(Almost) Tight Bounds and Existence Theorems for
Confluent Flows

Jiangzhuo Cheh Robert D. Kleinberg Laszlo LovasZ Rajmohan Rajaraman
Ravi Sundaram Adrian Vetta¥

Abstract

A flow is said to be confluent if at any node all the flow leavesgla single edge. Given a directed
graphG with £ sinks and non-zero demands on all the nodes,afie consider the problem of determin-
ing a confluent flow that routes every node demand to some sictkthat the maximum congestion at
a sink is minimized. Confluent flows arise in a variety of apgiion areas, most notably in networking;
in fact, most flows in the Internet are confluent since Interoeting is destination based.

We present near-tight approximation algorithms, hardnesslts, and existence theorems for con-
fluent flows. The main result of this paper is a polynomialetiatgorithm for determining a confluent
flow with congestion at most + In(k) in G, if G admits a splittable flow with congestion at most 1.
We complement this result in two directions. First, we pnesegraphG that admits a splittable flow
with congestion at most 1, yet no confluent flow with congessimaller tharfd;,, thus establishing tight
upper and lower bounds to within an additive constant less th Second, we show that it is NP-hard to
approximate the congestion of an optimal confluent flow tdiwit factor of(lg k) /2, thus resolving the
polynomial-time approximability to within a multiplicatt constant. We also show that a simple post-
processing step following the congestion minimizatioroaliym yields a confluent flow with congestion
at most 1 that satisfies 1/6 fraction of total demand.

We show that the gap between confluent flows and splittablesfiemuch smaller, if the underlying
graph werek-connected. In particular, we prove thatonnected graphs with sinks admit confluent
flows of congestion less thal + dax, WhereC' is the congestion of the best splittable flow. The proof
of this existence theorem is non-constructive and relie®palogical techniques introduced in [17].

“College of Computer and Information Science, Northeasterdniversity, Boston MA 02115.
Email:{chenj , rraj }@cs. neu. edu.

fDepartment of Mathematics, MIT, Cambridge MA 02139. Emailtk @rat h. mi t . edu. Supported by a Fannie and John
Hertz Foundation Fellowship.

fMicrosoft Research, One Microsoft Way, Redmond, WA 9805®alE | ovasz@ri cr osof t . com

SCollege of Computer and Information Science, Northeasthriversity, Boston MA 02115, & Akamai Technologies, Cam-
bridge, MA. Emailkoods@cs. neu. edu.

'"Department of Mathematics and School of Computer ScienagsiMUniversity, Montreal, Quebec, H3A 2A7, Canada.
Email:vet t a@mat h. ntgi |l | . ca.

1 Introduction

In this paper, we present new approximation algorithmselo@ounds, and existence theorems for a class
of network flows callecconfluent flows A flow in a directed graph is said to w®nfluentif all the flow
departing a node does so along a single outgoing edge.

Confluent flows arise in a number of scenarios including eation problems and various applications
in networking. For instance, content delivery networks (&) often organize their deployment of servers
in the form of a rooted tree with each node forwarding datanfits children to its parent and vice versa.
Perhaps the most common application of confluent flows istermet routing. Most flows on the Internet
today are confluent because Internet routing is primarilyedaon selecting a shortest path tree to each
destination and then routing along the selected shortabs;pthus, all packets departing a router for a
particular destination depart along the same edge. A mhmtaoming of shortest-paths routing, however,
is that it ignores congestion at intermediate nodes andsedge

The main focus of this paper is on finding confluent flows witraBroongestion. Consider a directed
graphG with £ distinguished nodes, referred tosisks and non-zero demands on all the node&ofWe
would like to determine a confluent flow that routes every mietmand to some sink such that the maximum
flow arriving at any sink, referred to as thengestiorof the sink, is minimized. If we drop the confluence
constraint and thus alloaplittable flowsthen a flow that minimizes maximum congestion at a sink can be
obtained in polynomial time by a straightforward reductiorthe maximum flow problem. On the other
hand, it was shown in [1] that minimizing confluent flow contimsis MAXSNP-hard, and that af (/)
approximation is achievable for annode graph in the special case when all nodes have idedgoahnds.

1.1 Ourresults

We present near-tight bounds on the approximability of cmmit flows, and on the gap between confluent
flows and splittable flows.

e The main result of this paper is a polynomial-time algoritfondetermining a confluent flow with
congestion at modt+ In(k) in G, if G admits a splittable flow with congestion at most 1 (Sectian 4)
We complement this result by presenting a grépthat admits a splittable flow with congestion at
most 1, yet no confluent flow with congestion smaller tiign(Section 3.1). Sincél, = Ink + v —
o(1), where~ is Euler’s constant, we have resolved the gap between cofuand splittability to
within an additive constant less than 1.

Our algorithm is based on a novel deterministic rounding rofoatimal splittable flow, that repeatedly
refines the flow by removing carefully selected edges andceggding nodes into sinks, leading to the desired
confluent flow. It is interesting to contrast the near-optibund achieved by our rounding scheme with the
Q(n'/*) bound achieved by a natural randomized rounding schemiesetects for each node an outgoing
edge with probability proportional to the flow on the edgehia splittable solution [1].

Since the optimal splittable flow congestion is a lower boandhe optimal confluent flow congestion,
our algorithm achieves @l + In k)-approximationfor minimizing congestion. One may ask whether an
improved approximation can be achieved efficiently.

e We show that it is NP-hard to approximate the congestion ob@timal confluent flow to within
a factor of(lg k)/2, thus resolving the polynomial-time approximability tothnh a multiplicative
constant (Section 3.2) It is interesting to note that our lower bound is not baseohup reduction
from set cover [3] and relies on a weaker precondition thanuled in the set cover hardness result.

Throughout this paper, we uggto refer tolog,,.

While the bound ofl + In(k) on the ratio between the congestion of confluent and sgkttéows is
existentially tight up to an additive constant, it is natucewonder whether there are interesting classes of
graphs for which the gap is smaller.

e A positive answer to this question is provided in Sectioméylich we prove that-connected graphs
with & sinks admit confluent flows of congestion less thant d.,.x, WhereC' is the congestion
of the best splittable flow. In particular, this means that thatio between confluent and splittable
congestion ink-connected graphs is at most 2. Interestingly, the proohisféxistence theorem is
non-constructive and relies on topological technique®dhiced in [17].

Finally, we also consider a demand maximization problemyhith we seek a confluent flow with conges-
tion at most 1 that maximizes the total demand of all the nedesse demand is satisfied.

e We show that a postprocessing of the confluent flow obtainetthdygongestion minimization algo-
rithm yields a 6-approximation to the demand maximizatiowbfem (Section 5).

Due to space constraints, we have omitted many of the priafg;may be found in appendices A through C.

1.2 Related work

The bulk of our results in this paper compare confluent flownth &inatural relaxation, namely splittable
flows, which are well-characterized by the celebrated maw-fhin-cut theorem of Ford and Fulkerson [4,
5]; there is a vast literature on efficient algorithms foradbing the maximum flow. Another relaxation
of confluent flow is unsplittable flow, which requires that dlemand for every source be routed along a
single path. Both the congestion minimization and demarxinmiaation versions of unsplittable flow may
be approximated to within a constant factor using the algors of [2, 13]. The relationship between the
edge congestioof confluent and unsplittable flows is addressed in [16], incwlan2(n) separation is
established, where is the number of nodes.

