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Abstract

A flow is said to be confluent if at any node all the flow leaves along a single edge. Given a directed
graphG with k sinks and non-zero demands on all the nodes ofG, we consider the problem of determin-
ing a confluent flow that routes every node demand to some sink such that the maximum congestion at
a sink is minimized. Confluent flows arise in a variety of application areas, most notably in networking;
in fact, most flows in the Internet are confluent since Internet routing is destination based.

We present near-tight approximation algorithms, hardnessresults, and existence theorems for con-
fluent flows. The main result of this paper is a polynomial-time algorithm for determining a confluent
flow with congestion at most1 + ln(k) in G, if G admits a splittable flow with congestion at most 1.
We complement this result in two directions. First, we present a graphG that admits a splittable flow
with congestion at most 1, yet no confluent flow with congestion smaller thanHk, thus establishing tight
upper and lower bounds to within an additive constant less than 1. Second, we show that it is NP-hard to
approximate the congestion of an optimal confluent flow to within a factor of(lg k)=2, thus resolving the
polynomial-time approximability to within a multiplicative constant. We also show that a simple post-
processing step following the congestion minimization algorithm yields a confluent flow with congestion
at most 1 that satisfies 1/6 fraction of total demand.

We show that the gap between confluent flows and splittable flows is much smaller, if the underlying
graph werek-connected. In particular, we prove thatk-connected graphs withk sinks admit confluent
flows of congestion less thanC + dmax, whereC is the congestion of the best splittable flow. The proof
of this existence theorem is non-constructive and relies ontopological techniques introduced in [17].
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1 Introduction

In this paper, we present new approximation algorithms, lower bounds, and existence theorems for a class
of network flows calledconfluent flows. A flow in a directed graph is said to beconfluentif all the flow
departing a node does so along a single outgoing edge.

Confluent flows arise in a number of scenarios including evacuation problems and various applications
in networking. For instance, content delivery networks (CDNs) often organize their deployment of servers
in the form of a rooted tree with each node forwarding data from its children to its parent and vice versa.
Perhaps the most common application of confluent flows is in Internet routing. Most flows on the Internet
today are confluent because Internet routing is primarily based on selecting a shortest path tree to each
destination and then routing along the selected shortest paths; thus, all packets departing a router for a
particular destination depart along the same edge. A major shortcoming of shortest-paths routing, however,
is that it ignores congestion at intermediate nodes and edges.

The main focus of this paper is on finding confluent flows with small congestion. Consider a directed
graphG with k distinguished nodes, referred to assinks, and non-zero demands on all the nodes ofG. We
would like to determine a confluent flow that routes every nodedemand to some sink such that the maximum
flow arriving at any sink, referred to as thecongestionof the sink, is minimized. If we drop the confluence
constraint and thus allowsplittable flows, then a flow that minimizes maximum congestion at a sink can be
obtained in polynomial time by a straightforward reductionto the maximum flow problem. On the other
hand, it was shown in [1] that minimizing confluent flow congestion is MAXSNP-hard, and that aneO(pn)
approximation is achievable for ann-node graph in the special case when all nodes have identicaldemands.

1.1 Our results

We present near-tight bounds on the approximability of confluent flows, and on the gap between confluent
flows and splittable flows.� The main result of this paper is a polynomial-time algorithmfor determining a confluent flow with

congestion at most1+ ln(k) in G, if G admits a splittable flow with congestion at most 1 (Section 4).
We complement this result by presenting a graphG that admits a splittable flow with congestion at
most 1, yet no confluent flow with congestion smaller thanHk (Section 3.1). SinceHk = lnk + 
 �o(1), where
 is Euler’s constant, we have resolved the gap between confluence and splittability to
within an additive constant less than 1.

Our algorithm is based on a novel deterministic rounding of an optimal splittable flow, that repeatedly
refines the flow by removing carefully selected edges and aggregating nodes into sinks, leading to the desired
confluent flow. It is interesting to contrast the near-optimal bound achieved by our rounding scheme with the
(n1=4) bound achieved by a natural randomized rounding scheme, that selects for each node an outgoing
edge with probability proportional to the flow on the edge in the splittable solution [1].

Since the optimal splittable flow congestion is a lower boundon the optimal confluent flow congestion,
our algorithm achieves a(1 + lnk)-approximationfor minimizing congestion. One may ask whether an
improved approximation can be achieved efficiently.� We show that it is NP-hard to approximate the congestion of anoptimal confluent flow to within

a factor of(lg k)=2, thus resolving the polynomial-time approximability to within a multiplicative
constant (Section 3.2)1. It is interesting to note that our lower bound is not based upon a reduction
from set cover [3] and relies on a weaker precondition than that used in the set cover hardness result.

1Throughout this paper, we uselg to refer tolog2.
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While the bound of1 + ln(k) on the ratio between the congestion of confluent and splittable flows is
existentially tight up to an additive constant, it is natural to wonder whether there are interesting classes of
graphs for which the gap is smaller.� A positive answer to this question is provided in Section 6, in which we prove thatk-connected graphs

with k sinks admit confluent flows of congestion less thanC + dmax, whereC is the congestion
of the best splittable flow. In particular, this means that the ratio between confluent and splittable
congestion ink-connected graphs is at most 2. Interestingly, the proof of this existence theorem is
non-constructive and relies on topological techniques introduced in [17].

Finally, we also consider a demand maximization problem, inwhich we seek a confluent flow with conges-
tion at most 1 that maximizes the total demand of all the nodeswhose demand is satisfied.� We show that a postprocessing of the confluent flow obtained bythe congestion minimization algo-

rithm yields a 6-approximation to the demand maximization problem (Section 5).

Due to space constraints, we have omitted many of the proofs;they may be found in appendices A through C.

1.2 Related work

The bulk of our results in this paper compare confluent flows with a natural relaxation, namely splittable
flows, which are well-characterized by the celebrated max-flow min-cut theorem of Ford and Fulkerson [4,
5]; there is a vast literature on efficient algorithms for obtaining the maximum flow. Another relaxation
of confluent flow is unsplittable flow, which requires that thedemand for every source be routed along a
single path. Both the congestion minimization and demand maximization versions of unsplittable flow may
be approximated to within a constant factor using the algorithms of [2, 13]. The relationship between the
edge congestionof confluent and unsplittable flows is addressed in [16], in which an
(n) separation is
established, wheren is the number of nodes.

In the special case whereG is an undirected graph and all vertices have unit demand, finding a confluent
flow of congestion� C is equivalent to partitioningG into k connected subgraphs of size� C, each
containing one of the sinks. (Given such a partition, a confluent flow is obtained by routing all flow along
the edges of a spanning tree in each subgraph.) WhenG isk-vertex-connected, Frank [7] conjectured in 1975
that such partitions always exist, provided thatkC � n: In fact, he made the much stronger conjecture that
given sinkss1; : : : ; sk and positive integersn1; : : : ; nk summing ton, one could partitionG intok connected
subgraphs, such that thei-th subgraph containssi and hasexactlyni vertices. This conjecture was proved
independently by Lovasz [17] and Győry [10]. Lovasz’s proof applies also to directed graphs. Our result on
the existence of confluent flows ink-connected graphs can be viewed as a weighted generalization of this
theorem, in which the vertices are given non-negative real weights (demands) and one seeks to partitionG
into connected subgraphs whose total weights approximate aspecifiedk-tuple of target weights.

