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Abstract. In this paper we focus on estimating the amount of informa-
tion that can be embedded in the sequencing of packets in ordered chan-
nels. Ordered channels, e.g. TCP, rely on sequence numbers to recover
from packet loss and packet reordering. We propose a formal model for
transmitting information by packet-reordering. We present natural and
well-motivated channel models and jamming models including the k-
distance permuter, the k-buffer permuter and the k-stack permuter. We
define the natural information-theoretic (continuous) game between the
channel processes (max-min) and the jamming process (min-max) and
prove the existence of a Nash equilibrium for the mutual information rate.
We study the zero-error (discrete) equivalent and provide error-correcting
codes with optimal performance for the distance-bounded model, along
with efficient encoding and decoding algorithms. One outcome of our
work is that we extend and complete D. H. Lehmer’s attempt to char-
acterize the number of distance bounded permutations by providing the
asymptotically optimal bound - this also tightly bounds the first eigen-
value of a related state transition matrix [1].

1 Introduction

In this paper we model and prove the existence of a novel covert channel in any
ordered channel. We define a ordered channel as one in which the basic units of
communication (eg. packets in network channels) are linearly ordered. A common
example of an ordered channel is the TCP communication channel which uses
the sequence number field to order the packets. The crux of our hiding scheme is
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to re-order the packets, and thus sending information. Thus, the scheme involved
coding by permuting the packets in the channel.

Communication in covert channels is usually modeled using five players namely,
Alice, stego-Alice, Jammer, stego-Bob, Bob, in the order of access to a basic unit
of communication (eg. packet). Alice and Bob are the legitimate senders using
the ordered channel. stego-Alice and stego-Bob are the players involved in ex-
tracting a covert channel. stego-Alice works by permuting the packets sent by
Alice and thus trying to communicate with stego-Bob. We use the notion of a
Jammer to encapsulate the effects of attempts to intercept such covert channels.
The Jammer works by permuting the packets, after they are sent by stego-Alice
and before received by stego-Bob3.

The capacity of the channel is measured by the information rate [2] of the
channel. Since the channel is covert, stego-Alice should not inordinately permute
the packets. Similarly, giving the Jammer, complete permuting power would
render any stego-Alice useless4. Hence, we assign permuting power to the stego-
Alice and the Jammer. Also, stego-Alice and Jammer are usually implemented
in hardware and the permuting powers come up due to restricting the hardware
complexity.

We formalize a variety of natural models of permuting power for the stego-
Alice and the Jammer. We consider two distinct ways of analyzing the capacity
of the channel. In the continuous case, we formulate the channel as a zero-sum
game played by the stego-Alice and the Jammer where the stego-Alice tries to
maximize the capacity of the channel. We prove the existence of a nash equilib-
rium for any given power (strategy space) of the stego-Alice and the Jammer. On
the other hand, we have the discrete case, where we provide concrete encoding
and decoding algorithms, parametrized on the stego-Alice and Jammer power,
to communicate. We obtain tight bounds on the capacity of the covert channel
were possible.

The rest of the paper is organized as follows. The following section talks
about the related works. In section III, we formalize the channel model and
introduce the various models to restrict the stego players and the jammers. In
Section IV we analyze the general channel capacity as a two player game and
prove that a Nash equilibrium exists. We set the stage for the following sections
by characterizing the zero-error capacity of the channel. Section V is an analysis
of restricted permutations, and in particular distance restricted permutations.
In section VI, VII we prove bounds on zero-error the channel capacity in the
models that we introduce and provide polynomial time encoding and decoding
schemes.

3 The concept of Jammer also encapsulates the inherent errors (eg. re-ordering of
packets due to routing) that exist in the ordered channel

4 As we prove, for many natural models, the stego-Alice needs more power than the
Jammer to effectively communicate



2 Related Work

Considering the set of codewords to be a set of permutations for traditional
channels has been studied in theory [3]. However, in our model channel errors
are permutations, rather than symbol errors. In [4], asymptotically good error-
correcting codes for correcting transposition, insertion and deletion errors have
been designed. However their codebook is not restricted to only permutations.
To the best of our knowledge considering only permutations as both codewords
and errors is novel and also well suited for the covert TCP channel that we
consider.

