
their timestamps with D1 being the earliest document, i.e.,
i < j ⇒ t(Di) < t(Dj). The goal of the graph is to express
the relationship/relevance between two documents.

A natural way to construct a graph would be take every
pair of documents D, D′ ∈ D and add the edge (D, D′)
if and only if D and D′ are deemed related. (We adopt
the convention that whenever we add an edge between two
documents D and D′, it is always directed from D to D′ if
t(D) < t(D′) and from D′ to D if otherwise.) Unfortunately,
this approach is not scalable. Even if |D| is only of the order
of thousands, it is not possible to construct or represent this
graph without compromising on efficiency and scalability.

Therefore, we take an entirely different approach to con-
struct a relevance graph out of the documents. Let T =
{T1, . . .} be the “terms” in the document collection. The
set of terms is chosen by some appropriate text parsing or
entity extraction mechanism and depends on the particu-
lar application domain; in this section, we will not address
the issue of how the terms are chosen. Suppose we build

the term–document matrix M that corresponds to the terms
and documents. Here, M(D, T) is the amount of “presence”
of the term T in the document D; once again, we will not
address the issue of how M is constructed in this section
(see Section 4). Our purpose is just to use this matrix M to
build the relevance graph.

We illustrate the construction of the relevance graph in the
case when M is binary, i.e., M(D, T) = 1 if and only if the
term T occurs in the document D. For each term T ∈ T , we
consider DT = {D′

1, . . .}, the set of document postings corre-
sponding to the term, in order of their timestamps. Let w be
a window parameter. We add the edge (D′

i, D
′
j) if and only

if |i− j| ≤ w, i.e., we add an edge between two documents if
they are at most w apart in their ordering in DT ; note that
it could very well be the case that |t(D′

i)− t(D′
j)| � w. At

the end of this step, we end up with a multigraph on docu-
ments. We use a simple threshold parameter τ to “round”
the multigraph to obtain the relevance graph.

Algorithm Build-relevance-graph (D, T , w, τ)

Let M be the term–document matrix
For T ∈ T do
Let DT = {D′

1, D
′
2, . . .}

For D′
i, D

′
j ∈ DT do

If |i− j| < w then ED′
i,D′

j
= ED′

i,D′
j

+ 1

For every nonzero entry EDi,Dj do
If EDi,Dj ≤ τ then EDi,Dj = 0
If EDi,Dj > τ then EDi,Dj = 1

Return nonzero entries of E

There are several merits to our way of constructing the
relevance graph. Firstly, we avoid the quadratic blow up in
time and space by restricting our attention to a small num-
ber of document pairs. At the same time, we do not compro-
mise on documents that are related to each other but do not
occur close to each other in time. The window parameter
w lets us control this behavior. Secondly, using the thresh-
old τ lets us have additional control in terms of rounding.
By picking a suitably large threshold, documents that are
brought together by small number of spurious co-occurring
terms can be separated. Thirdly, it is an easy modification
of our algorithm to deal with a non-binary term–document
matrix, with additional information such as td–idf; see Sec-
tion 4. Fourthly, the construction can also be modified to
work with a documents that not totally ordered, but just
bucket-ordered. Finally, the construction of this graph for
the entire document collection is a one-time step and hence
does not contribute to the run-time cost.

Since we are interested in identifying threads, it suffices
to work with the connected components of the relevance
graph, treated the edges as undirected. To find connected
components in this graph, we resort to the classical union-
find algorithm. This algorithm maintains a family of sets
via a standard union-find data structure. Initially, the fam-
ily contains only singleton sets, each consisting of exactly
one node of the graph. For every edge (u, v), the sets in
the family containing u and v are merged. It is easy to
see that after all the edges are processed, each set in the
family contains the nodes of a connected component. For a
simple algorithm for connected components in the stream–
sort model, see Aggarwal et al. [1]. For the remainder of
this section, we will find the threads in a single connected
component.