In this paper, we have entirely focused on single commodity confluent flows. Multicommodity and
fractional variants of confluent flows are studied in [1]. Multicommodity confluent flows are considered
by [8, 14] in a model where the demands are not associated withindividual source-sink pairs; instead with
sources or sinks, as a whole. Also related is the work of [12],which raises the problem of finding a subtree
of a given network that can route a given set of multicommodity flow pairs with minimum congestion. The
impact of confluence on IP routing is studied in [16] and [18].

2 Confluent flow problem definitions

LetG = (V;E) denote a directed graph andd : V ! R+ denote a function specifying the demand at each
vertex. We denote the total demand,

Pv2V d(v), byD and the maximum demand,maxv2V d(v), by dmax.
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Let S = fs1; : : : ; skg � V denote a set ofk sinks. Any flowf : E ! R+ routing the demands to the sinks
satisfies the flow conservation equationXe=(v;w)2E f(e)� Xe=(u;v)2E f(e) = d(v)
at every vertexv 2 V � S. For any nodev, define thein-flow of v in(v) to be the sum of the flows on the
edges intov. The congestion off at a nodev is now defined asd(v) + in(v).

Without loss of generality, we assume that each sink has onlyincoming edges. (Supposesi has outgoing
edges, we can add a sink vertexs0i and an edge(si; s0i) toG and removesi from S.) We also assume without
loss of generality that the maximum congestion of any node ofG is 1; otherwise, all the demands and flows
can be scaled by the maximum congestion to satisfy this property.

We say that a flowf is confluent if for every nodeu, there exists at most one edge(u; v) that has positive
flow (i.e., f(u; v) > 0). Thus, a confluent flow yields a subgraph ofG consisting of disjoint componentsfT1; : : : ; Tkg, such that eachTi is an arborescence directed towards the rootsi. In any arborescenceTi, the
maximum node congestion occurs at the sinksi and equals the total demand inTi, given byd(Ti). We refer
to the maximum node congestionmaxi d(Ti) as the congestion of the confluent flow.

In this paper, we consider two optimization problems concerning confluent flows. In thecongestion
minimizationproblem, we seek a confluent flow with minimum congestion among all confluent flows that
satisfy all demands. In thedemand maximizationproblem, we seek a confluent flow that satisfies maximum
total demand among all confluent flows that have congestion atmost 1.

3 Lower bounds

In this section, we present two lower bound results. We first present an instance where the congestion of
the optimal confluent flow is at leastHk times that of the optimal splittable flow. We then show that itis
NP-hard to approximate the minimum congestion confluent flowto within a factor of12 lg k.

3.1 Confluent to splittable:Hk gap

Figure 1(a) shows an instance with splittable congestion1 but where the optimal confluent flow has conges-
tion at leastHk. The congestion of any confluent flow is at leastHk since the node with demand1 induces
a flow ofHk into any sink that drains it. We leave it as an easy exercise for the reader to see that the flow
that splits the outgoing flow at each node as shown in the figureachieves a congestion of1.

3.2 Hardness of approximation

In [1] it was shown that the minimum congestion problem is NP-hard to approximate better than43 and
hence MAXSNP-hard. Here, we refine the approach of [1] to improve the lower bound and show that it is
NP-hard to approximate better than(lg k)=2.

We present a hardness result for directed graphs with non-uniform demands. It is easy to modify this
result to the case of uniform demands, where for each vertexv we wish to route exactly one unit of flow
to a sink. Take a directed graphG with special verticess1; s2; t1; t2. It is known [6] that it is NP-hard to
determine whether or not there are vertex-disjoint dipathsin G from s1 to t1 and froms2 to t2. We show that
any approximation algorithm for the confluent flow problem with performance guarantee better that12 lg k
can be used to determine in polynomial time whether or not such disjoint dipaths exist inG. This will give
our result. We remark that the gadgets we use were first applied in [9] for the edge-disjoint path problem.

Theorem 1. It is NP-hard to approximate the optimal confluent flow congestion to a factor less than12 lg k.
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Figure 1:(a) Instance demonstrating anHk gap between confluent and splittable flows. The round nodes are sources
with j nodes at levelj each with supply1j . The square nodes are sinks. The flows on the outgoing edges ofthe ith
node on levelj are specified. (b) Instance used in the NP-hardness proof. The black verticeshave demand one, except
for the large black vertexsr1 which has demand two, and the white vertices have demand zero.

Proof. GivenG we build an auxiliary networkN as follows. Take a complete binary treeT on2dlg ke�1+1
nodes, with root noder. We makeT directed by replacing each edge with an arc directed away from the
root. Then we replace each nodev in the tree by a copy ofG. We use the notationsv1, for example, to refer
to the copy ofs1 in the copy ofG associated to the nodev 2 T .

For a non-leaf nodev in the tree, let
l(v) and
r(v) be its two children. Then the arc(v; 
l(v)) in T is

replaced by the arc(tv2; s
l(v)1 ) in the auxiliary network; similarly, the arc(v; 
r(v)) in T is replaced by the

arc(tv1; s
r(v)1 ) in the auxiliary network. For each leaf nodeu in the tree, we add the two arcs(tu1 ; t�u1 ) and(tv2; t�u2 ), wheret�u1 andt�u2 are sinks. Our construction is illustrated in Figure 1(b).
In addition, we give each vertex in the auxiliary network a demand. Every copy ofs2 andt2 receives

demand one. Every copy ofs1 and t1 receives demand zero, except forsr1 which receives demand two.
Every other vertex has demand zero.

Now, supposeG contains vertex-disjoint dipathsP1 andP2 from s1 to t1 and froms2 to t2, respectively.
Utilizing these dipaths in each copy ofG we obtain a collection of disjoint dipaths that end at the setof sinkst� and that cover every copy ofs1; s2; t1 andt2. This is shown in Figure 1(b). Since each dipath contains
only two vertices of non-zero demand (and exactly one for thedipath fromsr1 to t�), the congestion of the
resultant confluent flow is exactly two. This is clearly optimal since there is a vertex with demand two.

Now suppose thatG does not contain vertex-disjoint dipathsP1 andP2 from s1 to t1 and froms2 to t2.
Take any confluent flow in our network and consider the dipathP it induces fromsr1 to t�. We now show
that this dipath must have congestion at leastdlg ke. Towards this end, assume thatP passes through copies
of G corresponding to the nodesr = v1; v2; : : : ; vdlg ke�1 of T . Thus by constructionP must pass throughsvi1 , for 1 � i � dlg ke � 1. We claim that vertexsvi1 has congestion at leasti + 1. This is true forsv11 .
Assume then thatsvj1 has congestion at leastj + 1, and consider the copy ofG corresponding tovj. We
know that any flow atsvj1 and atsvj2 must be routed viatvj1 or tvj2 . However, because there are no disjoint
dipathsP1 andP2, we must have one of the situations shown in Figure 2. Either the flow atsvj1 is routed
via tvj2 and the flow atsvj2 is routed viatvj1 , or the flows atsvj1 and atsvj2 are both routed via the same vertex
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Figure 2:Routing in Networks without Disjoint Dipaths.