In the special case whe€g¢is an undirected graph and all vertices have unit demandnfiradconfluent
flow of congestion< C' is equivalent to partitioning= into & connected subgraphs of size C, each
containing one of the sinks. (Given such a partition, a cenfidlow is obtained by routing all flow along
the edges of a spanning tree in each subgraph.) \Whek-vertex-connected, Frank [7] conjectured in 1975
that such partitions always exist, provided that > n. In fact, he made the much stronger conjecture that
given sinkssy, . .., s; and positive integersy, . . ., n, summing tan, one could partitiorty into £ connected
subgraphs, such that tli¢h subgraph containg and hasexactlyn; vertices. This conjecture was proved
independently by Lovasz [17] and Gyb6ry [10]. Lovasz’s drapplies also to directed graphs. Our result on
the existence of confluent flows irconnected graphs can be viewed as a weighted generatizztibis
theorem, in which the vertices are given non-negative reddims (demands) and one seeks to partition
into connected subgraphs whose total weights approximspecified:-tuple of target weights.

In this paper, we have entirely focused on single commodityflaent flows. Multicommodity and
fractional variants of confluent flows are studied in [1]. Ktdmmodity confluent flows are considered
by [8, 14] in a model where the demands are not associateddividual source-sink pairs; instead with
sources or sinks, as a whole. Also related is the work of [@R]ch raises the problem of finding a subtree
of a given network that can route a given set of multicommofidw pairs with minimum congestion. The
impact of confluence on IP routing is studied in [16] and [18].

2 Confluent flow problem definitions

Let G = (V, E)) denote a directed graph ardd V' — R, denote a function specifying the demand at each
vertex. We denote the total demand, .- d(v), by D and the maximum demanthax,cy d(v), DY dmax-

2

LetS = {s1,...,s,} C V denote a set of sinks. Any flowf : E — R, routing the demands to the sinks
satisfies the flow conservation equation

S fo- S fle) =dw)

e=(v,w)eE e=(u,v)€E

at every vertew € V — S. For any nodey, define than-flow of v in(v) to be the sum of the flows on the
edges inta. The congestion of at a node is now defined ad(v) + in(v).

Without loss of generality, we assume that each sink hasinotyming edges. (Supposghas outgoing
edges, we can add a sink vertg»and an edgés;, s;) to G and removes; from S.) We also assume without
loss of generality that the maximum congestion of any nod& isf 1; otherwise, all the demands and flows
can be scaled by the maximum congestion to satisfy this piyope

We say that a flowf is confluent if for every node, there exists at most one ed@e v) that has positive
flow (i.e., f(u,v) > 0). Thus, a confluent flow yields a subgraph@®fconsisting of disjoint components
{Ty,..., Ty}, such that eactfi; is an arborescence directed towards the spoln any arborescencg, the
maximum node congestion occurs at the sipknd equals the total demandify given byd(T;). We refer
to the maximum node congestiamx; d(T;) as the congestion of the confluent flow.

In this paper, we consider two optimization problems comicgy confluent flows. In theongestion
minimizationproblem, we seek a confluent flow with minimum congestion agradhconfluent flows that
satisfy all demands. In thdemand maximizatioproblem, we seek a confluent flow that satisfies maximum
total demand among all confluent flows that have congestiamat 1.

3 Lower bounds

In this section, we present two lower bound results. We fireas@nt an instance where the congestion of
the optimal confluent flow is at lea&;, times that of the optimal splittable flow. We then show thas it
NP-hard to approximate the minimum congestion confluent ftowithin a factor of% Ig k.

3.1 Confluent to splittable: H, gap

Figure 1(a) shows an instance with splittable congestibat where the optimal confluent flow has conges-
tion at leastH. The congestion of any confluent flow is at le&&t since the node with demaridnduces

a flow of H;, into any sink that drains it. We leave it as an easy exerciséhoreader to see that the flow
that splits the outgoing flow at each node as shown in the figcineeves a congestion bf

3.2 Hardness of approximation

In [1] it was shown that the minimum congestion problem is INfPd to approximate better th@and
hence MAXSNP-hard. Here, we refine the approach of [1] to owgthe lower bound and show that it is
NP-hard to approximate better thég k) /2.

We present a hardness result for directed graphs with ndoromdemands. It is easy to modify this
result to the case of uniform demands, where for each verter wish to route exactly one unit of flow
to a sink. Take a directed gragh with special vertices, so, t1,t2. It is known [6] that it is NP-hard to
determine whether or not there are vertex-disjoint dipathis from s, to ¢t; and froms, to t5. We show that
any approximation algorithm for the confluent flow problenthwperformance guarantee better thag &
can be used to determine in polynomial time whether or ndt siigjoint dipaths exist irdz. This will give
our result. We remark that the gadgets we use were first apiplig] for the edge-disjoint path problem.

Theorem 1. It is NP-hard to approximate the optimal confluent flow cotigesto a factor less thalé Ig k.

3

\J

172

3 Qs

j . .

1)j
(+1-i)/(+1) ?w*'l)
[

:

(@)

Ky

Figure 1:(a) Instance demonstrating dfy, gap between confluent and splittable flows. The round nodescarces
with j nodes at levef each with supplyjl.. The square nodes are sinks. The flows on the outgoing eddks i
node on levej are specified.k) Instance used in the NP-hardness proof. The black vetti@es demand one, except
for the large black vertex] which has demand two, and the white vertices have demand zero

Proof. GivenG we build an auxiliary networkV as follows. Take a complete binary tréeon 2/'gk1-1 4 1
nodes, with root node. We makeT directed by replacing each edge with an arc directed away fre
root. Then we replace each nodén the tree by a copy off. We use the notatios{, for example, to refer
to the copy ofs; in the copy ofG associated to the nodec T.

For a non-leaf node in the tree, let;(v) andc, (v) be its two children. Then the afe, ¢;(v)) in T'is
replaced by the ar(}, sf’(”)) in the auxiliary network; similarly, the ar@, ¢, (v)) in T is replaced by the
arc (tf, sfr(”)) in the auxiliary network. For each leaf noden the tree, we add the two ar¢g', ti*) and
(¢4, t5%), wheret;* and¢3* are sinks. Our construction is illustrated in Figure 1(b).

In addition, we give each vertex in the auxiliary network anded. Every copy of; andi, receives
demand one. Every copy &f andt; receives demand zero, except fjrwhich receives demand two.
Every other vertex has demand zero.

Now, supposé&7 contains vertex-disjoint dipath3, and P, from s; to ¢; and fromss, to ¢, respectively.
Utilizing these dipaths in each copy Gfwe obtain a collection of disjoint dipaths that end at theo§stnks
t* and that cover every copy @f, s2,t; andt,. This is shown in Figure 1(b). Since each dipath contains
only two vertices of non-zero demand (and exactly one fordipath froms’ to ¢*), the congestion of the
resultant confluent flow is exactly two. This is clearly omirsince there is a vertex with demand two.

Now suppose thatr does not contain vertex-disjoint dipatis and P, from s; to ¢; and froms, to ¢,.
Take any confluent flow in our network and consider the digathinduces froms’ to ¢*. We now show
that this dipath must have congestion at ld&st: |. Towards this end, assume tlapasses through copies
of G corresponding to the nodes= v1, vy, ..., v k-1 Of T'. Thus by constructio” must pass through
syt for1 <4 < [lgk] — 1. We claim that vertex]" has congestion at least+ 1. This is true fors{*.
Assume then thai’l’j has congestion at leagt+ 1, and consider the copy @f corresponding t@;. We
know that any flow at,” and ats,” must be routed via,” or t,’. However, because there are no disjoint
dipathsP; and P, we must have one of the situations shown in Figure 2. Eitheirflow ats’l’j is routed
viat,’ and the flow at.’ is routed viat|’, or the flows ak,” and ats’ are both routed via the same vertex

vi
th th tzj tvj
2 1 1

Figure 2:Routing in Networks without Disjoint Dipaths.