A partial characterization of “k-distance” permutations[Sec.3] have been
done in the past [1]. Lehmer gives explicit ways to derive the number of permu-
tations satisfying this condition for small values of k (1, 2 and 3).For every k,
the number of “k-distance” permutations of length n equals to O(µn

k ). In course
of our work, we obtain tight asymptotic bounds on the value of µk.

Our work is in part a logical extension to the reordering scheme proposed in
[5]. We analyze the reordering channel in a suitably defined mathematical model
and provide bounds on the channel capacities. The scheme proposed in [5] has the
following defects. Firstly, the encoding and decoding algorithm are not optimal
and are not polynomial time. We have very simple polynomial time encoding and
decoding schemes which asymptotically achieve the maximum channel capacity.
Further, there is no characterization of the capacity, nor any model describing
it.

3 Preliminaries

3.1 The Steganographic Channel

We consider as the underlying host channel one where Alice communicates with
Bob using a stream of ordered packets. Since we are interested in hiding addi-
tional information into the channel by reordering the packets, the fundamental
operations performed by the stego players are permutations. The stego play-
ers are assumed to know the total ordering among the packets and decide be-
forehand on the block length n and number the packets in order from the set
{1, 2, . . . , n− 1, n}. Let Sn denote the symmetric group of n elements and e its
identity element. Assume Alice sends the packets to Bob in the natural order
e = (1 . . . n). Denote by π = (π(1), . . . π(n)) a permutation where the ith element

is π(i). A code, in this scenario, is C ⊆ Sn whose rate we define to be log2(|C|)
n . We

define the following models of permuters to restrict the permutations possible
for the stego players and the jammer.

3.2 Distance bounded permuters

In any ordered communication channel, the latency of the channel is increased
if the packets are reordered. For a covert communication with a bound on the



maximum latency in receiving a packet at the actual receiver we define the
following permuter.

Definition 1. A k-distance permuter is one in which the permutation π of the
input is such that |i− π(i)| ≤ k, ∀i ∈ {1, . . . , n}.

3.3 Buffer bounded permuters

Definition 2. A k-buffer permuter uses a random access buffer of size k ele-
ments. There are two operations that a k-buffer permuter can perform.

1. put: The k-buffer permuter removes one element from the input stream and
places it in the buffer. This operation can be performed iff the buffer is not
full.

2. remove: The permuter removes one element from the buffer and places it
in the output stream. This operation can be performed iff the buffer is not
empty.

Define a k-buffer permutation to be a permutation realizable by a valid se-
quence of put ’s and remove’s a k-buffer permuter. We note that the only possible

1-buffer permutation is the identity permutation e. Let B
(k)
n denote the num-

ber of different k-buffer permutations of n elements. Note that unlike k-distance
permuters, k-buffer permuters are not reversible; there exists a permutation π
that is a k-buffer permutation such that π−1 is not a k-buffer permutation.

3.4 Restrictions on the nature of the buffer

Definition 3. A k-stack permuter is a k-buffer permuter where the buffer ac-
cessible to the k-buffer permuter is not a random access buffer but a stack.

4 A Game Theoretic Approach

In this section, we study the covert communication as a information-theoretic
game. We define the strategies of the “players” as follows. Let S denote the set
of all permutations to which the sender can permute e. Let T denote the set of
all permutations to which the adversary can permute any element of S. Consider
the directed graph G(V, E), where V = S ∪ T . A directed edge (p → q) ∈ E iff
the adversary can permute p ∈ S to q ∈ T .