(eithertvj1 or tvj2 ). In each case, the congestion at eithertvj1 or tvj2 is at least(j + 1) + 1. This congestion
is passed down to vertexsvj+11 . Thus, by induction, it follows that the congestion of the vertex svdlg k�1e1 isdlg ke. Observe that the number of sinks in the auxiliary network isk.

It follows that any approximation algorithm for the confluent flow problem with approximability guar-
antee better than12 log k can be used to determine in polynomial time whether a directed graph contains
vertex disjoint dipaths froms1 to t1 and froms2 to t2.
4 Congestion minimization

In this section, we present a polynomial-time algorithm to determine a confluent flow that satisfies all de-
mands and has congestion at most1 + ln(k). We present our algorithm and its analysis in two stages. We
first describe in Section 4.1 an algorithm that achieves a congestion of1+ lg k. In Section 4.2, we refine the
algorithm of Section 4.1 and its analysis to obtain the desired1 + lnk congestion bound.

4.1 A (1 + lg k)-congestion algorithm

We begin by giving a brief overview of the algorithm. Our starting point is a (splittable) flowf in G that
routes all demands to the sinks and has maximum node congestion 1. The preceding flow can be determined
in polynomial time using a standard maximum flow algorithm. Without loss of generality, we may assume
that the given directed graphG is the directed acyclic graph (dag) induced by the splittable flow.

As the algorithm proceeds, it transforms the graphG and the flowf by repeatedly performing one of
three operations: (i) remove an edge (often by breaking certain undirected cycles2) and redirect flow; (ii)
aggregate a node into a sink if all of the outgoing edges of thenode are to the sink; and (iii) deactivate a sink
by removing all edges incident into the sink and redirectingflow. While these operations repeatedly make
changes to the graphG (edges and nodes are removed), the setS of sinks (sinks are deactivated), the flowf , and the demandsd (nodes are removed), we always maintain the following invariants:

1. f always satisfiesd and the flow conservation constraints.

2. Congestion at any nodev 2 V (G) � S never increases.

3. There are only incoming edges at each sink.

At termination, the transformed graph consists ofk nodes, each nodes representing the set of nodes that
have been aggregated into a sink (including the sink). Any spanning forest of the edges removed during the
aggregation process yields the disjoint treesfT1; : : : ; Tkg forming the desired confluent flow.

2We note that cycle-breaking is also an important component of the approximation algorithms for unsplittable flow [13, 2].
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We are now ready to define our algorithm CONFLUENT. At any stage of CONFLUENT, for any sinksi,
let bi denote the congestion ofsi (note that this is simplyd(si)+ in(si)). A nodev is referred to as afrontier
nodeif v has an edge incident into one of the sinks.

CONFLUENT(G;S; d; f): While V (G) 6= S, execute the following steps:

1. Construction of auxiliary graphs: Construct the bipartite graph consisting of the active sinks, fron-
tier nodes, and edges from frontier nodes to active sinks. LetG1; G2; : : : be the connected components
of this bipartite graph. LetH denote the graph obtained by contracting each of theseGi to a single
node inG (multi-edges and self-loops3 are preserved).

2. Breaking alternating cycles: If any Gi contains an undirected cycle, updatef so that an edge can
be removed fromG without increasing any node congestion. This can be done by identifying the
edge with the lowest flow in the (alternating) cycle and sending an equal but opposite flow through
the cycle (see Figure 3). Go back to step 1.

3. Breaking sawtooth cycles:If H contains a directed flow cycle (or a self-loop)C, updatef so that an
edge can be removed fromG without increasing any node congestion. This is done as follows. Each
vertexGi in H with edges(Gj ; Gi) and(Gi; G`) in C has two frontier nodesvj andv` such thatvj
(resp.,v`) has a directed path to a frontier node inGj (resp.,G`). We refer tovj (resp.,v`) as the
entry (resp., exit) node ofGi. Construct an undirected cycleC 0 in G by replacing eachGi in C by an
undirected path insideGi that connects the entry and exit nodes ofGi. The cycleC 0 consists of an
alternating sequence of directed paths and alternating sawtooth-like paths (see Figure 3). Identify the
edge inC 0 that has the lowest flow among all edges having the same direction asC; send an equal but
opposite flow through the cycle. Remove all edges with zero flow and go back to step 1.

4. Node aggregation:If a frontier nodev has all of its outgoing edges going into one sinksi, mark any
one of these edges, seizev into si and addd(v) to d(si) (see Figure 3). Go back to step 1.

5. Sink deactivation: Find aGr with no outgoing edges. InGr, find a leaf sink nodesj. Let v be the
frontier node adjacent tosj and lets` 6= sj be a sink adjacent tov. If bj + f(v; s`) < b` � f(v; s`),
remove edge(v; s`) and send all its flow along edge(v; sj); otherwise, remove edge(v; sj), send all
its flow along edge(v; s`) and deactivatesj (see Figure 3). Go back to step 1.

6. Output: Output the marked edges.

Theorem 2. Given a splittable flow with node congestion1 on a graph withk sinks,CONFLUENT finds a
confluent flow that satisfes all demands and has congestion atmost1 + lg k.

Our proof is by a potential function argument. We define the potential of sinksi as�(si) = 2si , and the
potential of the flow as the sum of the potentials of the activesinks. In the following sequence of lemmas,
we show that the potential of the flow never increases.

Lemma 3 (Breaking alternating cycles). If any Gr contains an undirected cycle, then the flow can be
modified so that an edge can be removed fromG without changing node congestion.

Proof. LetC be a set of edges inGr that forms an undirected cycle when edge directions are ignored. SinceGr is bipartite,C is an alternating cycle. Each frontier node inC has two outgoing edges while every sink
node in the cycle has two incoming edges. Hence any circulation inC leaves node congestion unchanged.
Consider the edge with the lowest flow inC. Step 2 of CONFLUENT sends an equal and opposite flow
through the cycle and removes the edge; the congestion of every node is left unchanged.

3A self-loop inH is created by an edge from one frontier node inGi to another frontier node inGi, for anyi.
6
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Figure 3:Illustrating steps 2, 3, 4, and 5 of CONFLUENT. In the top figure, the bold edges form a sawtooth cycle.

Lemma 4 (Breaking sawtooth cycles).If H contains a directed flow cycle (or a self loop)C then the flow
can be modified so that an edge can be removed fromG without increasing node congestion.

Proof. We expand the directed flow cycleC by expanding eachGi as indicated in step 3 of the algorithm.
There are only two kinds of frontier nodes in the resulting expanded cycle: type I, which are entry nodes of
the directed cycle intoGi and have one incoming edge and one outgoing edge, and type II,which have two
outgoing edges. All sink nodes in the cycle have two incomingedges each; hence, any circulation leaves
their congestions unchanged. Similarly the congestion of any type II frontier node is unchanged. Consider
the edgee with the lowest flow among all edges having the same directionasC. Step 3 sends an equal and
opposite flow through the cycle, and then removese. The congestion of all nodes except sink nodes and
type II frontier nodes only decreases, while those of the remaining nodes is left unchanged.

Lemma 5 (Node aggregation).If a frontier node has exactly one outgoing edge then the splittable flow can
be modified so that a node can be removed fromG without increasing node congestion.