(eithert}’ or t,7). In each case, the congestion at eittiéror ¢,/ is at least(j + 1) + 1. This congestion
is passed down to vertex’*". Thus, by induction, it follows that the congestion of theter sf“g’“‘” is
[lg k]. Observe that the number of sinks in the auxiliary network is

It follows that any approximation algorithm for the confladiow problem with approximability guar-
antee better thaé log k can be used to determine in polynomial time whether a didegtaph contains
vertex disjoint dipaths from; to ¢; and froms, to t,. O

4 Congestion minimization

In this section, we present a polynomial-time algorithm édedmine a confluent flow that satisfies all de-
mands and has congestion at mbst In(k). We present our algorithm and its analysis in two stages. We
first describe in Section 4.1 an algorithm that achieves gestion ofl + Ig k. In Section 4.2, we refine the
algorithm of Section 4.1 and its analysis to obtain the @eldir+- In & congestion bound.

4.1 A(1+ lgk)-congestion algorithm

We begin by giving a brief overview of the algorithm. Our $itag point is a (splittable) flowf in G that
routes all demands to the sinks and has maximum node comgdstrhe preceding flow can be determined
in polynomial time using a standard maximum flow algorithmithaut loss of generality, we may assume
that the given directed graghi is the directed acyclic graph (dag) induced by the spligdloiw.

As the algorithm proceeds, it transforms the grépland the flowf by repeatedly performing one of
three operations: (i) remove an edge (often by breakingicetndirected cyclé$ and redirect flow; (ii)
aggregate a node into a sink if all of the outgoing edges ofittie are to the sink; and (iii) deactivate a sink
by removing all edges incident into the sink and redirecfiog.. While these operations repeatedly make
changes to the grapfil (edges and nodes are removed), theSsef sinks (sinks are deactivated), the flow
f, and the demands(nodes are removed), we always maintain the following iiaves:

1. f always satisfied and the flow conservation constraints.
2. Congestion at any nodec V (G) — S never increases.
3. There are only incoming edges at each sink.

At termination, the transformed graph consiststafiodes, each nodes representing the set of nodes that
have been aggregated into a sink (including the sink). Aaysmg forest of the edges removed during the
aggregation process yields the disjoint tré@s, . . . , ;. } forming the desired confluent flow.

2\We note that cycle-breaking is also an important componifiteoapproximation algorithms for unsplittable flow [13, 2]

We are now ready to define our algorithno@FLUENT. At any stage of ©NFLUENT, for any sinks;,
let b; denote the congestion ef (note that this is simplyi(s;) +in(s;)). A nodew is referred to as &ontier
nodeif v has an edge incident into one of the sinks.

CONFLUENT(G, S,d, f): While V(G) # S, execute the following steps:

1. Construction of auxiliary graphs: Construct the bipartite graph consisting of the active sifiton-
tier nodes, and edges from frontier nodes to active sinksGl.eGGs, . . . be the connected components
of this bipartite graph. Letl denote the graph obtained by contracting each of tligs®e a single
node inG (multi-edges and self-loopsre preserved).

2. Breaking alternating cycles: If any G; contains an undirected cycle, upddteo that an edge can
be removed fronG without increasing any node congestion. This can be doneldtifying the
edge with the lowest flow in the (alternating) cycle and segdin equal but opposite flow through
the cycle (see Figure 3). Go back to step 1.

3. Breaking sawtooth cycles:If H contains a directed flow cycle (or a self-loaf) updatef so that an
edge can be removed fro@ without increasing any node congestion. This is done asviall Each
vertexG; in H with edges(G, G;) and (G, G¢) in C has two frontier nodes; andv, such that;
(resp.,v) has a directed path to a frontier nodeGy (resp.,G,). We refer tov; (resp.,v,) as the
entry (resp., exit) node d@¥;. Construct an undirected cydl® in G by replacing eacld; in C by an
undirected path insid€’; that connects the entry and exit nodesthf The cycleC’ consists of an
alternating sequence of directed paths and alternatintps#iwlike paths (see Figure 3). Identify the
edge inC’ that has the lowest flow among all edges having the sameidineatC’; send an equal but
opposite flow through the cycle. Remove all edges with zer #lod go back to step 1.

4. Node aggregation:If a frontier nodev has all of its outgoing edges going into one sipkmark any
one of these edges, seizénto s; and addi(v) to d(s;) (see Figure 3). Go back to step 1.

5. Sink deactivation: Find aG, with no outgoing edges. 16/, find a leaf sink node;. Letv be the
frontier node adjacent to; and lets, # s; be a sink adjacent to. If b; + f(v,s,) < by — f(v, s¢),
remove edgév, s;) and send all its flow along edde, s;); otherwise, remove edde, s;), send all
its flow along edgéwv, s,) and deactivate; (see Figure 3). Go back to step 1.

6. Output: Output the marked edges.

Theorem 2. Given a splittable flow with node congestibron a graph withk sinks, CONFLUENT finds a
confluent flow that satisfes all demands and has congestiorostl + g k.

Our proof is by a potential function argument. We define thiepiial of sinks; as¢(s;) = 2%, and the
potential of the flow as the sum of the potentials of the adim&s. In the following sequence of lemmas,
we show that the potential of the flow never increases.

Lemma 3 (Breaking alternating cycles). If any G, contains an undirected cycle, then the flow can be
modified so that an edge can be removed fédmvithout changing node congestion.

Proof. Let C be a set of edges ifi, that forms an undirected cycle when edge directions aredéghdince
G, is bipartite,C is an alternating cycle. Each frontier node(irhas two outgoing edges while every sink
node in the cycle has two incoming edges. Hence any cironléti C' leaves node congestion unchanged.
Consider the edge with the lowest flow @. Step 2 of @NFLUENT sends an equal and opposite flow
through the cycle and removes the edge; the congestion of ruede is left unchanged. O

3A self-loop in H is created by an edge from one frontier nod&into another frontier node i@';, for anyi.

A A

U O oo oo o

Breaking sawtooth cycles

U v U v v v
>><<‘ ?}P ¢ } [] active sink
o - o . 7~ inactive sink
O frontier node
Breaking alternating cycles Node aggregation Sink deactivation

Figure 3:lllustrating steps 2, 3, 4, and 5 ofdBIFLUENT. In the top figure, the bold edges form a sawtooth cycle.

Lemma 4 (Breaking sawtooth cycles).If H contains a directed flow cycle (or a self loa@)then the flow
can be modified so that an edge can be removed fforithout increasing node congestion.

Proof. We expand the directed flow cycté by expanding eacty; as indicated in step 3 of the algorithm.
There are only two kinds of frontier nodes in the resultinganded cycle: type I, which are entry nodes of
the directed cycle intd-; and have one incoming edge and one outgoing edge, and typhkith have two
outgoing edges. All sink nodes in the cycle have two incongdges each; hence, any circulation leaves
their congestions unchanged. Similarly the congestiomypftgpe Il frontier node is unchanged. Consider
the edge: with the lowest flow among all edges having the same dire@sifi. Step 3 sends an equal and
opposite flow through the cycle, and then remowed he congestion of all nodes except sink nodes and
type Il frontier nodes only decreases, while those of theaiaing nodes is left unchanged. O

Lemma 5 (Node aggregation).If a frontier node has exactly one outgoing edge then thétaple flow can
be modified so that a node can be removed fé@mithout increasing node congestion.