To communicate, the sender selects a probability distribution over S and
does source coding [2] to transmit information. The adversary selects, for each
vertex in S a probability over the set of neighbours5 in G to reduce the infor-
mation rate. Extending the distribution chosen by the sender to the whole of
V (by assigning zero probability mass on the vertices that the sender cannot

5 Typically, an adversary is allowed to leave the permutation sent by the sender as it
is, leading to self loops in the graph G



“reach”), we have a probability distribution X over V . The adversary chooses
the conditional probability p(y|x) of the permutation x being transformed into y
for every edge (x→ y) in E. Extending the conditional probabilities to all pairs
of vertices, we have a distribution Y over V , representing the probability of the
final permutation (after both sender and adversary have made their “move”).
Then, the information rate is given by,

I(X ; Y ) = H(X)−H(X |Y )

where, H(X) and H(X |Y ) are the entropy functions.
This naturally leads to a zero-sum game [6] with objective function I(X ; Y )

where the strategies of the players are as defined above. Suppose U and V denote
the set of all strategies of the sender and the adversary of choosing a distribution
and a conditional “transition” probabilities respectively, we have the following
theorem that proves the existence of a saddle point.

Theorem 1. The game as defined above satisfies the min-max equation

min
v∈V

max
u∈U

I(X ; Y ) = max
u∈U

min
v∈V

I(X ; Y )

Any pair of strategies that achieves this value of the game is said to be “op-
timal” to each other. In particular, the above theorem also proves the existence
of a Nash equilibrium. Hence there exists optimal strategies for the sender and
the adversary such that no player has anything to gain by changing his own
strategy.

4.1 Characterization of Nash Equilibrium

The structure of the graph could help in obtaining the value of the game. The
following lemmas are useful in determining the value of the graph. The proofs
of the lemmas are omitted due to lack of space.

Lemma 1. If there exist two vertices x1 and x2 such that there is an edge (x1 →
y) iff (x2 → y), then, there is an optimal strategy set where the sender assigns
p(x2) = 0

Similarly, we have the following lemma for the edge player. The proof of the
lemma is very much along the lines of the above proof and hence omitted.

Lemma 2. Suppose there exists two vertices y1 and y2 such that (x → y1) iff
(x → y2), then there is an optimal strategy set where the adversary assigns
p(y2|x) = 0∀x.

For the purpose of constructing error-correcting codes, we need to find the
largest set of symbols in S such that the adversary cannot “confuse” two symbols
by permuting the them to the same element. Thus, for the general graph game,
we have the following theorem.



Lemma 3. Confusion Graph Lemma Given the directed graph G, with ad-
jacency matrix A, defined as in 4. Let H denote the underlying undirected graph
with adjacency matrix A+AAT . This graph contains an edge between every pair
of elements that can be confused and hence the largest independent set of sub-
graph of H induced by the vertices of S gives the set of symbols over which an
optimal error-correcting code can be constructed.

5 Restricted Permutations

Note: Due to space constraints, we use the symbol� to denote proofs are found
in the appendix section of the extended version [7].

The information theoretic results show the existence of a game theoretic equi-
librium. However the zero-error model, when one would like to decode exactly to
the correct code word, is also important in the practical sense. Below we show
for several noise models what the zero-error capacity is and provide codes to
communicate in this situation.

k-distance permutations accurately capture the real world constraints of
memory and latency. In this section we study in detail the properties of k-
distance permutations. The nature of permutations of n elements, given for each
element i a set of possible positions it can move to have been extensively stud-
ied [1], [8], [9]. We reproduce some relevant parts for the sake of completeness.

For k = 1, observe that P
(1)
n = Fn+1 the (n + 1)-th Fibonacci number.

Finding the recurrence for P
(k)
n is in general difficult. So is computing it as a

function of n and k. [1] provides a computational method to evaluate P
(k)
n .

However the method has exponential complexity in k. Further they leave the
exact asymptotics open. We briefly outline the method below.