Proof. Aggregating the frontier nodev into a sinksi increasesd(si) by d(v) but does not changebi. The
edge(v; si) is removed, and the flow along all the other edges remains unchanged.

Lemma 6 (Sink deactivation). If none of the preconditions of Lemmas 3, 4, and 5 hold then thesink deac-
tivation step either removes an edge or deactivates a sink without increasing the potential of the resultant
flow. Furthermore, the potential of the deactivated sink, ifany, is no more than the potential of the flow.

Proof. Since the precondition of Lemma 4 does not hold it follows that H is a directed acyclic graph.
Consider nodeGr of H with no outgoing edges inH. By the choice ofGr, it follows that no frontier node
in Gr has an outgoing edge inG that is not inGr. Furthermore, since the precondition of Lemma 3 does
not hold,Gr is a tree. Finally, since the precondition of Lemma 5 does nothold, every frontier node inGr
has at least two outgoing edges inGr. This implies that all of the leaf nodes inGr are sink nodes.

Let sj be a leaf sink node and let its adjacent frontier node bev; sincev cannot be a leaf lets` 6= sj be
an adjacent sink node. Ifbj + f(v; s`) < b`� f(v; s`), we remove (multi)edge(v; s`) and increase the flow
on (v; sj) by f(v; s`). It follows from the convexity of� that the potential does not increase.

If bj + f(v; s`) � b` � f(v; s`), we remove the (multi)edge(v; sj), increase the flow on(v; s`) byf(v; sj), and deactivatesj. The increase in potential is at most2b`+f(v;sj) � 2b` � 2bj = 2b`+f(v;sj) � 2b` � 2b`�2f(v;s`) � 2b`+f(v;sj) � 2b`�f(v;s`)+1 � 0:
7



(The second step follows from the convexity of the potentialfunction and the last step holds sincef(v; sj)+f(v; s`) is at most the congestion ofv, which is at most 1.)
For the second part of the lemma, it suffices to note that the potential of the deactivated sink is less than

the potential of the flow before the deactivation step.

Proof of Theorem 2: We first observe that for any non-sink node CONFLUENT marks exactly one outgoing
edge (during a node aggregation step). Thus, the set of marked edges form a confluent flow. We now prove
that the congestion of this flow is at mostlg k + 1. The potential of the flow at the start of the algorithm
is at most2k. Lemmas 3 through 6 show that the potential of the flow is neverincreased. Furthermore, by
Lemma 6, the potential of any deactivated sink is at most2k. Therefore, at termination, the potential of any
sink is at most2k. The congestion of any sink in the final confluent flow is at most1 + lg k.

4.2 An improved upper bound

In this section, we present a refinement REFINEDCONFLUENT of the algorithm CONFLUENT and show that
REFINEDCONFLUENT achieves1 + lnk congestion. REFINEDCONFLUENT differs from CONFLUENT in
the sink deactivation step only. The remaining steps, namely construction of auxiliary graphs, breaking
alternating cycles, breaking sawtooth cycles, and node aggregation are all identical to that in CONFLUENT.

We now present the sink deactivation step for REFINEDCONFLUENT. As in the analysis of CONFLUENT,
we maintain a potential for each sink. The potential of a sinkwith congestionx is given by�(x) = ex. The
potential of the system is defined to be the sum of the potentials of the active sinks.

5. Parsimonious sink deactivation:Find aGr with no outgoing edges;Sr  set of sinks inGr.� Balancing: Redistribute the flow from frontier nodes inGr toSr so that the potential
Psi2Sr �(bi)

is minimized. Remove any edges with zero flow.� Find the sinks 2 Sr with minimum total in-flow. For any frontier nodev adjacent tos, redirect
the flow along any edge(v; s) to an arbitrary sink adjacent tov. Remove all edges adjacent tos,
deactivates, thus settingSr  Sr � fsg.� RepeatBalancing and then go back to step 1.

To complete the description of the parsimonious sink deactivation step, we need to specify how the step
Balancing is implemented. The minimization problem inBalancing is to minimize a convex cost function
subject to certain linear constraints. In Appendix A.1, we show that the unique minimum of

Psi2Sr ebi is
identical to that of any other strictly convex function, andcan be obtained by a polynomial time algorithm
based on max flow.

In the following, we prove that the net change in potential asa result of the parsimonious sink deacti-
vation step is nonpositive. For any edge(v; s) in Gi from a frontier nodev to sinks, we define thesubtree
rooted at(v; s), T(v;s), as the tree consisting of all nodes that can be reached fromv via undirected paths
passing through the edge(v; s).
Lemma 7. Let v denote an arbitrary frontier node and lets denote an adjacent sink. Let� denote the
smallest in-flow inGr and� � � be a real number such that the flow on edge(v; s) is at most1� �. Then,
we can inject an additional flow of� on edge(v; s) and assign the resultant additional demand to sinks inT(v;s) such that the increase in potential is at most(�=Æ)(�(b + Æ) � �(b)), for anyÆ 2 [1� �; �℄.
Lemma 8. The parsimonious sink deactivation step does not increase the potential.

Theorem 9. Given a splittable flow with node congestion1 on a graph withk sinks, there exists a polyno-
mial time algorithm that finds a confluent flow satisfying the same demand and with node congestion not
exceeding1 + lnk.
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Proof. Lemmas 3, 4, 5, and 8 show that the potential never increases.Since the initial total potential isek, it
follows that potential of any sink at termination is at mostek, implying a congestion of at most1+lnk.

5 Demand maximization

In the demand maximization problem, we need to find a routablesubset of the nodes of maximum total
demand, requiring a confluent flow. In this section, we present a polynomial time1=6-approximation algo-
rithm, i.e. it finds a confluent flow to satisfy demands of a subset of nodes that are at leastD=6.

The demand maximization algorithm first runs CONFLUENT and obtains a set of disjoint arborescencesfTigki=1 where eachTi contains total demandbi. We next select a subset of the nodes and satisfy their
demands as follows. For eachTi, if bi � 2, then greedily partition the nodes inTi into groups whose total
demands sum to at mostbi=2; select the nodes in the group with the maximum total demand and satisfy their
demands usingTi. If bi > 2, then search the nodes ofTi in any order and determine a subset of the nodes
whose total demand is at least1=2. We defer the details to the appendix.

Theorem 10. Given a splittable flow with node congestion 1 on a graph with total demandD, the algorithm
above finds a confluent flow with node congestion at most 1, satisfying demands of a subset of nodes, with
total demand at leastD=6.

6 Confluent flows ink-connected graphs

It turns out that ifG is k-connected, then any splittable flow of congestionC may be replaced by a confluent
flow of congestion< C + dmax. In fact we will prove the following stronger theorem. Let ussay that a
directed graphG is k-connected to a setS � V (G), if each vertexv =2 S can be joined toS by k paths
which are disjoint except for the common vertexv.

Theorem 11. LetG be a directed graph with sinksS = fs1; : : : ; skg, demandsd : V ! R+ , maximum
demanddmax, and total demandD. Suppose thatG is k-connected toS. Given target valuest1; : : : ; tk
summing toD, there is a confluent flow inG such thatC(si) < ti + dmax for all i.