3.3 The(a, b)-threads problem
Informally, threads represent directed paths in the rele-

vance graph. Given such a graph, the problem of finding
the best threads can be naturally cast in a combinatorial
optimization framework. While there are several ways to
carry out this, we adopt the following formulation. Given a
directed graph, find small number of disjoint directed paths
to cover as many nodes as possible in the graph. Formally,
the decision version of the (a, b)-threads problem is stated
as:

Problem 1 ((a, b)-threads problem). Given a directed
graph G = (V, E) and parameters a, b > 0, are there at most
a node-disjoint directed paths such that the number of nodes
included in the union of the paths is at least b?

In this most general bicriteria formulation, the (a, b)-threads
problem is as hard as the Hamiltonian path problem in di-
rected graphs [12]. If a = 1, then maximizing b is the longest
path problem.

Fact 2. (1, n)-threads problem for directed graphs is NP-
hard.

3.4 An exact solution for directed acyclic graphs
We now solve the (a, b)-threads problem exactly for di-

rected acyclic graphs. The solution is based on solving a
minimum cost flow problem, for a which a polynomial time
algorithm is known To recap, in a minimum cost flow prob-
lem, we are given a graph with both capacities and non-
negative costs on edges and the goal is to push as much flow
as possible from source to sink, while minimizing the total
cost of the flow. Here, the cost is defined to be the sum over
all edges, the product the edge cost and the flow through
the edge. This problem can be solved in polynomial time
(see, for instance, [10, 24, 13]); typically, the running time is

Õ(nm), where m is the number of edges. If all the costs and
capacities are integral, there is an optimal integral flow as
well. Furthermore, the problem can be solved in polynomial
time even if some of the costs are negative, as long as the
graph is acyclic.

In the (a, b)-threads problem, recall that we are given a
directed acyclic graph G = (V, E) and the goal is decide
if there are a threads in the graph such that the number
of nodes covered is b. From G, we first construct a graph
G′ = (V ′, E′) as follows.

V ′ = {v′, v′′ | v ∈ V } ∪ {s, t}

and

E′ = {(v′, v′′) | v ∈ V }
∪ {(u′′, v′) | (u, v) ∈ E}
∪ {(s, v′) | v ∈ V } ∪ {(v′′, t) | v ∈ V }

All the edges of the form (v′, v′′), v ∈ V are assigned cost −1
and the remaining edges are assigned cost 0. All the edges
in G′ have unit capacity. See Figure 1 for an illustration.

Now, we run the minimum cost flow algorithm on G′ to
see if a units of flow can be pushed from source s to sink
t. Since G′ has unit edge capacities, an integral flow exists.
G is acyclic and our construction ensures that G′ is acyclic
as well. Therefore, the algorithm can still solve the problem
on G′ even though some of its edges have negative costs.

t

a

b

c

d

e

b’

c’

d’

e’

a’ a’’

b’’

c’’

e’’

d’’

G’

G

s

Figure 1: Illustration of the minimum cost flow-
based algorithm.

From the construction, note that being able to route a
units of flow from s to t means that there are a edge-disjoint
paths in G′. Since the cost of each edge is −1, the minimum
cost flow algorithm chooses to route the flow through as
many edges of the form (v′, v′′) as possible. Now, since each
node v in G is split into v′ and v′′, edge-disjoint paths in G′

correspond to node-disjoint paths in G. Thus, each of the
a unit flow path from s to t in G′ corresponds to a node-
disjoint path in G and if −b is the value of the minimum
cost flow, then the total number of nodes participating in
these paths is b.

Algorithm Mincost-flow-based-threads (G)

Construct G′ = (V ′, E′) from G = (V, E)
F = MinCostFlow (G′)
For each unit flow s → u′ → u′′ · · ·w′ → w′′ → t in F

Output thread u → · · · → w in G

Theorem 3. The above algorithm solves the (a, b)-threads
problem for directed acyclic graphs in polynomial time.