Consider an intermediate position in the construction of any permutation of
length n obeying the k-distance property. Let this be denoted as (π(1), . . . , π(h−
1)). Suppose also that h is much larger than k; we have to decide on the value of
π(h) depending on the values of (π(h−1)−(h−1), . . . , π(h−k)−(h−1)), which
we call a state. The state contains information as to the relative displacement
of each of the previous k elements, using which we could determine the set of
values that π(h) can take. Upon choosing a feasible π(h), we move to a new
state, (π(h)− h, . . . , π(h− k + 1)− h). Construct a directed graph with vertices
as all possible states, a directed arc between states a and b iff state b is reachable
from a via a feasible extension of the permutation terminating with the state
a. Let the adjacency matrix of this graph be denoted by A. The number of
ways of extending a partially built permutation π(1 . . . h) to π(1 . . . h + i), is
the number of directed paths of length i in the graph, starting with the state
(π(h)−h, π(h−1)−h, . . . , π(h−k +1)−h), and ending at the state (π(h+ i)−
h− i, . . . , π(h + i− k + 1)− h− i), which is the corresponding entry in Ai. The
growth of this entry is of the order of µi

k, where µk is the largest eigenvalue of

the matrix A. Hence, limn→∞
P (k)

n

µn

k

= 1 where µk is the eigenvalue of the state

matrix A corresponding to k-distance permutations.



As an illustration, consider the simple case of 1-distance permutations. The
state information consists of just (π(h) − h), and thus the set of states V =
{(0), (−1), (1)}, since an object h cannot move more than one place away from
its initial position. From the restrictions of 1-distance permutations, the state

transition matrix is seen to be





1 0 1
1 0 1
0 1 0



 Evaluating the largest eigen-value of

this matrix we find that its equal to µ1 = 1+
√

5
2 , and thus the number of 1-

distance permutations goes as
(

1+
√

5
2

)n

, as expected. During the course of our

work, by having provided an upper bound and lower bound for the values of

P
(k)
n , we also have provided bounds on the value of the eigen-value of this state

transition matrix.

6 Bounds

We begin with a lemma on the k-buffer model.

Lemma 4. B
(k)
n = kn−kk! if n > k and B

(k)
n = n! if n ≤ k.

�

6.1 Upper bound

Any k-distance permutation can be trivially obtained as an output of k + 1-
buffer. Thus a trivial upper bound for the number of k-distance permutations is

B
(k+1)
n . We provide a tighter upper bound using Bregman’s theorem as follows.

Lemma 5. For n > k, P
(k)
n ≤ ((2k + 1)!)n/(2k+1)

�

Corollary 1. limk→∞ µk ≤
2k+1

e + o(1), by the Stirling’s approximation.

6.2 Lower bound

A naive lower bound for P
(k)
n that is also constructive in yielding an encoding

scheme when the Stego players are k-distance permuters is as follows.

Lemma 6. P
(k)
n > (k + 1)!

n/(k+1)
if n > k + 1 and P

(k)
n = k! if n ≤ k + 1.

�
In the absence of a jammer the stego player could encode information as k-

distance permutation using the above lemma since it is simple to index the set of
permutations Sk+1 [10], it is also straightforward to extend this indexing scheme

to (Sk+1))
n

k+1 . Thus given a single index from {0, . . . , (k + 1)!
n/(k+1)

− 1}, one
can output the corresponding k-distance permutation.



6.3 A limiting bound on µk

Lemma 7. limk→∞ µk ≥
2k+1

e + o(1).

Proof. Define permutations, p, where |i − p(i)| mod n ≤ k as k-circular per-

mutations. Let C
(k)
n be the number of such permutations. From [1], using

Van der Warden’s theorem on permanents of doubly stochastic matrices [11],

limn→∞(C
(k)
n )

1
n ≥ 2k+1

e .

Also, limn→∞(
P (k)

n

C
(k)
n

)
1
n = 1, hence limk→∞ µk ≥

2k+1
e .