In particular, takingt1 = : : : = tk = D=k < C, we obtain a confluent flow of congestion< C + dmax
as claimed. Theorem 11 can be seen as a weighted version of thefollowing theorem.

Theorem 12 (Lovasz, 1977 [17]).Let G be a digraph,v1; : : : ; vk 2 V (G) and assume thatG is k-
connected toS. Let, furthermore,k positive integersn1; : : : ; nk be given whose sum isjV (G)j. ThenG containsk vertex-disjoint arborescencesA1; : : : ; Ak; suchAi is rooted atvi and jV (Ai)j = ni.

It is worthwhile to introduce herenearly confluentflows: these are splittable flows where the flow may
split only at nodes with no incoming flow. Theorem 11 is a consequence of the following two facts about
nearly confluent flows. First, if we allow nearly confluent flows, then the congestions at the sinks can be
prescribed arbitrarily:

Theorem 13. Let G be a directed graph with sinksS = fs1; : : : ; skg, demandsd : V ! R+ and total
demandD. Given any non-negative target valuest1; : : : ; tk summing toD, there is a nearly confluent flowf in G such thatC(si) = ti for all i.

Second, a nearly confluent flow may be rounded to a confluent flowwithout increasing the maximum
edge congestion by too much.

Theorem 14. If f is a nearly confluent flow inG, thenf may be rounded to a confluent flow~f such thatC ~f (si) < Cf (si) + dmax for for all i.
9



We’ll obtain Theorem 11 using the topological techniques which appear in the proof of Theorem 12.
See [10] for a combinatorial proof of Theorem 12 fork-connected undirected graphs.
The arborescence complex of a directed graph.In [17] a topological spaceK is associated with each
directed graphG with distinguished vertex̂a, known as thearborescence complexof G relative toâ. It can
be modeled as a cellular complex whose vertices are in one-to-one correspondence with the arborescences
of G rooted at̂a. In this section we present a definition of the arborescence complex which is equivalent to
the original, but makes clearer the relation with confluent flows.

Definition 15. Let G = (V;E) be a directed acyclic graph with distinguished vertexâ. Assume everyv 2 V (G) has a directed path tôa. Represent eacĥa-rooted arborescence by a functionF : E(G) ! R
whereF (e) = 1 if e belongs to the arborescence, 0 otherwise. Afractional arborescencein G is a functionF : E(G)! [0; 1℄ which is a convex combination of arborescences.

A fractional arborescence is called anear-arborescenceif it satisfies the following property: ifv is a
vertex such thatF (e) > 0 for at least two distinct outgoing edgese, thenF (e) = 0 for all incoming edgese. In other words, a near-arborescence is a convex combination of arborescences, any of which can be
transformed into any other by disconnecting and reattaching some leaves. The set of all near-arborescences
in G is a subspaceK � RE(G) called thearborescence complexof G relative toâ.

In Figure 6 we have illustrated the arborescence complex fora six-vertex graphG. In this case, a
fractional arborescence is determined by specifying, for each of the three topmost vertices ofG, a convex
combination of the two outgoing edges. Thus the space of fractional arborescences inG is a cube: a product
of three copies of�1, one for each of the three topmost vertices. The near-arborescences are those in which
the topmost vertex does not feed any weight into an undecidedvertex. The arborescence complexK is the
subset of the cube where this criterion holds; it is an octagon consisting of eight edges of the cube.

The fundamental fact about the topology of arborescence complexes is the following theorem from [17].

Theorem 16 ([17], Theorem 4).LetG be a digraph,̂a 2 V (G), and assume thatG is k-connected tôa(k � 2). Then the arborescence complexK of G relative to â satisfies ~H0(K) = : : : = ~Hk�2(K) = 0,
where ~H denotes reduced homology with integer coefficients.

Here, as in [17], the importance of Theorem 16 is that it enables us to apply a generalized intermediate
value theorem to obtain a near-arborescence with desired properties.

Figure 4: An arborescence complex

Proof of Theorem 13: Given a graphG with demandsd : V (G)! R+ and sinkss1; : : : ; sk, extend it to a
graphĜ by adjoining an auxiliary vertex̂a with incoming edgese1; : : : ; ek from s1; : : : ; sk. In terms ofĜ,
we want to show that there is a nearly confluent flowf in Ĝ satisfyingf(ei) = ti for i = 1; : : : ; k.

If one is given demandsd : V (Ĝ) ! R+ and a near-arborescenceF , this data naturally defines a flowf : E(Ĝ) ! R+ , routing all the demands to the sink vertexâ, according to the prescription that each
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vertexv distributes its outgoing flow in the proportions specified byF . (Note that the set of edgese withF (e) > 0 must constitute a DAG in order for this flow to be well-defined.If F is a near-arborescence, it
is automatic that this edge set is a DAG.) For a fixed set of demands, the mapping which associates to each
near-arborescenceF the corresponding flowf constitutes a continuous function fromK to the space of all
flows inG. If F is an arborescence, the corresponding flowf is a confluent flow. IfF is a near-arborescence,
the corresponding flow is nearly confluent.

Let� � Rk denote the(k � 1)-simplex� = ((x1; : : : ; xk) 2 Rk+ : kXi=1 xi = D) :
If K is the arborescence complex ofĜ relative toâ, we may mapK to � by mapping a near-arborescenceF to the vector(f(e1); f(e2); : : : ; f(ek)), wheref is the flow corresponding toF . This is a continuous
function� : K ! �, and we will be done if we can find a pointF 2 K which maps to(t1; : : : ; tk). The
existence of such a point is proved using the following generalized intermediate value theorem, whose proof
is deferred to the Appendix.

Theorem 17. LetX be a finite-dimensional cellular complex. Suppose� : X ! �r is a continuous map to
anr-dimensional simplex, such that for everys-dimensional face�s � �r, the subspaceY = ��1(�s) � X
is a non-empty subcomplex satisfying~H0(Y ) = : : : = ~Hs�1(Y ) = 0. Then� is a surjection, i.e. every
point of�r is the image of some point inX under�.

To apply Theorem 17 to the arborescence complexK and the mapping� : K ! �k�1 defined byF 7! (f(e1); : : : ; f(ek)), we must verify that��1(�s) satisfies the homological vanishing criterion specified
in the theorem, for each face�s � �k�1. Each such face is determined by specifyings+1 of the incoming
edges at̂a — without loss of generality, saye1; : : : ; es+1 — and requiring the flow to be zero onei for alli > s+ 1. Thus��1(�s) is the arborescence complex ofG [ fe1; : : : ; es+1g relative toâ. In this graph, nov 6= a can be separated from̂a by removing fewer thans+1 vertices, so Theorem 16 ensures the vanishing
of the required homology groups.
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A Proofs for Section 4.2

A.1 Convex minimization

In this section we consider the convex program obtained in trying to minimize the potential function over
the sinks. We characterize the structure of the minimizing point and use the structure to argue that in fact
the point of minimization is independent of the cost function. We conclude by showing that the elucidated
structure also enables us to find this point of minimization in polynomial time using max flow as a subrou-
tine.