Proof. Aggregating the frontier node into a sinks; increasesi(s;) by d(v) but does not changg. The
edge(v, s;) is removed, and the flow along all the other edges remainsamgget. O

Lemma 6 (Sink deactivation). If none of the preconditions of Lemmas 3, 4, and 5 hold thesithedeac-
tivation step either removes an edge or deactivates a sitiiout increasing the potential of the resultant
flow. Furthermore, the potential of the deactivated sinkni, is no more than the potential of the flow.

Proof. Since the precondition of Lemma 4 does not hold it follows tHais a directed acyclic graph.
Consider nodé7,. of H with no outgoing edges i#/. By the choice of7,., it follows that no frontier node
in G, has an outgoing edge i@ that is not inG,.. Furthermore, since the precondition of Lemma 3 does
not hold,G, is a tree. Finally, since the precondition of Lemma 5 doeshotd, every frontier node idr,
has at least two outgoing edgesin. This implies that all of the leaf nodes @, are sink nodes.

Let s; be a leaf sink node and let its adjacent frontier node;mncev cannot be a leaf let, # s; be
an adjacent sink node. 8 + f (v, s¢) < by — f(v, s¢), we remove (multi)edgév, s¢) and increase the flow
on(v,s;) by f(v, s). It follows from the convexity ofp that the potential does not increase.

If bj + f(v,s¢) > by — f(v,se), we remove the (multi)edgé, s;), increase the flow offw, s;) by
f(v,s;), and deactivate;. The increase in potential is at most

obetf(vssi) _ obe _ 9bi — obetf(v:si) _ gbe _ obe=2f(vise) < gbetf(v:sj) _ gbe=F(vise)+1 <

(The second step follows from the convexity of the poteritiattion and the last step holds sinte, s;) +
f (v, sp) is at most the congestion of which is at most 1.)

For the second part of the lemma, it suffices to note that thengial of the deactivated sink is less than
the potential of the flow before the deactivation step. O

Proof of Theorem 2: We first observe that for any non-sink nodeI@-LUENT marks exactly one outgoing
edge (during a node aggregation step). Thus, the set of chadges form a confluent flow. We now prove
that the congestion of this flow is at mdgtk + 1. The potential of the flow at the start of the algorithm
is at most2k. Lemmas 3 through 6 show that the potential of the flow is newaeased. Furthermore, by
Lemma 6, the potential of any deactivated sink is at m@éstTherefore, at termination, the potential of any
sink is at mos®2k. The congestion of any sink in the final confluent flow is at nostlg &. O

4.2 Animproved upper bound

In this section, we present a refinememmtHFRVEDCONFLUENT of the algorithm @NFLUENT and show that
REFINEDCONFLUENT achievesl + In k& congestion. RFINEDCONFLUENT differs from GONFLUENT in
the sink deactivation step only. The remaining steps, namm@hstruction of auxiliary graphs, breaking
alternating cycles, breaking sawtooth cycles, and nodesggtjon are all identical to that inGBIFLUENT.

We now present the sink deactivation step f@FRIEDCONFLUENT. As in the analysis of GNFLUENT,
we maintain a potential for each sink. The potential of a siitk congestionz is given by¢(z) = e*. The
potential of the system is defined to be the sum of the poterdfdahe active sinks.

5. Parsimonious sink deactivation:Find aG, with no outgoing edgess, <« set of sinks inG,..

e Balancing: Redistribute the flow from frontier nodesG#, to S, so that the potentidl-, .5 #(b;)
is minimized. Remove any edges with zero flow.

e Find the sinks € S, with minimum total in-flow. For any frontier nodeadjacent tas, redirect
the flow along any edg@, s) to an arbitrary sink adjacent to Remove all edges adjacent4p
deactivates, thus settingS, « S, — {s}.

e RepeaBalancing and then go back to step 1.

To complete the description of the parsimonious sink deaiitin step, we need to specify how the step
Balancing is implemented. The minimization problemBalancingis to minimize a convex cost function
subject to certain linear constraints. In Appendix A.1, Wwew that the unique minimum ‘Esiesr ebiis
identical to that of any other strictly convex function, azah be obtained by a polynomial time algorithm
based on max flow.

In the following, we prove that the net change in potentiahaesult of the parsimonious sink deacti-
vation step is nonpositive. For any edge s) in G; from a frontier node to sink s, we define thesubtree
rooted at(v, s), T{,,s), @s the tree consisting of all nodes that can be reached-freia undirected paths
passing through the edge, s).

Lemma 7. Let v denote an arbitrary frontier node and letdenote an adjacent sink. L@t denote the
smallest in-flow inG, anda < g be a real number such that the flow on edges) is at mostl — «. Then,
we can inject an additional flow a@f on edge(v, s) and assign the resultant additional demand to sinks in
T\s,s) Such that the increase in potential is at msy) (¢(b + d) — ¢(b)), for anyd € [1 — 3, a].

Lemma 8. The parsimonious sink deactivation step does not incrdesedtential.

Theorem 9. Given a splittable flow with node congestibon a graph with% sinks, there exists a polyno-
mial time algorithm that finds a confluent flow satisfying thene demand and with node congestion not
exceedind + Ink.

Proof. Lemmas 3, 4, 5, and 8 show that the potential never incre&sese the initial total potential isk, it
follows that potential of any sink at termination is at mestimplying a congestion of at mo$t+-Ink. O

5 Demand maximization

In the demand maximization problem, we need to find a routabhleset of the nodes of maximum total
demand, requiring a confluent flow. In this section, we preaqyolynomial timel /6-approximation algo-
rithm, i.e. it finds a confluent flow to satisfy demands of a stile$ nodes that are at leabt/6.

The demand maximization algorithm first run® QFLUENT and obtains a set of disjoint arborescences
{Ti}i?:l where eacHl; contains total demand;. We next select a subset of the nodes and satisfy their
demands as follows. For eath, if b; < 2, then greedily partition the nodes T into groups whose total
demands sum to at mdst/2; select the nodes in the group with the maximum total demaddsatisfy their
demands usind;. If b; > 2, then search the nodes Bf in any order and determine a subset of the nodes
whose total demand is at ledst2. We defer the details to the appendix.

Theorem 10. Given a splittable flow with node congestion 1 on a graph vataltdemandD, the algorithm
above finds a confluent flow with node congestion at most Efigati demands of a subset of nodes, with
total demand at leasb /6.

6 Confluent flows ink-connected graphs

It turns out that ifG is k-connected, then any splittable flow of congestiomay be replaced by a confluent
flow of congestion< C + dmax. In fact we will prove the following stronger theorem. Let smy that a
directed graphG is k-connected to a sef C V(G), if each vertexo ¢ S can be joined te5 by &k paths
which are disjoint except for the common vertex

Theorem 11. Let G be a directed graph with sinkS = {sq,..., s}, demandsi : V' — R, , maximum
demandd,,.x, and total demandD. Suppose thafr is k-connected taS. Given target values,, ..., 1
summing taD, there is a confluent flow i& such thatC'(s;) < t; + dmax for all 4.

In particular, taking; = ... =t = D/k < C, we obtain a confluent flow of congestienC' + dyax
as claimed. Theorem 11 can be seen as a weighted versionfofltveéng theorem.

Theorem 12 (Lovasz, 1977 [17])Let G be a digraph,vy,...,vx € V(G) and assume tha€ is k-
connected taS. Let, furthermorek positive integersy, ..., n; be given whose sum |¥(G)|. Then
G containsk vertex-disjoint arborescences;, . . ., Ax, suchA; is rooted atv; and |V (A;)| = n;.