We provide a mapping from every circular permutation to some set of linear
permutations. Consider any circularly permuted, k-distance permutations p =
(p1, . . . , pn). Let there be y elements in p1, . . . , pk that are from the set {n− k +
1, n−k+2, . . . , n} and x elements in pn−k+1, . . . , pn from the set {1, . . . , k}. These
elements make this circular permutation not a linear order permutation. Move
the elements in p1, . . . , pk which belong to {n−k+1, n−k+2, . . . , n}, to the end
of the permutation in that order. Similarly move the elements in pn−k+1, . . . , pn

from the set {1, . . . , k} to the front of the permutation in that order. It is easy
to see that we have moved each object only closer to its initial position and thus
the property that it is a k-distance permutation is satisfied. The total number
of such circular permutations which can map to a linear permutation is seen
to be

∑

x,s
kPx

kPs ≤ (k!e)2. Since this is a constant factor independent of n,

limn→∞(
P (k)

n

C
(k)
n

)
1
n = ((e(k)!)2)

1
n = 1, and hence the theorem follows.

Theorem 2. limLimk−−>∞
µk

2k+1
e

= 1

Proof. Follows from lemma 7, lemma 1

7 Encoding and Decoding Schemes

In this section, we provide error correcting codes for different stego sender and
jammer powers. For each of the models defined in 3 we provide error correcting
codes and bounds when possible.

7.1 Error Free Channel

We first consider the case where the channel is error-free. We provide codes,
encoding and decoding algorithms. The maximum information capacity of the
channel is just the logarithm of the number of different symbols that can be
transmitted across in the absence of any error. Thus we would like to aim for
encoding schemes where given an index between 0 and the maximum possible
number of different symbols, we want the encoder the output a symbol.



Buffer bounded permuters An algorithm to encode any index between 0 and

B
(k)
n into a k-buffer permutation is as follows.

Encode any 0 ≤ x < B
(k)
n into a k-buffer permutation using n elements

1: while n > 1 do

2: Fill the k-buffer with as many elements from the input as possible (min(n, k)).
3: Sort the k-buffer.
4: for i = 1 to k do

5: if x < iB
(k)
n−1 then

6: Output the i-th element of the sorted buffer.

7: x← x− (i− 1)B
(k)
n−1

8: n← n− 1
9: break

10: end if

11: end for

12: end while

13: Output the last packet left. {n = 1 here.}

The above algorithm is a direct modification of the counting procedure 4. The
decoding procedure is to reconstruct the entire encoding algorithm’s working by
looking at the values of the output symbol one after another.

Buffer bounded stack permuters Consider a steganographer who is k-buffer
bounded stack permuter. This is typically the ideal model for a high-speed mem-
ory restricted device. Stacks are immensely fast to implement on hardware and
thus provide great practical advantage. The number of permutations achievable
by a k-buffer stack permuter is a generalization of the n-th Catalan number.
The n-th Catalan number Cn is the number of well bracketed expressions of
say, ′(′ and ′)′, of length 2n and also the number of different possible output per-
mutation of an n-buffer (or when k > n) [12]. A generalization of the Catalan
number is kCn which counts the number of bracketed expressions of maximum
depth k, or in other words, the number of permutations output by a k-buffer
stack permuter.

A recurrence for the generalized Catalan number is

kCn =

n−1
∑

i=0

k−1Ci · kCn−1−i

The recurrence can be used to construct an index/encoding for the k-buffer
stack permuter as follows. Note that a table of values, kCn can be constructed
in time O(n2k) using a dynamic programming approach. Assume that the val-
ues are available tabulated. We constructed a well-balanced bracketing of length
2n with maximum depth k. Clearly this can be translated into k-buffer stack
permutation by interpreting the opening braces, ′(′ as a push into the buffer and
the closing brace ′)′ as a pop from the buffer. Consider the following recursive
algorithm,



Given 0 ≤ x < kCn, output a well-bracketed expression of length 2n
and maximum depth k

Encode(n, k, x)