The minimum cost formulation is quite powerful and has
several advantages. Firstly, it is easy to persuade the al-
gorithm to look only for threads with a minimum length `.
This can be accomplished by setting the cost of the edges
(v′′, t) to be +`. Secondly, the formulation permits the dual
version of the problem to be solved: given the number of doc-
uments b, minimize the number of threads a to cover all the
b documents. The solution follows from the monotonicity of
the (a, b)-threads problem, i.e., if (a, b)-threads is feasible,
then (a′, b)-threads is also feasible for all a′ ≥ a.

Finding the minimum cost flow, even though can be done
in polynomial time, is prohibitively slow if the graph is mod-
erately large. In the next two sections, we provide very sim-
ple algorithms that permit more efficient implementations

but solve weaker versions of the (a, b)-threads problem. The
first algorithm is based on bipartite matching and the second
algorithm is based on dynamic programming.

3.5 A matching-based algorithm
We note a simple lower bound which is the inspiration

behind the matching-based algorithm.

Lemma 4. b ≥ M(G), where M(G) is the size of the max-
imum matching in G, when treated as an undirected graph.

Using this, the first realization is that if we appropriately
relax the bicriterion formulation of the (a, b)-threads prob-
lem, then the problem becomes simpler. The relaxation is to
ignore a and just try to maximize b. Then, the problem can
be solved optimally via the maximum matching algorithm.
The only non-trivial aspect is that the matching has to be
performed on a slightly different graph, whose construction
is given below.

Recall that in the bipartite maximum matching problem,
we are given an undirected bipartite graph G = (U, V, E)
with |U | = n = |V | and E ⊆ U × V . The goal is to find a
subset of edges E′ ⊂ E of maximum cardinality such that
each node in U, V is incident on at most one of the edges in
E′. Maximum matching in bipartite graphs can be solved in
O(n5/2) time via the algorithm of Hopcroft and Karp [16]
and can be approximated in near-linear time to within a
factor of 2 via maximal matching.

Given a directed acyclic graph G = (V, E), we construct
an undirected bipartite G′ = (V ′, V ′′, E′). The node set
V ′ = {a′ | a ∈ V } V ′ = {a′′ | a ∈ V }, i.e., consists of a′, a′′

for every a ∈ V . The edge set is given by

E′ = {(u′, v′′) | (u, v) ∈ E}.

Figure 2 shows an example construction. Intuitively, select-
ing an edge (u′, v′′) ∈ E′ represents selecting the directed
edge (u, v) ∈ E and the matching constraint ensures that
each node in G is matched at most once. After finding the
maximum matching, the edges in the matching are referred
back to the edges in G to construct the directed paths in G.
We use the standard union-find data structure to recover
the threads from the matched edges.

Algorithm Matching-based-threads (G)

Construct G′ = (V ′, V ′′, E′) from G = (V, E)
M ′ = MaxMatching (G′)
For each (u′, v′′) ∈ M ′ do

Union (Find (u′), Find (v′′))

It is easy to see that a collection of threads in G of size b
naturally implies a matching of size b in G′. Conversely, any
matching of size b in G′ can be decoded into a collection of
node-disjoint paths in G; the matching criterion translates
to the node-disjointness requirement. Thus,

Lemma 5. The above algorithm solves the (∗, b)-threads
problem in polynomial time.

While the matching-based formulation has the elegant ap-
peal of solving a special case of the (a, b)-threads problem ex-
actly, it suffers from the following two serious shortcomings.
Firstly, the best implementations of maximum matching in
bipartite graphs take O(n5/2) time. This algorithm loads

d’’

a

b

c

d

e

b’

c’

d’

e’

a’ a’’

b’’

c’’

e’’

G

G’

Figure 2: Illustration of the matching-based algo-
rithm.

the entire graph into memory and hence becomes impracti-
cal for especially large graphs. Furthermore, finding max-
imum matching in the stream–sort model is a well-known
open problem. Secondly, since matching maximizes b, it
might produce threads that are fragmented. For instance,
Figure 3 shows an instance where the matching-based algo-
rithm might identify several small threads while there is a
clear “good” thread. Note that this thread will indeed be
discovered by the minimum cost flow algorithm with a = 1.