It is worthwhile to introduce hereearly confluenflows: these are splittable flows where the flow may
split only at nodes with no incoming flow. Theorem 11 is a copgace of the following two facts about
nearly confluent flows. First, if we allow nearly confluent fgwthen the congestions at the sinks can be
prescribed arbitrarily:

Theorem 13. Let G be a directed graph with sinkS = {si,...,sx}, demands/ : V — R, and total
demandD. Given any non-negative target valugs. . . , t; summing taD, there is a nearly confluent flow
fin G such thatC(s;) = t; for all 7.

Second, a nearly confluent flow may be rounded to a confluentiitmout increasing the maximum
edge congestion by too much.

Theorem 14. If f is a nearly confluent flow i, then f may be rounded to a confluent flofvsuch that
C(si) < Cr(si) + dmax for for all .

We'll obtain Theorem 11 using the topological techniquesciwrappear in the proof of Theorem 12.
See [10] for a combinatorial proof of Theorem 12 feconnected undirected graphs.
The arborescence complex of a directed graphin [17] a topological spac& is associated with each
directed graplG with distinguished vertex, known as therborescence complex G relative toa. It can
be modeled as a cellular complex whose vertices are in coadaorrespondence with the arborescences
of G rooted ata. In this section we present a definition of the arborescenogptex which is equivalent to
the original, but makes clearer the relation with confluenw§.

Definition 15. Let G = (V, E) be a directed acyclic graph with distinguished veriexAssume every
v € V(G) has a directed path @ Represent eactrrooted arborescence by a functiéh: £(G) — R
whereF'(e) = 1 if e belongs to the arborescence, 0 otherwisérabtional arborescencen G is a function
F : E(G) — [0,1] which is a convex combination of arborescences.

A fractional arborescence is callechaar-arborescencd it satisfies the following property: it is a
vertex such that'(e) > 0 for at least two distinct outgoing edgesthenF'(e) = 0 for all incoming edges
e. In other words, a near-arborescence is a convex combinafi@rborescences, any of which can be
transformed into any other by disconnecting and reattgchimme leaves. The set of all near-arborescences
in G is a subspack C RF(Y) called thearborescence compleX G relative tod.

In Figure 6 we have illustrated the arborescence complexafsix-vertex graphG. In this case, a
fractional arborescence is determined by specifying, &mheof the three topmost vertices @f a convex
combination of the two outgoing edges. Thus the space didread arborescences @ is a cube: a product
of three copies ofA!, one for each of the three topmost vertices. The near-asbenees are those in which
the topmost vertex does not feed any weight into an undeaidedx. The arborescence complgxis the
subset of the cube where this criterion holds; it is an ostagmsisting of eight edges of the cube.

The fundamental fact about the topology of arborescenceplexs is the following theorem from [17].

Theorem 16 ([17], Theorem 4).Let G be a digraph,a € V(G), and assume that is k-connected ta
(k > 2). Then the arborescence complexof G relative toa satisfiesHy(K) = ... = Hy_»(K) = 0,
whereH denotes reduced homology with integer coefficients.

Here, as in [17], the importance of Theorem 16 is that it eesbbk to apply a generalized intermediate
value theorem to obtain a near-arborescence with desimgubpres.

Figure 4: An arborescence complex

Proof of Theorem 13: Given a graptG with demands! : V(G) — R, and sinkssy, ..., s, extend itto a
graphG by adjoining an auxiliary verte with incomingAedgesl, ...,ep fromsy, ..., sk Interms ofG,
we want to show that there is a ngarly confluent fibim G satisfyingf(e;) = t; fori =1,... k.

If one is given demandé : V(G) — Ry and a near-arborescenég this data naturally defines a flow
f : E(G) — Ry, routing all the demands to the sink vertéxaccording to the prescription that each

10

vertexwv distributes its outgoing flow in the proportions specifiedfy (Note that the set of edgeswith
F(e) > 0 must constitute a DAG in order for this flow to be well-defindfl.F’ is a near-arborescence, it
is automatic that this edge set is a DAG.) For a fixed set of delsiehe mapping which associates to each
near-arborescencl the corresponding flow constitutes a continuous function frokhto the space of all
flowsinG. If F'is an arborescence, the corresponding ffdaa confluent flow. I is a near-arborescence,
the corresponding flow is nearly confluent.

Let A C R* denote thek — 1)-simplex

k
A= {(xl,...,xk) ER{‘;_: ZZ‘Z:D}
i=1

If K is the arborescence complex@frelative tod, we may mapC to A by mapping a near-arborescence
F to the vector(f(e1), f(ez2),..., f(ex)), wheref is the flow corresponding té'. This is a continuous
function¢ : £ — A, and we will be done if we can find a poift € £ which maps tat4,...,t;). The
existence of such a point is proved using the following galiwed intermediate value theorem, whose proof
is deferred to the Appendix.

Theorem 17. Let X be a finite-dimensional cellular complex. SuppgseX — A’ is a continuous map to
anr-dimensional simplex, such that for evergimensional face* C A”, the subspac¥ = ¢ (o) C X
is a non-empty subcomplex satisfyiﬁ@(Y) =...= ~571(Y) = 0. Then¢ is a surjection, i.e. every
point of A" is the image of some point iK under¢.

To apply Theorem 17 to the arborescence compleand the mapping : £ — AF~! defined by
F s (f(e1),..., f(er)), we must verify thatr ! (o*) satisfies the homological vanishing criterion specified
in the theorem, for each faee C A¥~'. Each such face is determined by specifying 1 of the incoming
edges ati — without loss of generality, say;, . .., es+1 — and requiring the flow to be zero e for all
i > s+ 1. Thus¢~!(o?) is the arborescence complex@fU {e1, ..., e, 1} relative toa. In this graph, no
v # a can be separated frofnby removing fewer than + 1 vertices, so Theorem 16 ensures the vanishing
of the required homology groups. O

References

[1] J. Chen, R. Rajaraman, and R. Sundaram. Meet and mergaoAmation algorithms for confluent
flows. InProceedings of the 35th Annual ACM Symposium on Theory opQimg, June 2003.

[2] Y. Dinitz, N. Garg, and M. Goemans. On the single-sourasplittable flow problem. IfProceedings
of the 39th Annual IEEE Symposium on Foundations of Com@diencepages 290-299, November
1998.

[3] U. Feige. A threshold ofnn for approximating set cover. IRroceedings of the 28th Annual ACM
Symposium on Theory of Computipgqges 314-318, May 1996.

[4] L. Ford, Jr. and D. Fulkerson. Maximal flow through a netlvoCanadian Journal of Mathematics
8:399-404, 1956.

[5] L. Ford, Jr. and D. Fulkersorflows in NetworksPrinceton University Press, Princeton, NJ, 1962.

[6] S. Fortune, J. Hopcroft, and J. Wyllie. The directed sap) homeomorphism problentheoretical
Computer Scien¢el0:111-121, 1980.

11

[7] A. Frank. Combinatorial algorithms, algorithmic proafsPhD thesis, Eotvos University, Budapest,
1976. In Hungarian.

[8] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yeri@rovisioning a virtual private network: A
network design problem for multicommodity flow. 8TOC: ACM Symposium on Theory of Comput-
ing, 2001.

[9] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, an¥avinakakis. Near-optimal hardness
results and approximation algorithms for edge-disjoinhpand related problems. Rroceedings of
the 31st Annual ACM Symposium on Theory of Compugtiages 19-28, May 1999.

[10] E. Gydri. On division of graphs to connected subgrapiis Proceedings of the Fifth Hungarian
Combinatorial ColloquiumBudapest, 1976.