1: sum ← 0
2: if n equals 0 then

3: return { Output the NULL string (nothing)}
4: end if

5: if k equals 1. then

6: Output n pairs ().
7: end if

8: for i = 0 to n− 1 do

9: if x < sum +k−1Ci · kCn−1−i then

10: x← x− sum
11: y = x÷ k−1Ci {The floor function}
12: z = x mod k−1Ci

13: Output ′(′

14: Encode(i, k-1, z)
15: Output ′)′

16: Encode(n-1-i, k, y)
17: return

18: else

19: sum ← sum +k−1Ci · kCn−1−i

20: end if

21: end for

The above algorithm is just an implementation of two ideas. First, similar to
the general k-buffer permutations, we use the recurrence relation to try and en-
code. Second, if X , Y are two sets, then to output an element of X×Y given any
integer 0 ≤ z < |X ||Y |, the easiest way is to output the (z÷|Y |)-th element from
X and (z mod |Y |)-th element from Y . Using this fact, we have constructed an
algorithm to encode into the set of all k-buffer stack permutations. A decoder
can again simulate the actions of the encoder as it can simulate the k-buffer
stack, and get a well balanced parenthesis expression and invert it to get the
corresponding index according to the above algorithm.

Distance bounded permuters Similar to the idea for buffer bounded per-
muters, the outputs of a 1-distance permuter can easily be indexed [13]. How-
ever the problem is no longer trivial when considering values of k ≥ 2. One way
around is to convert the proof 6.2 into an encoding scheme in a straight forward
manner using the fact that permutations can be indexed. This technique how-
ever results in under utilization of the channel capacity. More precisely, since we
have an upper bound on the rate of the channel as log ( 2k+1

e ), using this simple

scheme, we achieve a rate of log((k+1)!
n

k+1 )
n ' log (k+1

e ), asymptotically reaching
the best bound.



7.2 Channel with Adversarial errors

In this section we consider channels with error or a jammer who tries to disrupt
the stego communication. Under different models of jammer and steganographer
capabilities, we discuss the possibility of error free communication and develop
codes.

Buffer bounded permuters k-buffer permutations are not reversible, and so
it is not obvious as to whether stego players do need more “power” than the
jammer. We show below that indeed the stego players do need more power.

Theorem 3. Let p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) be any two permu-
tations obtained from the output of a k-buffer with input e. Then there exists
another permutation r = (r1, r2, . . . , rn) such that r can be obtained as the out-
put when p and q are passed through two separate k-buffers.

Proof. Consider the following figure which is self explanatory. Without loss of

generality, assume that both the buffers are full. If not one could always move
the packets in from the input stream as long as both the buffers are filled. We
prove the theorem using mathematical induction. Let the number of packets be
n. We prove inductively on n as follows.

1. Base case. True for n < 2k. Clear true for n <= k.
2. Inductive case 1 Consider the theorem true for n−1 ≥ k and n−1 < 2k−1.

Assume that A2 and B2 are both filled. If not, we can move elements into
them from A1 and B1. |A2 ∪ B2| = n = |A2| + |B2| - |A2 ∩ B2|.
n = k +k−|A2∩B2|. Since n < 2k, there is at least one element in A2 ∩B2,



which can be output. Renumbering the packets now from 1 to n− 1, gives a
proof by the inductive hypothesis for n− 1 elements.

3. Inductive case 2 From case 1, the theorem is true up till n = 2k − 1. If
n ≥ 2k, assume that all the buffers are filled. The last element to be filled
was filled into A1 and B1 respectively. Thus A2 ∪ B2 < 2k and hence once
again, they have an element in common. Output this element and renumber
the packets thus reducing the problem to the case of n − 1 elements. By
induction, the theorem is true for all n.

This rules out the possibility of an error-correcting code when both Stego-
Alice and the Jammer use the same “power” of the jammer. Although the zero-
error capacity for this case is 0, the mutual information rate I(X ; Y ) is non-zero
for this case.

7.3 Distance bounded permuters

Since inverse of k-distance permutations are k-distance permutations, we cannot
transfer any information (in the adversarial model) when the sender is only as
much capable as the jammer. Hence assume that the steganographic sender can
send k+t-distance permutations and the jammer is allowed to use only k-distance
permutations as errors. In this section we assume that n, the block length and
k are sufficiently large quantities that the stirling’s approximation is valid.