5

u

u

u

u

w

w

w

w

v

v

v

v

v

1

1 1

2

2 2

3

3 3

4

4 4

Figure 3: A case where matching identifies five sep-
arate threads v1 → u1, w1 → v2 → u2, . . . , w4 → v5

whereas the “best” thread to output is perhaps
v1 → · · · → v5.

In the next section we present a simple dynamic programming-
based algorithm for a different relaxation of the the threads
problem. The main feature of this algorithm is its realiz-

ability in the stream–sort model of computation.

3.6 A dynamic programming-based algorithm
In this section, we will present two algorithms for extract-

ing threads from a collection of documents represented as
a graph obtained in Section 3.2 based on the dynamic pro-
gramming paradigm. The first algorithm of this section re-
peatedly removing long paths identified using dynamic pro-
gramming. Here, we use the fact that if the graph is acyclic,
then the longest path can be found very efficiently (unlike
the general case).

Given the directed acyclic graph G = (V, E) of documents,
for j ∈ V , let `(j) denote the longest path ending in node
j of G. It is easy to see that given `(i) for all i < j, where
< is an arbitrarily fixed topological order of G, we may re-
cursively compute `(j) as maxi:(i,j)∈E(1+ `(i)). This can be
accomplished by a dynamic programming implementation
with O(n) nodes, where n = |V |. Furthermore, the dynamic
programming algorithm for this problem admits a simple
implementation in the stream–sort model if for j ∈ V and
all in-neighbors i of j, all the in-edges of i appear before all
the in-edges of j, that is, the edges are ordered topologically
by their destination node.

Furthermore, after removing the nodes that are included
in a longest path, we may repeat the algorithm with the
remaining edges to obtain further paths. Using an efficient
hash table to keep track of covered nodes, we obtain a very
efficient implementation of this algorithm.

Algorithm DP1-based-threads (G = (V, E))

Repeat
p = longest path in G
Output p
G = G\p

Until G is empty

Unfortunately, the above algorithm does solve any version
of the (a, b)-threads problem. Below, we propose a more
sophisticated dynamic programming algorithm to solve the
(a, b)-threads problem where b is fixed to be n and the goal
is to minimize a. While this dynamic program computes
the maximal chain cover of the directed acyclic graph, the
crucial point is that it can be implementable in the stream–
sort model.

Given the directed acyclic graph G = (V, E) of documents,
and an integer parameter T denoting the maximum number
of allowed threads, the goal is to find out if the nodes of V
can be covered with at most T node-disjoint directed paths.
Let τ denote an arbitrarily fixed topological order on the
nodes of G; wlog. we may assume that the set {τ(i) | i ∈ V }
is exactly the set {1, . . . , n}, where n = |V |, so that we may
identify the nodes with their rank in τ . Define the table
cover(k, t, i) = 1 if all nodes ≤ k can be covered with at
most t node-disjoint paths such that node i is a leaf in one
of these paths. For j ∈ V , suppose we have cover(j−1, t, i)
available for all i such that (i, j) ∈ E; we will show how to
determine the entries cover(j, t, i) for all i ≤ j. Namely,
cover(j, t, j) = 1 if and only if for cover(j− 1, t, i) = 1 for
some i such that (i, j) ∈ E. Furthermore, cover(j, t, i) = 1
for i < j if and only if cover(j − 1, t, i) and there is some
node i′ such that i′ 6= i and cover(j − 1, t, i′) = 1 and
(i′, j) ∈ E. Finally, cover(j, t+1, j) = 1 if cover(j−1, t, i)

is true for some i < j, and similarly cover(j, t + 1, i) = 1 if
cover(j − 1, t, i) = 1.