[11] A. Hatcher.Algebraic Topology Cambridge University Press, Cambridge, 2002.

[12] S. Khuller, B. Raghavachari, and N. Young. Designingtirmommodity flow trees. In F. K. H. A.
Dehne, J.-R. Sack, N. Santoro, and S. Whitesides, ediwogeedings of the 3rd Workshop on Al-
gorithms and Data Structuresolume 709 ofLecture Notes in Computer Sciengeges 433441,
Montréal, Canada, Aug. 1993. Springer.

[13] J. M. Kleinberg. Single-source unsplittable flow.Rmoceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Sciengages 68—77, Oct. 1996.

[14] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener. <hms for provisioning virtual private
networks in the hose model. Proceedings of the ACM SIGCOMM 2001 Conferenadume 31 of
Computer Communication Revigpages 135-148, Aug. 2001.

[15] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approxinratadgorithms for scheduling unrelated
parallel machinesMath. Programming46(3):259-271, 1990.

[16] D. Lorenz, A. Orda, D. Raz, and Y. Shavitt. How good camdBting be? Technical Report 2001-17,
DIMACS, Apr. 2001.

[17] L. Lovasz. A homology theory for spanning trees of apjraActa Mathematica Academiae Scien-
tiarum Hungaricae 30(3-4):241-251, 1977.

[18] J. Wang and K. Nahrstedt. Hop-by-hop routing algorishfor premium-class traffic in diffserv net-
works. InProc. of IEEE INFOCOM 2002New York, NY, June 2002.

12

A Proofs for Section 4.2

A.1 Convex minimization

In this section we consider the convex program obtainedyindrto minimize the potential function over
the sinks. We characterize the structure of the minimizioigtpand use the structure to argue that in fact
the point of minimization is independent of the cost funeti®Ve conclude by showing that the elucidated
structure also enables us to find this point of minimizatimpdélynomial time using max flow as a subrou-
tine.

Consider the bipartite graph formed by the frontier nofig$ and the sinkgs;}. Letz;; represent the
flow on the edge from frontier nodg to sinks;. Lety; represent the total flow into sink. Letd; be the
supply at frontier nod¢; andd;- be the intrinsic supply at sink;. Let C'(y) be a nonnegative, increasing
and strictly convex function. Consider the following pragr.

min C(y;)
J
S.t.

Vi, Z Lij Z di
J
Vi, oy >) i+ d
2
Vi, 7, Tij > 0

The above is a (strictly) convex program since a sum of (stjiconvex functions is (strictly) convex.

It is well known that a strictly convex function over a convet has a unique minimum. We also refer to
this convex objective function as the potential functiomtdthat anytime we have a setting of the variables
such that all the constraints are tight and ghealues are all equal then we are at the global minimum since
the sum of the supplies (intrinsic and otherwise) is a lowmmu on the sum of thg's. Observe also that,
though many different settings to thevariables may induce the same seyjofariables, the, values are a
continuous function of the values.

We define the following “balance” operation — if a frontierdeohas edges with nonzero flow to two
sinks with differenty values then by shifting flow (i.ez value) from the sink with largey value to the
sink with lowery value the value of the potential function is reduced. Thik¥es from the convexity of
C. We also refer to the operation as balancing the frontieeerindquestion. Note also that the potential
function is never reduced by increasing the flow out of a fesmode and this follows from the fact that
iS increasing.

Observe that a setting of thevariables determines the value of the convex program. Iftingeof the
convex program does not allow for further balancing then ayetbat the configuration is a local minimum

with respect to balancing. Observe that if there is a setiingvalues to be equal and the constraints to be
tight then that is the minimum.

Theorem 18. Let X be a setting of: variables that satisfies the convex program and is a locaimmim
with respect to balancing. Then the partition of the sinksdehon theiry values induces a corresponding
partition of the frontier nodes. Every frontier node sendsvfbnly to sinks with the samevalue. Further
a frontier node corresponding to a specifizalue will have no edges to sinks with a lowevalue and will
have zero flow on edges to sinks with highesmlue.

Proof. Consider a frontier node — it cannot send flow to two sinks wiffering value otherwise it could
be balanced. Hence we get a natural partition. Observe thatl@ could not have an edge to a sink with
lower y value for otherwise it could be balanced. Similarly it conlst have any flow on an edge to a node
with highery value else it could be balanced. O

13

The above structure theorem says that at a local minimumregbect to balancing the original bipartite
graph can be thought of as being partitioned into disjoiaipbs and in each of these graphs the natural
restriction of the original convex program achieves itdbglaninimum. The original convex program is the
sum of its restrictions.

Theorem 19. A local minimum with respect to balancing is a local minimum.

Proof. Consider a local minimum with respect to balancing definethky values. Pick any values that
induce thesey values. the strategy of this proof is to show that for anyyregtion to thez values the
potential function is not reduced. Since thealues are a continuous function of thealues it follows that
there is no perturbation to thevalues that reduces the potential and hence we are at a |otahum.

We are left to show that there is no perturbatido thez values that reduces the potential. The argument
is by contradiction. Suppose not. Considermathat reduces potential. If it increases the outflow of any
frontier node beyond its supply then we can reduce this outflod hence the potential and consider the
corresponding perturbation. In other words if there exagt®tential reducing then there is one that holds
frontier node outflows constant. By the above structure rdracedges from frontier nodes to sinks with
highery values carry no flow. If amr sends flow along such an edge then observe that by reducing the
flow along this edge and sending it to a sink in the same gantitie reduce the potential further. Hence
there exists am that only sends flow along the edges whereath@lues are non-zero. But in any partition
we know we are at a global minimum so amythat holds frontier node outflows constant cannot reduce
potential. Hence contradiction. O

Corollary 20. A local minimum with respect to balancing is a global minimum
Theorem 21. The point of minimization is independent(®f

Proof. Suppose not. Le®; andC, be two potential functions with different points of miniraton,y' and
y?. We know that each of these points is the unique global mimnamd local minimum with respect to
balancing under the respective potential functions. Sidde not a point of minimization undef; it must
be capable of further balancing, but since the operatioralairizing is independent ¢f, this means thaj?
is capable of further balancing undés — a contradiction. O

We now present an algorithm to find the point of minimizatiaing max flow as a subroutine. The
algorithm will be polynomial time but it will not be strongiyolynomial since it will utilize binary search.

Algorithm : Create a universal sink and connect all the sink nogde® it with edges of the same
capacity. Run a binary search on this capacity to deternhiedargest value such that all these edges are
saturated. Partition the sinks into two based on what happéen the capacity is increased infinitesimally
beyond this point - those whose edges continue to be salumatéthose whose edges are not. Itis easy to
see that this induces a partition of the frontier nodes atbadines of our structure theorem above. Remove
the unsaturated partition and recurse on the saturateitiqgrart

It is an easy exercise to repeat the arguments above to s¢bdhasulting partition and corresponding
x values is a local minimum with respect to balancing.

A.2 Nonpositive net change in potential

Proof of Lemma 7: The proof is by induction on the number of sinksGf). The assumptions abou,
require that there be at least two sinkgdp. So, for the induction base, we consider the case wihehas
exactly two sinks. Since the sum of the in-flows of the two siiskat most 1, it follows that < 1/2. Since
a < B, [1 — «,f] is nonempty exactly whea = g = 1/2. We can inject an additional flow df/2 into
either of the sinks and increase the potential by a factot wfasto(b + 1/2) — ¢(b), which completes the
desired claim.