Consider the bipartite graph formed by the frontier nodesffig and the sinksfsjg. Letxij represent the
flow on the edge from frontier nodefi to sinksj . Let yj represent the total flow into sinksj. Let di be the
supply at frontier nodefi andd0j be the intrinsic supply at sinksj. LetC(y) be a nonnegative, increasing
and strictly convex function. Consider the following program:minj C(yj)

s.t.8i; Xj xij � di8j; yj �Xi xij + d0j8i; j; xij � 0
The above is a (strictly) convex program since a sum of (strictly) convex functions is (strictly) convex.

It is well known that a strictly convex function over a convexset has a unique minimum. We also refer to
this convex objective function as the potential function. Note that anytime we have a setting of the variables
such that all the constraints are tight and they values are all equal then we are at the global minimum since
the sum of the supplies (intrinsic and otherwise) is a lower bound on the sum of they’s. Observe also that,
though many different settings to thex variables may induce the same set ofy variables, they values are a
continuous function of thex values.

We define the following “balance” operation — if a frontier node has edges with nonzero flow to two
sinks with differenty values then by shifting flow (i.e.x value) from the sink with largery value to the
sink with lowery value the value of the potential function is reduced. This follows from the convexity ofC. We also refer to the operation as balancing the frontier node in question. Note also that the potential
function is never reduced by increasing the flow out of a frontier node and this follows from the fact thatC
is increasing.

Observe that a setting of thex variables determines the value of the convex program. If a setting of the
convex program does not allow for further balancing then we say that the configuration is a local minimum
with respect to balancing. Observe that if there is a settingof y values to be equal and the constraints to be
tight then that is the minimum.

Theorem 18. LetX be a setting ofx variables that satisfies the convex program and is a local minimum
with respect to balancing. Then the partition of the sinks based on theiry values induces a corresponding
partition of the frontier nodes. Every frontier node sends flow only to sinks with the samey value. Further
a frontier node corresponding to a specificy value will have no edges to sinks with a lowery value and will
have zero flow on edges to sinks with highery value.

Proof. Consider a frontier node — it cannot send flow to two sinks withdiffering y value otherwise it could
be balanced. Hence we get a natural partition. Observe that anode could not have an edge to a sink with
lower y value for otherwise it could be balanced. Similarly it couldnot have any flow on an edge to a node
with highery value else it could be balanced.
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The above structure theorem says that at a local minimum withrespect to balancing the original bipartite
graph can be thought of as being partitioned into disjoint graphs and in each of these graphs the natural
restriction of the original convex program achieves its global minimum. The original convex program is the
sum of its restrictions.

Theorem 19. A local minimum with respect to balancing is a local minimum.

Proof. Consider a local minimum with respect to balancing defined bythey values. Pick anyx values that
induce thesey values. the strategy of this proof is to show that for any perturbation� to thex values the
potential function is not reduced. Since they values are a continuous function of thex values it follows that
there is no perturbation to they values that reduces the potential and hence we are at a local minimum.

We are left to show that there is no perturbation� to thex values that reduces the potential. The argument
is by contradiction. Suppose not. Consider an� that reduces potential. If it increases the outflow of any
frontier node beyond its supply then we can reduce this outflow and hence the potential and consider the
corresponding perturbation. In other words if there existsa potential reducing� then there is one that holds
frontier node outflows constant. By the above structure theorem edges from frontier nodes to sinks with
highery values carry no flow. If an� sends flow along such an edge then observe that by reducing the
flow along this edge and sending it to a sink in the same partition we reduce the potential further. Hence
there exists an� that only sends flow along the edges where thex values are non-zero. But in any partition
we know we are at a global minimum so any� that holds frontier node outflows constant cannot reduce
potential. Hence contradiction.

Corollary 20. A local minimum with respect to balancing is a global minimum.

Theorem 21. The point of minimization is independent ofC.

Proof. Suppose not. LetC1 andC2 be two potential functions with different points of minimization,y1 andy2. We know that each of these points is the unique global minimum and local minimum with respect to
balancing under the respective potential functions. Sincey2 is not a point of minimization underC1 it must
be capable of further balancing, but since the operation of balancing is independent ofC, this means thaty2
is capable of further balancing underC2 — a contradiction.

We now present an algorithm to find the point of minimization using max flow as a subroutine. The
algorithm will be polynomial time but it will not be stronglypolynomial since it will utilize binary search.

Algorithm : Create a universal sink and connect all the sink nodessj to it with edges of the same
capacity. Run a binary search on this capacity to determine the largest value such that all these edges are
saturated. Partition the sinks into two based on what happens when the capacity is increased infinitesimally
beyond this point - those whose edges continue to be saturated and those whose edges are not. It is easy to
see that this induces a partition of the frontier nodes alongthe lines of our structure theorem above. Remove
the unsaturated partition and recurse on the saturated partition.

It is an easy exercise to repeat the arguments above to see that the resulting partition and correspondingx values is a local minimum with respect to balancing.

A.2 Nonpositive net change in potential

Proof of Lemma 7: The proof is by induction on the number of sinks inGr. The assumptions aboutGr
require that there be at least two sinks inGr. So, for the induction base, we consider the case whenGr has
exactly two sinks. Since the sum of the in-flows of the two sinks is at most 1, it follows that� � 1=2. Since� � �, [1 � �; �℄ is nonempty exactly when� = � = 1=2. We can inject an additional flow of1=2 into
either of the sinks and increase the potential by a factor of at most�(b+ 1=2) � �(b), which completes the
desired claim.
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We now consider the induction step. If[1 � �; �℄ is empty, then there is nothing to prove. Otherwise,
let Æ be any real in[1� �; �℄. We are given a frontier nodev and an adjacent sinks such that the flow along(v; s) is at most1 � �. Let v1 throughvj denotej frontier nodes other thanv that are adjacent tos. For1 � ` � j, we select�` � f(v`; s) such that

P` �` = �� Æ. Such a selection is well-defined since the sum
of the flows along these edges is at least� � (1� �), which is at least�� Æ sinceÆ � 1� �.

We increase flow along edge(v; s) by � and decrement the flow along the edges(v`; s) by �`. This
increases the congestion of sinks by Æ. The decrease in the flow along the edges(v`; s) implies that an
additional flow of�` needs to be redirected to other sinks. For each frontier nodev`, we select an arbitrary
adjacent sinks` 6= s and inject an additional flow of�` along edge(v`; s`) into the subtree rooted at edge(v`; s`) (i.e., subtreeT(v`;s`)). Let �` denote the smallest in-flow in the subtree rooted at edge(v`; s`).
Since�` � � and� � � � �`, it follows that�` � �`. By the induction hypothesis, we know that the total
increase in potential of the sinks in this subtree is at most�`Æ0 ��(b+ Æ0)� �(b)� ;
for anyÆ0 2 [1��`; �`℄. Since�` � � andÆ � 1��, we obtain thatÆ � 1��`. We consider two cases. IfÆ � �`, it follows from the induction hypothesis that the total increase in potential in the subtree is at most�Æ̀ (�(b+ Æ)� �(b)) :
If Æ > �`, then we can simply increase the in-flow into sinks` by �` and achieve a potential increase of at
most (�(b+ �`)� �(b)) � �Æ̀ (�(b+ Æ) � �(b)) ;
the last inequality following from Lemma 22 below sinceÆ > �`.