These recurrences lead to an algorithm in the stream–sort
model where we maintain a T×n table corresponding to the
second and third co-ordinates of the table cover — note
that if the edges are presented in topological order of the des-
tination node, then we do not need a 3-dimensional array as
suggested by the recurrence. A crucial implementation de-
tail is that we do not have to compute cover(j, t, i) for every
value of i (which would take n2 steps from the definition);
since we obtain all edges pointing into j at the same time, we
only need to consider N(j)2 pairs (i, i′) that are relevant. To
trace the actual paths, rather than resort to a 3-dimensional
array of size n×T ×n, we could compute cover(j, t, ·) and
cover(j, t + 1, ·) and write an output stream that contains
information necessary to trace the paths. For example, if
we determine that cover(j, t, j) = 1 because for some i,
cover(j, t, i) = 1 and (i, j) ∈ E (which we would at the
time the edges with destination j are processed), we will
write into the output stream the tuple (j, t, j, i). These tu-
ples can be post-processed (again, using the sorting primi-
tive) to construct the actual paths.

Lemma 6. The above algorithm solves the (a, n)-threads
problem for directed acyclic graphs in polynomial time.

4. EXPERIMENTS AND RESULTS
In this section we describe our experiments on news arti-

cles and the results we obtain.

4.1 Experiments

Data source.
Our data source is The Hindu, a daily newspaper from

India. This popular newspaper is published in the English
language, and is very broad in its coverage of news items,
ranging from local to international articles of importance.
We obtained all the articles in the online version of the news-
paper (www.hinduonnet.com) from Jan 1, 2000 to Mar 31,
2004.

Preprocessing.
We obtained all the articles and parsed them to collect a

subset of terms in each document. This step was based on
an algorithm in [18] to extract the most important terms
in a given document. Each news article comes with an ob-
vious time stamp and we randomly break ties to obtain a
linear ordering of the articles. A binary unweighted term–
document relation is then constructed from the articles and
the terms. Our index consists of approximately 29.5 million
term–document pairs from a corpus of roughly 250,000 arti-
cles and 375,000 terms. Thus, on average, a term occurs in
roughly 78 documents and a document contains around 118
terms.

Let D denote the collection of documents in our corpus,
let T denote the collection of terms, and let R denote the
term–document relation synthesized. The primary interface
with the index is a query engine that takes a term T and pro-
duces the partial index R′ ⊆ R defined by R′ = {(T ′, D′) |
(T, D′) ∈ R}; that is, R′ consists of the projection of R to
the set of articles that contain T . Producing R′ = R′(T)
from the term t takes advantage of the index sorted accord-
ing each of the keys, terms and documents, and the output

of this step is sorted by term. This enables the applica-
tion of the relevance graph construction step described in
Section 3.2. We then apply the connected components al-
gorithm to decompose the relevance graph, and apply our
thread-detection algorithms to each of the large connected
components.

4.2 Results — Anectodal examples
We present our results in the form of interesting threads

uncovered by our algorithms. For definiteness, we set the
window parameter w = 10 and the threshold parameter
τ = 5 in all these examples, and employed the mincost-flow
based algorithm. The graphs in these case were quite sparse,
and, on average, consisted of about 2,500 edges. The entire
process, from issuing the query to web page creation, takes
a few seconds (unoptimized). Based on preliminary stud-
ies, the algorithm based on maximum matching is some-
what more efficient on larger graphs, and the one based
on dynamic programming offered a complete partition of
all documents that respond to a query. Qualitatively, the
mincost-flow based algorithm appears quite robust and pro-
duces threads of varying lengths, while the matching based
heuristic and the dynamic programming formulation tend to
produce more short threads (since they maximize the num-
ber of documents covered).

The discussion below outlines various threads produced
for some quries, and presents some of the more colorful
examples. Complete listing of all threads for a few tens
of queries (for the setting w = 10 and τ = 5 with the
mincost-flow based algorithm) are presented at http://www.
almaden.ibm.com/cs/people/siva/threads.html, which the
reader is invited to visit.