Lemma 8. Sphere packing bound Note that the following definition of a dis-
tance between two permutations, p = (p1, . . . , pn), q = (q1, . . . , qn) as d(a, b) =
max(|i− j||pi = qj , 0 ≤ i < n, 0 ≤ j < n), is metric space on the set of all per-
mutations. There are various definitions of metric spaces on permutation [14].
Our definition is motivated by the fact that k-distance permutations are nothing
but those permutations p, with d(p, e) ≤ k.

Suppose the jammer is a k-distance permuter and the sender is a k + t-
distance permuter, t > 0. Then, if the sender chooses a set of codewords C, from
each code word, draw spherical balls of radius k. These balls must be disjoint. If
each ball of radius k, contains Nk elements of this space, Hence we have,

|C|Nk ≤ Nk+t

log (|C|) + log Nk ≤ log Nk+t

log (|C|) ≤ logNk+t − log Nk

Note that Nk is nothing but the number of different k distance permutations,
which asymptotically tends to ( 2k+1

e )n. Using this, we get

logNk+t − log Nk ≤ n log
2k + 2t + 1

2k + 1



Consider the following lower bound which is also converted into an encoding
scheme.

Lemma 9. For each value of r = x(k + t)/(2k)y, r > 1, consider for any per-
mutation p = (p1, . . . , pn), the elements (pi, pi+2k, . . .), i < 2k, the relative or-
der of none of these elements can be changed by a k-distance permuter since
each element is at least 2k away from the rest. Suppose thus, one chooses to
permute only these elements (pi, pi+2k, . . . using any r-distance permutation on
them (note that the sender is capable of doing this from the defn. of r), then the
maximum amount of information transfer possible is atleast equal to, when r is
large, log (( 2r+1

e )
n

2k )2k. (The block length of each r distance subsequence is n
2k

and there are 2k such subsequences.

log (|C|) ≥ n log (
2r + 1

e
)

log (|C|) ≥ n log (
(2(k + t)/2k + 1)

e
)

We thus acheive a rate asymptotically equal to the upper bound even in the
presence of error. To convert this result into a practical coding scheme, one needs
an efficient encoding coding scheme for the case of r-distance permutations in
the absence of error.

We now prove that on the minimum block length required to transfer in-
formation across a k-distance jammer is 2k + 1. The code length requirement
is irrespective of the sender’s power. Thus even if the sender could send any
permutation involving 2k elements, the adversary would still be able to perform
k-distance operation on the two permutations to coalesce them to the same per-
mutation. We infer that if at all any information transfer has to be made by the
sender then n ≥ 2k + 1.

Lemma 10. Any permutation in S2k is reachable from the identity permutation
using at the most two k-distance operations.

Proof. From any permutation π ∈ S2k, we can sort the first k elements and
the second k elements parallelly in one k-distance move. Any element x ≤ k
in the second block will be within k distance from its position in the identity
permutation. Similarly, any element x > k in the first block will be within
k distance from its position in the identity permutation. Another k-distance
operation will take this permutation to the identity permutation. Since the k-
distance operations are reversible, the lemma follows.

We now focus on providing error correcting codes. When there is no adver-
sary, a sender with 1-distance is capable of Fn+1 number of permutations of
Sn [1]. We briefly explain a code that achieves the limit by describing a func-
tion from {0, 1, . . . Fn+1 − 1} to the set of all 1-distance permutations on n ele-
ments. Any number in the domain can be encoded in the Fibonacci numbering



system [15], represented by a binary tuple of length n − 1 with no consecu-
tive ones. The required permutation is obtained by composing the permutations
πi = (i, i + 1) for every 1 in the ith position. We note that since no two con-
secutive binary digits in the tuple are 1, the πis do not overlap and thus can be
composed in any order.

Next, we show that when the sender is capable of just k +1 distance and the
channel has a k-distance jammer, with a block length of n ≥ 2k +1, we can send
Θ(n), bits of information.