By adding over all̀ , we obtain that the total potential increase over all treesT(v`;s`) is at mostP` �`Æ (�(b+ Æ)� �(b)) :
On adding the potential increase of sinks, which is�(b+ Æ)� �(b), we obtain a total increase of at most�Æ (�(b+ Æ) � �(b)) ;
which completes the induction step and the proof of the lemma.

Proof of Lemma 8: Let s� denote a sink inGr with minimum in-flow. Let� denote the in-flow ofs�
and letv1 throughvj denote the frontier nodes adjacent tos�. Let �` denote the flow on edge(v`; s�), for1 � ` � j. Let s` 6= s� denote an arbitrary sink adjacent tov`. (Since every frontier node inGr has at least
two adjacent nodes,s` exists.) We redirect flow�` into the subtreeT(v`;s`). Since the congestion ofv` is at
most1, it follows that the flow along edge(v`; s`) is at most1� �`. We consider two cases. If�` < 1� �,
then we assign�` to sink s`, thus increasing its congestion tob + �`. Thus, the increase in potential ofT(v`;s`) is at most �(b+ �`)� �(b) � �`1� � (�(b+ 1� �)� �(b)) ;
by Lemma 22.

We now consider the case�` � 1 � �. Let �` denote the minimum in-flow of a sink node inT(v`;s`).
Since�` � �, it follows that1 � � � 1 � �`. We invoke Lemma 7, withÆ = (1 � �) to obtain that the
increase in potential ofT(v`;s`) is at most�`1� � (�(b+ 1� �)� �(b)) :
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Adding over all`, and subtracting the potential of the deactivated sinks�, we obtain the net change in the
total potential of the system to be at most�1� � (�(b+ 1� �)� �(b)) � �(b) = eb� �1� � (e1�� � 1)� 1�= eb� �1� � ( 1e��1 � 1)� 1�� eb� �1� � ( 1� � 1)� 1�= 0:
(In the penultimate step, we use the inequalitye��1 � 1 + �� 1 = �.)

Lemma 22. For 0 � x � 1, the functionex�1x is a monotonically increasing function ofx.

Proof. Let g(x) equalex�1x . Theng0(x) is equal toexx � exx2 + 1x2 = ex(x� 1) + 1x2= (x� 1)=e�x + 1x2� 0;
sincee�x � 1� x andx � 1.

B Proofs for Section 5

We first give a complete description of the demand maximization algorithm. The algorithm first runs
CONFLUENT and obtains a set of disjoint arborescencesfTigki=1 where eachTi contains total demandbi.
We next select a subset of the nodes and satisfy their demandsas follows. For eachTi, if bi � 2, then
greedily partition the nodes inTi into groups whose total demands sum to at mostbi=2; select the nodes in
the group with the maximum total demand and satisfy their demands usingTi. If bi > 2, then search the
nodes ofTi in any order and do the following.

1. �i  0.

2. While�i < 1=2 do

(a) Visit the next nodev.

(b) If d(v) � 1=2, then markv and�i  �i + d(v). Otherwise, unmark all marked nodes; markv
and�i  d(v).

3. Select the marked nodes and satisfy their demands usingTi.
Lemma 23. In CONFLUENT, when the congestion of any sink changes, exactly two sinks are involved.
Suppose they aresx; sy and w.l.o.g. assumebx � by. One of the following happens.

1. bx decreases byÆ, causingby to increase byÆ; by + Æ < bx � Æ; no one gets deactivated;

2. by decreases byÆ, causingbx to increase byÆ; by � Æ + 2 � bx + Æ; by gets deactivated;

3. bx decreases byÆ, causingby to increase byÆ; bx gets deactivated.
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Proof. During CONFLUENT, congestion of any virtual sink may change only in step 5. When sy is the leaf
sink andby + f(v; sx) < bx � f(v; sx), we have case 1. Whensy is the leaf sink andby + f(v; sx) �bx � f(v; sx), we have case 2, where since2 � 2Æ + 2f(v; sx) we haveby � Æ + 2 � bx + Æ. Whensx is
the leaf sink, we have case 3.

Lemma 24. WhenCONFLUENT terminatesXi:bi�2 bi + Xi:bi>2 1 � D2
Proof. we first show: Xi:bi>2(bi � 2) � Xi:bi�2 bi
We plotfbigki=1 as a histogram. The congestion of the sinks may change duringthe execution of CONFLUENT,
specifically, in step 5. But the total area of the histogram isalwaysD. Divide thexy-plane of the histogram
into two sections by they = 2 line. Notice that when the algorithm redirects flow from one sink to another,
demand moves from one sink to the other; in the histogram, this corresponds to a move of “area” either
across the boundary or within a section. Denote byA the total area in the upper section.A increases only
when some area moves from the lower section to the upper section. But whenever this happens, there is some
sink deactivated and the correspondingbi, which is less than 2, remains untouched thereafter. DenotebyB
the sum ofbi of the set of such deactivated virtual sinks.B �Pi:bi�2 bi. Notice that initiallyA = B = 0.
So we only need to show that wheneverA increases,B increases by at least the same amount, i.e., abi of at
least the same amount gets deactivated. This can be verified by checking each possibility whereA increases.

Look at any moment whenA increases. Denote the increment ofA by ÆA, the increment ofB by ÆB .� Case 2 of Lemma 23.

– 2 � by � bx. ÆA = 2� (by � Æ), ÆB = by � Æ. ÆB � ÆA = 2(by � Æ � 1) � 0.

– by < 2 < bx. ÆA = Æ, ÆB = by�Æ. ÆB�ÆA = by�2Æ � bx�2 � 0 (sinceby�Æ+2 � bx+Æ).
– by � bx � 2. ÆA = bx + Æ � 2. ÆB = by � Æ. ÆB � ÆA = by � Æ + 2 � bx � Æ � 0 (sinceby � Æ + 2 � bx + Æ).� Case 3 of Lemma 23.

– 2 � by � bx. ÆA = Æ � (bx � 2). ÆB = bx � Æ. ÆB � ÆA = 2(bx � Æ � 1) � 2(2� Æ � 1) � 0.

– by < 2 < bx. ÆA = (by + Æ � 2) � (bx � 2) = by + Æ � bx. ÆB = bx � Æ. ÆB � ÆA =2(bx � Æ)� by � 2(2� Æ) � by � 2� by � 0.

– by � bx � 2. ÆA = by + Æ � 2. ÆB = bx � Æ. ÆB � ÆA = (bx � by) + 2(1� Æ) � 0.

Now combineD =Pi:bi>2(bi � 2) +Pi:bi>2 2 +Pi:bi�2 bi with
Pi:bi>2(bi � 2) �Pi:bi�2 bi to get the

claim.

Now we are ready to prove Theorem 10.Proof of Theorem 10: Since the demands are routed withfTigki=1, the flow is confluent. Since for eachTi, the algorithm selects total demand at most 1, the node
congestion is at most 1. ForTi with bi � 2, suppose the total demands of the groups ared1 � d2 �� � � � dr. Only d1 can be less than or equal tobi=4, otherwised1 andd2 could have been combined. Sinced1 + dr > bi=2, it follows thatr � 3 (otherwised1 + d2 + d3 + dr > bi). Therefore,dr � bi=3, i.e. at least
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bi=3 is satisfied; totally
Pi:bi�2 bi=3 is satisfied. ForTi with bi > 2, at least�i � 1=2 demand is satisfied;

totally at least
Pi:bi>2 1=2 is satisfied. From Lemma 24:Xi:bi�2 bi3 + Xi:bi>2 12 � 13 0�Xi:bi�2 bi + Xi:bi>2 11A � D6

the algorithm satisfies at leastD=6 demand in total.