First, we consider the query ‘Clinton’. This query pro-
duced about 30 threads of length 5 or more, and corre-
sponded to several natural news stories involving the former
U.S. President as well as the present U.S. Senator. This in-
cluded threads that corresponded to various visits to India
by Clinton, a visit by the Indian National Security Adviser
to the U.S., a thread corresponding to the 2000 U.S. elec-
tions, threads related to Clinton’s involvement in the con-
flicts in Ireland, Israel. In addition, the algorithm produced
a thread on a local sports personality in India. Tables 1 and
2 present two sample threads, one that follows the thread
of IRA attacks, and one that follows the drama surrounding
the child Elian Gonzalez; note that the former thread spans
several months, while the latter is much more restricted to
a few weeks.

Next, we present some threads obtained from the graph
corresponding the term ‘terrorist’. This query produced var-
ious threads related to the terrorist attacks on September
11, 2001, in New York City, including specific storylines
on the impact of the attacks on financial markets, world
sports events, various editorials on how to proceed in the
war against terror, the U.S. war in Afghanistan following
the terror attacks, threads on various terrorism-related laws
within India, an unusual thread spanning over a year about
various Indian movies that have terrorist characters. A sam-
ple thread about terrorist attacks in Madrid is presented in
Table 3.

The next query considered in ‘Maran’, an Indian politi-
cian who at one time was the Commerce Minister of India.
This query produced various threads about his attending the
WTO summit, various issues about Commerce discussed in

Date Title
03/05/2001 Blast damages BBC office
03/06/2001 Britain placed on high alert
05/01/2001 McGuinness may admit role in IRA
06/02/2001 IRA arms dumps still intact, say

inspectors
08/01/2001 N. Ireland: Loyalists threaten more

violence
08/05/2001 Blast puts Ulster deal in doubt
08/08/2001 A breakthrough in Ulster
08/18/2001 Colombian links hit peace process
08/25/2001 Remove Sinn Fein from Executive, say

hardliners

Table 1: Thread indicating IRA attacks.

Date Title
04/07/2000 Elian’ father arrives in U.S.
04/09/2000 Political pawn
04/11/2000 U.S. weighing options on Elian
04/16/2000 Court asked to order Elian handover
04/23/2000 U.S. enforces Elian-father reunion
04/24/2000 Widespread ire over re-union
04/27/2000 Senate panel may open hearings on Elian
05/01/2000 Elian case leaves impact on Florida politics
05/04/2000 Republicans not to press for hearings on

Elian case?

Table 2: Thread corresponding to the Elian Gonza-
lez drama.

the Indian Parliament, etc. Table 4 shows an interesting
thread corresponding to his health problems; note that this
thread includes articles about his hospitalization and recov-
ery in 2000, surgery in 2002, and his final hospitalization
and demise in 2003.

Finally, we present two interesting threads from the query
‘Nepal’, which produced several interesting threads involv-
ing Indo–Nepalese relations, the politics and policy issues
in the South Asian region. The first, presented in Table 5,
spans six months, and is about the cancellation of Indian
Airlines’ flights to Katmandu, Nepal’s capital, owing to se-

Date Title
03/12/2004 190 killed in Madrid serial blasts
03/12/2004 ’It looked like a platform of death’
03/12/2004 190 killed in Madrid serial blasts
03/13/2004 A challenge no Government can take lightly
03/14/2004 Spain follows up two leads
03/15/2004 Poll overshadowed by Al-Qaeda claim
03/16/2004 MEANING OF THE SPANISH VERDICT
03/17/2004 Power balance blown apart
03/17/2004 Blair ‘vulnerable’ after Aznar’s defeat
03/21/2004 Spain: a vote to right a wrong
03/23/2004 Post-Cold War tasks
03/27/2004 A crumbling defence
03/27/2004 Old wine in old bottles

Table 3: Thread corresponding to Madrid attacks.