If the sender is k-distance and the adversary is k− 1-distance, there are two
permutations in S2k−1 such that, the sender can permute the identity to any of
them using only k-distance but the adversary cannot reduce both to the same
permutation using k − 1 distance.

Lemma 11. The permutation (k + 1, . . . 2k − 1, k, 1, . . . k − 1) and the identity
permutation (1, . . . 2k − 1) cannot be both reduced to the same permutation by a
k − 1 distance operation.

Proof. Suppose that there exists such a permutation π. Then π(1) = k, as only k
can reach the first position from both the above permutations. Similarly π(2k−
1) = k. Hence, π is no longer a permutation.

Further, in the identity permutation, (1 . . . 2k − 1), only the first k elements
need to be fixed. Thus for a block of size n, we can either fix the first k elements
and encode the rest n − k elements or apply the permutation (k + 1, . . . 2k −
1, k, 1, . . . k − 1) and recursively encode the rest n − 2k + 1 elements. Thus we
obtain the recurrence Pn = Pn−k +Pn−2k+1 for the size of the code of block size
n.

The decoding strategy involves looking at the first element of the encoded
permutation p1 = π(1). If p1 < k, we can deduce that the first k elements
were fixed and thus scratch out all numbers from 1 . . . k, substitute x− k for x
and recursively decode the resultant string. If p1 > k, we can deduce that the
first 2k− 1 elements were permuted and hence scratch them out and, substitute
x− 2k +1 for x and add Pn−k to the result of recursively decoding the resultant
string.

8 Practical Results on TCP

Any communication protocol which requires packet sequence numbers can be
used for steganography using our algorithms. We consider the TCP for our sim-
ulation because it is the most prevalent protocol in the Internet today. Also it is
interesting to look at the interplay between TCP and our algorithms especially
considering the fact that excessive packet reordering affects TCP congestion con-
trol adversely. For our purposes we use the 32-bit Sequence Number field in the
TCP packet header. Alternatively one could also use the Sequence Number [5]
field of the Authentication Header and Encapsulating Security Payload in the
IPSec.



We performed simulations using ns-2.28 Network Simulator to study the
behaviour of TCP under packet re-orderings. Our simulations are based on the
TCP Tahoe variant. We used the BRITE topology generator for generating a
50 node 2-level hierarchical network topology which was created based on the
Waxman’s probability model. In this model, the probability of interconnecting
two nodes u, v is given by

P (u, v) = αe−d/βL

where 0 < α, β ≤ 1, d is the Euclidean distance from node u to v, and L is the
maximum distance between any two nodes.

We chose α = 0.15,β = 0.2. From the resulting topology, 25 pairs of nodes
were chosen and TCP flows were started by choosing one node as a sink and
the other as the source. An ftp agent was started on each of the TCP sources.
Keeping this as the minimum network traffic, we performed 200 simulations
choosing a pair of nodes si and di for i ∈ {1, 2, 3...200}, each time with si as the
source node and di as the destination node. The experiment was conducted for
200 such pairs of nodes and the ratio of new throughput to the actual channel
throughput (without reordering) was computed for each value of k ∈ {1, 2, 3}.

From the histograms thus obtained, we observe that the throughput obtained
using k-distance permutations is greater than 91% for more than 68%,60% and
30% of the source-destination pairs, for k = 1,2 and 3 respectively. The cor-
responding average stego-information rates are 8.21bps, 11.42bps and 3.54bps.
Even here, we observe that a 2 − distance scheme performs better than the
1−distance in terms of stego-information rate, though the ratio tr gets affected.
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9 Conclusion

We formalize various models for packet re-ordering channels. We analyze the
channel as information-theoretic game and prove the existence of Nash equi-
librium. Motivated by ordered channels, eg. TCP, we introduce a new distance
metric on permutations and provide error correcting codes in this metric and
prove combinatorial bounds. Our codes asymptotically reach the upper bound.
We simulated in detail the effects of our covert channel in various topologies and
found a good correlation between the theoretical and simulated results. Being a
preliminary work, this paper opens up a lot of research in this direction.
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