C Proofs for Section 6

Proof of Theorem 14: We describe an algorithm for roundingf to ~f , in the spirit of [15]. Delete all edgese with f(e) = 0 from G. Let U � V (G) denote the set of nodes with outdegree> 1; we’ll call these the
undecided nodes.The algorithm will select undecided nodes one at a time, and will re-route all the flow
from the selected node along one of its outgoing edges. It follows that the congestion will never increase
on an edge which is not downstream from an undecided node; call such edgessafe, and the other edges ofG active. As long asG contains an undirected cycle which does not pass throughâ, we can modifyf by
finding an edge on this cycle with minimum flow value, sending an equal amount of flow around the cycle in
the opposite direction, and deleting all edges whose flow value is now zero. Each such operation diminishesjEj by at least one, and doesn’t alter the congestion of any edge adjacent toâ. After finitely many such
operations it will be the case that every undirected cycle inG passes througĥa.

Now letS denote the set of neighbors ofâ. We claim there exists a vertexs 2 S with only one undecided
vertex upstream from it. This can be proved by induction onjU j. If jU j = 1 there is nothing to prove. IfjU j > 1, let E0 � E denote the set of active edges which are not incident toâ. These are the edges of a
forest. Delete an edgee of E0 to obtain a forest of at least two components, with at least one undecided
vertex in each component. By the induction hypothesis, in each component there is at least one element ofS
with only one undecided vertex upstream. Inserting edgee again, the element ofS downstream frome may
now have more than one undecided vertex upstream; however this leaves at least one element ofS which
still has only one undecided vertex upstream.

Having found a vertexs 2 S with only one undecided vertexu 2 U upstream from it, we take all of the
demand atu, re-route it along the path fromu throughs to â, deleteu from the set of undecided vertices,
and delete the edges of this path from the set of active edges.The algorithm continues in this manner untilU is empty andf has been rounded to a confluent flow.

Note that ife is an edge incident tôa, the congestion ofe only increases in the step wheree changes
from an active edge into a safe edge. At this step, the increase in congestion is less thand(u), the amount of
demand at the undecided vertex which re-routed its flow alonga path throughe.

Before proving Theorem 17, we explain why we refer to it as a generalized intermediate value theorem.
Consider the caser = 1;�r = [0; 1℄. Then the hypotheses of the theorem amount to:� f�1(0) is non-empty.� f�1(1) is non-empty.� ~H0(X) = 0, i.e.X is path-connected.

In other words, the theorem asserts that if a continuous function on a path-connected space takes the values
0 and 1, then it also takes every value between 0 and 1. This is the standard form of the intermediate value
theorem.
Proof of Theorem 17: Suppose we are given a map� : X ! �r satisfying the homological vanishing
criterion of Theorem 17, i.e. for any face�s � �r, the inverse imageY = ��1(�s) satisfies ~H0(Y ) =
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: : : = ~Hs�1(Y ). We will prove� is surjective by induction onr. Whenr = 0 there is nothing to prove,
as�r consists of a single point. Forr > 0, we may apply the induction hypothesis on each face of the
boundary��r to conclude that the image of� contains every point of��r. So now assume that� misses
some pointp in the interior of�r; we’ll derive a contradiction in a manner similar to the proof of Brouwer’s
fixed point theorem.

The starting point is a homological computation encapsulated in the following lemma.

Lemma 25. The map�� : ~Hr�1(��1(��r))! ~Hr�1(��r) = Z is a surjection.

Proof. We’ll prove, by induction, the following much more general claim: if A � �r is ans-dimensional
subcomplex containing the(s � 1)-skeleton of�r (i.e. the union of all faces of dimension< s) then�� : ~Hj(��1(A))! ~Hj(A) is an isomorphism forj < s and a surjection forj = s. In the base case,s = 0,~H0 is a free abelian group whose rank is one less than the number of connected components; the claim now
follows from the observation that��1(v) is non-empty for each 0-simplex (i.e. vertex)v 2 �r. For the
induction step, supposes > 1, let �s be anys-simplex ofA, and letB = A � �s. We have the following
commutative diagram whose top and bottom rows are exact sequences (the homology long exact sequences
of the pairs(��1(A); ��1(B)) and(A;B), respectively), and whose vertical arrows are homomorphisms
induced by�.~Hj(��1(B))

����

// ~Hj(��1(A))
��

// ~Hj(��1(A); ��1(B))
��

� // ~Hj�1(��1(B))�
��~Hj(B) // ~Hj(A) // ~Hj(A;B) � // ~Hj�1(B)

By the induction hypothesis, the vertical map on the right isan isomorphism, and the one on the left is
an isomorphism forj < s and a surjection forj = s. If we can prove that the third vertical map,�� :~Hj(��1(A); ��1(B)) ! ~Hj(A;B), is an isomorphism forj < s and a surjection forj = s, then the
5-Lemma from homological algebra [11] will imply that the same conclusion holds for the second vertical
map, as desired.

By the excision theorem [11], we have a commutative diagram~Hj(��1(�s); ��1(��s))��
��

� // ~Hj(��1(A); ��1(B))��
��~Hj(�s; ��s) � // ~Hj(A;B)

in which the horizontal maps are isomorphisms. Thus it suffices to prove that�� : ~Hj(��1(�s); ��1(��s))!~Hj(�s; ��s) is an isomorphism forj < s, a surjection forj = s. This will be done using the long exact
sequence of the pairs(��1(�s); ��1(��s)) and(�s; ��s).~Hj(��1(�s))

����

// ~Hj(��1(�s); ��1(��s))
��

� // ~Hj�1(��1(��s))�
��

// ~Hj�1(��1(�s)) = 0�
��0 = ~Hj(�s) // ~Hj(�s; ��s) // ~Hj�1(��s) // ~Hj�1(�s) = 0

The fourth vertical map is the isomorphism0 ! 0, while the third vertical map is an isomorphism by
the induction hypothesis. The first vertical map is the isomorphism0 ! 0 for j < s, and is a surjection
for j = s (trivially, because the target group is0), so the 5-Lemma implies the desired conclusion for�� : ~Hj(��1(�s); ��1(��s))! ~Hj(�s; ��s):
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To complete the proof of Theorem 17, assume by way of contradiction that� misses an interior pointp 2 �r, and let� : �r � fpg ! ��r denote the continuous map which radially projects each point q of�r � fpg to the boundary by drawing a ray fromp throughq and continuing until the ray hits��r. Then
we have a commutative diagram: ��1(��r) �

� i //�
��

X�
����r �r � fpg�oo

Applying the functor~Hr�1 to the above diagram we obtain.~Hr�1(��1(��r)) i� //��
��

~Hr�1(X) = 0��
��Z= ~Hr�1(��r) ~Hr�1(�r � fpg)��oo

According to this diagram, the left vertical map�� : ~Hr�1(��1(��r))! Z factors through~Hr�1(X) = 0,
so it is the zero map. This contradicts Lemma 25, which says that it is a surjection.
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