Date Title
11/08/2000 ’Maran needs pacemaker’
11/09/2000 Maran undergoes ’radical procedure’
11/10/2000 U.K. specialist examines Maran
11/11/2000 Maran ’on the road to recovery’
11/25/2000 Maran shifted out of ICU
12/01/2000 The ’desperate attempt’ paid off
09/26/2002 Maran operated upon
06/16/2003 ’Every possible step taken’
06/16/2003 Karunanidhi demands probe into

medical treatment for Maran
09/08/2003 Karunanidhi calls on Maran
11/24/2003 Murasoli Maran dead
11/25/2003 Maran cremated with state honours
11/25/2003 Thousands pay homage to ‘Murasoli’ Maran
11/25/2003 ‘Nation has lost an eminent political personality’
12/03/2003 Nominate replacement for Maran: Vajpayee

Table 4: Thread corresponding to Mr. Maran, an
Indian politician who was hospitalized but later re-
covered in 2002.

Date Title
01/13/2000 ’No IA flight to Kathmandu

without fool-proof security’
03/07/2000 Team to review airport security in Nepal
04/04/2000 Talks on resuming flights inconclusive
04/25/2000 India for early decision on flights to Nepal
05/09/2000 Flights to Nepal may resume soon
05/11/2000 Resuming flights to Nepal
05/16/2000 IA to resume flights to Nepal from June 1
06/01/2000 IA flights to Kathmandu
06/02/2000 IA resumes service to Nepal

Table 5: Thread corresponding to IA flights to
Nepal.

curity concerns, and the subsequent restoration of flights.
The second, presented in Table 6, is a short thread that
nevertheless spans nearly a year, and discusses silk smug-
gled through Nepal from China to India.

5. CONCLUSIONS AND FUTURE WORK
We presented a formal treatment of the problem of detect-

ing threads in a time-stamped document collection. The for-
mulation is based on maximizing the covering of a directed
graph (at least b nodes) by a small number of (at most a)
directed paths. We presented three algorithms for this prob-

Date Title
03/03/2002 Chinese silk flooding local market
06/14/2002 Centre urged to end illegal import of Chinese silk
06/16/2002 Prevent dumping of Chinese silk, CM urges Centre
12/22/2002 Centre’s decision a boost to sericulture sector
01/07/2003 ‘Imported silk ruining ryots’
01/08/2003 Centre urged to increase assistance for sericulture

Table 6: Thread corresponding silk smuggled
through Nepal.

lem. The first algorithm solves the problem exactly for the
case a is fixed and b is maximized, and is based on mini-
mum cost flow. This algorithm, combined with a natural
binary search, yields an exact solution to the problem of
fixing b while minimizing the a parameter. The algorithm
based on dynamic programming yields an exact solution to
the case where b = n and a is minimized. The algorithm
based on bipartite maximum matching yields an exact so-
lution to the case where b is maximized, with no constraint
on the a parameter. We tested these algorithms on a large
collection of news articles beginning January 01, 2000 to
March 31, 2004. Our experiments showed that these algo-
rithms are extremely effective in locating threads in these
news articles. We also argued that the problem of thread
identification goes beyond the realm of news articles—it can
be applied to various temporal collections including patents,
medical databases, legal documents, archives, scientific ci-
tations, etc. We believe that the results can be improved
even more if one were to apply sophisticated term extraction
methods that are suited to particular application domain.

It will be interesting to see if there is a purely combinato-
rial algorithm for the (a, b)-threads problem and if the prob-
lem can be solved (perhaps approximately) in the stream–
sort model. Further work includes more general formulation
of the problem, for instance, allowing small width trees (in-
stead of just directed paths) so as to identify subthreads in
a thread, or requiring that there are many edges between
the initial and later portion of the thread so as to prevent
topic drift. These problems fall under the purview of par-
tition problems in directed graphs; for instance, see [20]. It
will also be interesting to see the results of applying our
algorithm to patent, medical, and legal articles.