14

We now consider the induction step.[If — 3, o] is empty, then there is nothing to prove. Otherwise,
let 0 be any real iffl — /3, «]. We are given a frontier nodeand an adjacent sinksuch that the flow along
(v,s) is at mostl — «. Letwv; throughv; denote; frontier nodes other than that are adjacent te. For
1 <¢<j,weselecty < f(vy,s) suchthaty, ay = o —¢. Such a selection is well-defined since the sum
of the flows along these edges is at least (1 — «), which is at leaste — ¢ sinced > 1 — S.

We increase flow along edde, s) by « and decrement the flow along the eddes s) by a,. This
increases the congestion of siplby §. The decrease in the flow along the edg¢es s) implies that an
additional flow ofay, needs to be redirected to other sinks. For each frontier ngdee select an arbitrary
adjacent sinks; # s and inject an additional flow af, along edg€w,, s,) into the subtree rooted at edge
(ve, s¢) (i.€., subtre€l(,, ;,)). Let B, denote the smallest in-flow in the subtree rooted at €dges;).
Sinceay < aanda < 8 < Gy, it follows thatay < 3,. By the induction hypothesis, we know that the total
increase in potential of the sinks in this subtree is at most

ay

5 (60 +0) = (b)),

foranyd’ € [1 — 4, ay]. SinceBy, > fandd > 1 — 3, we obtain that > 1 — 3,. We consider two cases. If
0 < ay, it follows from the induction hypothesis that the totalriease in potential in the subtree is at most

ay

2 (6(0+8) - 4(0)).

If § > oy, then we can simply increase the in-flow into sinkoy a, and achieve a potential increase of at
most

(Bb -+) = (1)) < (b +6) — (b))

the last inequality following from Lemma 22 below sin€e> ay.
By adding over al¥, we obtain that the total potential increase over all ttEgs,,) is at most

2L (45 1) - g(b).

On adding the potential increase of sinfkwhich is¢(b + §) — ¢(b), we obtain a total increase of at most

(0}

S ($lb+) - 4(b)),

which completes the induction step and the proof of the lemma O

Proof of Lemma 8: Let s* denote a sink i, with minimum in-flow. Leta denote the in-flow of*
and letv; throughv; denote the frontier nodes adjacentsto Let o, denote the flow on edge,, s*), for

1 < < j. Letsy # s* denote an arbitrary sink adjacentuo (Since every frontier node iy, has at least
two adjacent nodesy exists.) We redirect flowt, into the subtred,, ,,). Since the congestion of is at
mostl, it follows that the flow along edge,, s¢) is at mostl — «,. We consider two cases. df;, < 1 — a,
then we assigmy, to sink sy, thus increasing its congestion kot a,. Thus, the increase in potential of

Tvy,s,) 1S @t most o

$(b+) — $(b) < (¢b+1—a)—=¢(b)),

11—«
by Lemma 22.

We now consider the case > 1 — a. Let 8, denote the minimum in-flow of a sink node m,, ,,)-
Sincef, > a, it follows thatl — « > 1 — 3,. We invoke Lemma 7, withh = (1 — «) to obtain that the
increase in potential df,, ,,) is at most

Qy

(¢(b+1—a)—¢(b)).

11—«

15

Adding over all/, and subtracting the potential of the deactivated sinkwve obtain the net change in the
total potential of the system to be at most

« _ _ _ — b « l-a _
G0 ol) — gt = (e 1) - 1)
o « 1 L
= e (1—05(60‘1 1) 1)
b < a 1)
< e (—=1)—1
l—a «
= 0.
(In the penultimate step, we use the inequadity! > 1 +a — 1 = a.) O

Lemma 22. For 0 < z < 1, the function®=! is a monotonically increasing function of

T_q .
Proof. Letg(z) equal®—. Theng'(z) is equal to

e’ ex+1 ez —-1)+1
z 2 2 x2
(x—1)/e7" +1
= p
> 0,
sincee™® > 1 —z andz < 1. O

B Proofs for Section 5

We first give a complete description of the demand maxinomatilgorithm. The algorithm first runs
CONFLUENT and obtains a set of disjoint arborescen¢®s}?_, where eacll; contains total deman.
We next select a subset of the nodes and satisfy their densanfidlows. For eacl;, if b; < 2, then
greedily partition the nodes ifi; into groups whose total demands sum to at nbp&; select the nodes in
the group with the maximum total demand and satisfy theirateda usindl;. If b; > 2, then search the
nodes off; in any order and do the following.

2. WhileA; < 1/2do

(a) Visit the next node.

(b) If d(v) < 1/2, then markv andA; « A; + d(v). Otherwise, unmark all marked nodes; mark
andA; < d(v).

3. Select the marked nodes and satisfy their demands iising

Lemma 23. In CONFLUENT, when the congestion of any sink changes, exactly two siekéeolved.
Suppose they are;, s, and w.l.0.g. assumk, > b,. One of the following happens.

1. b, decreases by, causingb, to increase by); b, + 0 < b, — d; no one gets deactivated,
2. b, decreases by, causingb, to increase by; b, — 6 + 2 > b, + 6, b, gets deactivated,

3. b, decreases by, causingb, to increase by; b, gets deactivated.

16

Proof. During CONFLUENT, congestion of any virtual sink may change only in step 5. Wgis the leaf
sink andb, + f(v,sz) < by — f(v,sz), we have case 1. Whey, is the leaf sink and, + f(v,s;) >
b, — f(v,ss), we have case 2, where sinee> 26 + 2f (v, s,;) we haveb, — 6 +2 > b, + §. Whens, is
the leaf sink, we have case 3. O

Lemma 24. WhenCONFLUENT terminates

Proof. we first show:

Yobi-2)< > b

ith;>2 ith; <2

We plot{bi}i?:1 as a histogram. The congestion of the sinks may change digrexecution of ONFLUENT,
specifically, in step 5. But the total area of the histogramivigaysD. Divide thexzy-plane of the histogram
into two sections by thg = 2 line. Notice that when the algorithm redirects flow from oimkgo another,
demand moves from one sink to the other; in the histogrars, dbiresponds to a move of “area” either
across the boundary or within a section. Denotedbthe total area in the upper sectioA.increases only
when some area moves from the lower section to the uppeose&ut whenever this happens, there is some
sink deactivated and the correspondingwhich is less than 2, remains untouched thereafter. Ddroie
the sum of; of the set of such deactivated virtual sink$.< > ., _, b;. Notice that initiallyA = B = 0.
So we only need to show that whenevkeicreasesp3 increases by at least the same amount, i.g. phat
least the same amount gets deactivated. This can be veryfigteloking each possibility wheréincreases.
Look at any moment whed increases. Denote the incrementbby 6 4, the increment o3 by .

e Case 2 of Lemma 23.

—2<by<bp.da=2—-(by—10),0p=0by—0.0p—0a=2(by—6—1)>0.
— by <2<bp.04=0,0p=0by—0.6p—64 =0y —20 > b, —2 > 0(sinceby, —d+2 > b, +).
—by <0y <2.04=0b;+6—-2.0p=0by—0.0p—04=0b,—0+2—0b; —6 > 0(since
by —d+22> by +9).
e Case 3 of Lemma 23.

—2< by <bpba=0—(by—2).05=by—0.0p—04=2by—6—1)>22—06—1) >0,

by <2< by da=(by+0—2) —(bp—2) =by+0—by. O =by—6. 0p—0a=
2(by — 8) — by > 2(2—8) —by >2—b, > 0.

by <by<2.64=by+06—2.6p=>by—06. 05—04=(by—by)+2(1—05) >0.