6. REFERENCES
[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl.

On the streaming model augmented with a sorting
primitive. In Proc. of the 45th IEEE Annual
Foundations of Computer Science, pages 540–549,
2004.

[2] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu.
Mining newsgroups using networks arising from social
behavior. In Proc. of the 12th International
Conference on World Wide Web, pages 529–535, 2003.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. 20th
International Conference on Very Large Data Bases,
pages 487–499, 1994.

[4] J. Allan. Automatic Hypertext Construction. PhD
thesis, Cornell University, 1995.

[5] J. Allan, J. Carbonell, G. Doddington, J. Yamron,
and Y. Yang. Topic detection and tracking pilot
study: Final report. Proc. DARPA Broadcast News
Transcription and Understanding Workshop, 1998.

[6] J. Allan, R. Gupta, and V. Khandelwal. Temporal
summaries of new topics. In Proc. of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
10–18, 2001.

[7] W. Blustein. Hypertext Versions of Journal Articles:
Computer-aided Linking and Realistic Human-based
Evaluation. PhD thesis, University of Western
Ontario, 1999.

[8] T. Dalamagas. NHS: A tool for the automatic
construction of news hypertext, 1998.

[9] T. Dalamagas and M. D. Dunlop. Automatic
construction of news hypertext. In HIM, pages
265–278, 1997.

[10] J. Edmonds and R. M. Karp. Theoretical
improvements in algorithm efficiency for network flow
problems. Journal of the ACM, 19:248–264, 1972.

[11] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In Proc. 6th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 150–160, 2000.

[12] M. Garey and D. Johnson. Computers and
Intractability. Freeman, 1979.

[13] A. Goldberg and R. Tarjan. Solving minimum-cost
flow problems by successive approximation. In Proc.
19th ACM Symposium on Theory of Computing, pages
7–18, 1987.

[14] S. J. Green. Automatically generating hypertext in
newspaper articles by computing semantic relatedness.
In Proc. of the Joint Conference on New Methods in
Language Processing and Computational Natural
Language Learning, pages 101–110, 1998.

[15] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin.
Query-free news search. In Proc. of the 12th
International Conference on World Wide Web, pages
1–10, 2003.

[16] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM
Journal on Computing, 24(2):225–231, 1973.

[17] J. Kleinberg. Bursty and hierarchical structure in
streams. In Proc. 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 91–101, 2002.

[18] R. Kumar, U. Mahadevan, and D. Sivakumar. A
graph-theoretic approach to extract storylines from
search results. In Proc. 10th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 216–225, 2004.

[19] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the Web for emerging
cyber-communities. Computer Networks (Amsterdam,
Netherlands: 1999), 31(11–16):1481–1493, 1999.

[20] J.-J. Pan. Path Partition and Its Variation in Graphs.
PhD thesis, National Chiao Tung University, 2004.

[21] A. F. Smeaton and P. J. Morrissey. Experiments on
the automatic construction of hypertexts from texts.
The New Review of Hypermedia and Multimedia,
1:23–39, 1995.

[22] D. A. Smith. Detecting events with date and place
information in unstructured text. In Proc. of the 2nd
ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 191–196, 2002.

[23] R. Swan and J. Allan. Automatic generation of
overview timelines. In Proc. of the 23rd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
49–56, 2000.

[24] E. Tardos. A strongly polynomial minimum cost
circulation algorithm. Combinatorica, 5:247–256, 1985.

[25] N. Uramoto and K. Takeda. A method for relating

multiple newspaper articles by using graphs, and its
application to webcasting. In Proc. of the 36th
Conference on Association for Computational
Linguistics, pages 1307–1313, 1998.

[26] Y. Yang, T. Pierce, and J. Carbonell. A study on
retrospective and on-line event detection. In Proc. of
the 21st ACM International Conference on Research
and Development in Information Retrieval, pages
28–36, 1998.