Now combineD = 3=, oo (bi = 2) + 35,502 + D i, <0 bi WIth 325 5 (bi — 2) <524, <o bi to get the
claim. N - O

Now we are ready to prove Theorem 1Rroof of Theorem 10: Since the demands are routed with
{T;}%_,, the flow is confluent. Since for eadh, the algorithm selects total demand at most 1, the node
congestion is at most 1. Fdr; with b; < 2, suppose the total demands of the groupsdare< d, <
.-+ < d,. Only d; can be less than or equallig/4, otherwised; andds could have been combined. Since
dy +d, > b;/2, it follows thatr < 3 (otherwised; + ds + d3 + d, > b;). Therefored, > b;/3, i.e. at least

17

b;/3 is satisfied; totallyzizbi<2 b; /3 is satisfied. Foff; with b; > 2, at leastA; > 1/2 demand is satisfied;
totally at leasy ., ., 1/2 is satisfied. From Lemma 24:

b; 1 1 D
2ogt2 gzl Lkt 1)>g

1:0; <2 i:b;>2 1:6; <2 i:b; >2

the algorithm satisfies at leaBt/6 demand in total. O

C Proofs for Section 6

Proof of Theorem 14: We describe an algorithm for roundirfgto f, in the spirit of [15]. Delete all edges
e with f(e) = 0 from G. LetU C V(G) denote the set of nodes with outdegred ; we'll call these the
undecided nodesThe algorithm will select undecided nodes one at a time, aiidevroute all the flow
from the selected node along one of its outgoing edges. ltvisl that the congestion will never increase
on an edge which is not downstream from an undecided nodeswdi edgesafe and the other edges of
G active As long asG contains an undirected cycle which does not pass thraugle can modifyf by
finding an edge on this cycle with minimum flow value, sendinggual amount of flow around the cycle in
the opposite direction, and deleting all edges whose flowevsl now zero. Each such operation diminishes
|E| by at least one, and doesn't alter the congestion of any edjgeent toi. After finitely many such
operations it will be the case that every undirected cycl@ jpasses through.

Now let S denote the set of neighborsafWe claim there exists a vertexe S with only one undecided
vertex upstream from it. This can be proved by induction@h If |[U| = 1 there is nothing to prove. If
|U| > 1, let E, C E denote the set of active edges which are not incideit tbhese are the edges of a
forest. Delete an edgeof F, to obtain a forest of at least two components, with at least wrdecided
vertex in each component. By the induction hypothesis, @ eamponent there is at least one elemert of
with only one undecided vertex upstream. Inserting edggain, the element f downstream frone may
now have more than one undecided vertex upstream; howegde#lives at least one element$fwvhich
still has only one undecided vertex upstream.

Having found a vertex € S with only one undecided vertex e U upstream from it, we take all of the
demand at:, re-route it along the path from throughs to a, deleteu from the set of undecided vertices,
and delete the edges of this path from the set of active eddmsalgorithm continues in this manner until
U is empty andf has been rounded to a confluent flow.

Note that ife is an edge incident ta, the congestion of only increases in the step wherehanges
from an active edge into a safe edge. At this step, the iner@asongestion is less thattu), the amount of
demand at the undecided vertex which re-routed its flow aéopgth througte. O

Before proving Theorem 17, we explain why we refer to it asrmegalized intermediate value theorem.
Consider the case= 1, A" = [0, 1]. Then the hypotheses of the theorem amount to:

e f1(0) is non-empty.
e f1(1) is non-empty.
e Hy(X) =0, i.e.X is path-connected.

In other words, the theorem asserts that if a continuoudifumon a path-connected space takes the values
0 and 1, then it also takes every value between 0 and 1. THig istandard form of the intermediate value
theorem.

Proof of Theorem 17: Suppose we are given a map: X — A" satisfying the homological vanishing
criterion of Theorem 17, i.e. for any faee C A’, the inverse imag& = ¢ '(o*) satisfiesHy(Y) =

18

.= ~571(Y)- We will prove ¢ is surjective by induction on. Whenr = 0 there is nothing to prove,
as A" consists of a single point. Faer > 0, we may apply the induction hypothesis on each face of the
boundaryd A" to conclude that the image @fcontains every point cdA”. So now assume that misses
some poinp in the interior of A”; we’'ll derive a contradiction in a manner similar to the grobBrouwer’s
fixed point theorem.

The starting point is a homological computation encapsdlat the following lemma.

Lemma 25. The mapp, : H,_(¢ *(dA")) — H,_(JA") = Z is a surjection.

Proof. We'll prove, by induction, the following much more generddim: if A C A" is ans-dimensional
subcomplex containing thgs — 1)-skeleton of A" (i.e. the union of all faces of dimensioa s) then

¢. - Hi(¢p ' (A)) — H;(A)is anisomorphism fof < s and a surjection foj = s. In the base case,= 0,

H, is a free abelian group whose rank is one less than the nurhbenpected components; the claim now
follows from the observation that ! (v) is non-empty for each O-simplex (i.e. vertex)c A”. For the
induction step, suppose> 1, let o° be anys-simplex of A, and letB = A — o°. We have the following
commutative diagram whose top and bottom rows are exaceseqa (the homology long exact sequences
of the pairs(¢ 1 (A), ¢ '(B)) and (A, B), respectively), and whose vertical arrows are homomonpis
induced byq.

R T

H;(B) H;(A,B) Hj_1(B)

By the induction hypothesis, the vertical map on the rightinsisomorphism, and the one on the left is
an isomorphism foy < s and a surjection foj = s. If we can prove that the third vertical mag, :
Hj(¢7'(A), " (B)) — H;(A,B), is an isomorphism foj < s and a surjection foj = s, then the
5-Lemma from homological algebra [11] will imply that thensa conclusion holds for the second vertical
map, as desired.

By the excision theorem [11], we have a commutative diagram

Hi(¢7'(0%),¢7" (90°)) = Hj(¢™"(A), ¢7'(B))

|+ |+

Hj(o%,d0%)

R
2

in which the horizontal maps are isomorphisms. Thus it sesfto prove thap.. : ﬁj(gb—l(as), ¢~ (00%)) —
H;(o®,00") is an isomorphism foj < s, a surjection forj = s. This will be done using the long exact
sequence of the paif®—'(c*), ¢! (do*)) and(o?, do*).

Hj(¢™(0%) — H;(¢7'(0*), ™1 (90%)) T H; 1(¢~"(90°)) — H; 1(¢~}(0*)) = 0

! | - -

0= H;(o®) Hji(o%,d0%) Hj_1(d0?) Hi_1(0%) =0

The fourth vertical map is the isomorphigin— 0, while the third vertical map is an isomorphism by
the induction hypothesis. The first vertical map is the isgpghism0 — 0 for 5 < s, and is a surjection
for j = s (trivially, because the target group @, so the 5-Lemma implies the desired conclusion for
¢« s Hi(¢p (), ¢ 1(00%)) — Hj(o®, do*). O

19

To complete the proof of Theorem 17, assume by way of comtiadi that¢ misses an interior point
p € A", and letr : A" — {p} — 9OA" denote the continuous map which radially projects eachtgoaf
A" — {p} to the boundary by drawing a ray fropthroughq and continuing until the ray hitSA". Then
we have a commutative diagram:

$ 1 (OA) ——= X
l¢ ld)
OAT — A" — {p}

Applying the functorH,_; to the above diagram we obtain.

Hy 1(¢~1(9AT)) —— H, 1(X) = 0

|o |+

Z = H,_1(0A") <— H,_1(A" — {p})

According to this diagram, the left vertical map : H,_, (¢! (DA")) — Z factors throughH,_, (X) = 0,
so it is the zero map. This contradicts Lemma 25, which sagfsitis a surjection. O

20

