
KEEPER: Knowledge Engineering Environment for
Provenance and Entity Registration

A reference implementation

Kenneth Baclawski – Maximo Gurmendez

Abstract:

This document describes a reference implementation of the KEEPER system, which acts as a model
repository and gate keeping web service. This system provides a way register items such as models,
documents and specifications in a flexible manner, by allowing each registration authority to work
with its own set of procedures. The first part of this paper outlines the use cases, and basic concepts
involved in the system. The second part specifies the design and implementation of the system.

Motivation
Many registration authorities require a formal procedure to handle models or
documents before they become a standard. In order for a model to become an official
standard (according to a registration authority), the following aspects need to be
considered:

• The procedures that specify the process by which an item becomes a standard.
• A repository that stores the latest version of the item serving as a single point

of entry for every relevant actor to query the items.
• The roles that the actors play in the accreditation process.
• The provenance of an item registered on the system.
• The accessibility of models in the repository.

The KEEPER system allows any organization to become a registration authority
upon the authorization of an accreditor (a singular entity that makes this decision).
Representatives of a registration authority called registrars, stewards and submitters
are able to flexibly define and follow though the different procedures that will
regulate the process of an item from its inception to the moment it becomes a
standard. KEEPER is based on the ISO 11179, Metadata Repository specification
[MDR].

Main Concepts
As suggested in the MDR specification, each actor in the KEEPER system is either a
registrar, steward, submitter or read only user. Table 1 shows the role each actor
plays in the system.

Actor Role Description
Registrar Directly represents a registration

authority. Makes higher level decisions
regarding the items in the registry.

Steward Represents a registration authority
through a particular registrar. Makes the
lower level decisions regarding
accreditation process.

Submitter Is able to submit items to the registry as
allowed by a steward.

Read Only User Allows to access the models in the
system in a read only manner.

As it can be appreciated in the table above, users form a hierarchy from the registrar
to the read only user. Any user has a single “supervisor” which is the user that
allowed the user into the system. For example when a registrar X allows a steward Y
into the system, the supervisor of X is Y. In this manner each user responds to the
user that allowed it into the system

The other main concept in the system is the actual item being subject to the
registration process. We call this a “kept item” or an “administered item”. Any kept
item that is submitted to the registry goes through the registration process as required
for each registration authority. If there is no prescribed process, then the kept item
goes through a default process.

Whenever an item is submitted to the system by a submitter, a process may request
the stewards or registrars to take action regarding its accreditation. The actual
registrars or stewards that will make these decisions will be the supervisors of the
submitter as established by the hierarchy.

Actors can be created in the system in two different ways: by direct creation or by
request. For example a new submitter may be created directly be the steward or a
submitter can submit the request to a particular steward and this will decide to
approve it or not.

Use Cases
Use cases were defined by Prof. Baclawski’s Software Engineering students,
organized into different categories, and then formalized as an instance of Use Case
Description Ontology [KB2010]. The following list shows the main use cases that
the KEEPER system supports:

• Accredit Registration Authority
• Steward Registration
• Submitter Registration
• Read Only User Registration

• Upload Process Definition (or procedures)
• Register an Item
• Query an Item
• Update an Item
• Complete information as required by a process definition
• Update contact information
• Query process definitions
• Query contact information

A detailed description of these use cases can be found in [KBMG2001]. For
illustrative purposes, consider the following scenario:

1. Jack, a registrar, uploads a procedure that says: “stewards need to validate
models before they becomes a standard”

2. Submitter John uploads new model (the initial status is “Pending”).
3. The workflow engine notifies the steward Paul about the new model

(according to process definition)
4. Paul, the steward, logs on to the system, and approves the model.
5. The workflow engine modifies the status of the model, now being “standard”.

Notice in the above scenario, how the system acts as a coordinator between the
different actors towards the standardization of the model, and how the actual
procedures are treated as data by system, modifying its behavior.

Component Design
The system includes 4 main components as it can be seen in Figures 1 and 2.

Figure 1

Figure 2

As it can be appreciated on these figures, the AdministrationService deals with the
registration of an item in the system, while the WorkflowService deals with the
different processes that actors undergo in the system. The AccreditorService refers to
the creation of users in the system. These components interact within each other. For
example, the WorkflowService must use the AcreditorService whenever it needs to
create a user. The detailed descriptions of each of the methods are beyond the
purpose of this document and the reader should consult the javadoc for these classes.
These interfaces were implemented as classes that include both JEE annotations as

WorkflowService
<<interface>>

createProcessDefinition(process : MdrProcess) : String
createProcessInstance(process : MdrProcess,keptItemId : long,submitter : String,steward : String,registrar : String) : void
getUserForms() : TaskInstanceList
submitFormTask(keptItemId : long,varsValues : List<VariableValue>) : void
getProcedures(stewardOrRegistrar : String) : List<Procedure>
createProcedure(procedure : Procedure) : Long
approveProcedure(procedureId : Long) : void
rejectProcedure(procedureId : Long) : void
getLatestActiveProcedure(stewardOrRegistrar : String) : Procedure
defaultProcess() : MdrProcess
requestAccreditRegistrar(registrar : Registrar) : String
requestAccreditActor(newActor : Contact,supervisorUsername : String) : String
inquireActorRegistrationStatus(ticket : String) : String
getPendingActorRegistrationDecisions() : List<String>
getRequestDetails(ticket : String) : String
approveActorRegistration(ticket : String) : void
denyActorRegistration(ticket : String) : void
createApprovalProcessDefinition() : void
denyActorRequest(ticket : String) : void
approveActorRequest(ticket : String) : void

NotificationService
<<interface>>

notifyMessage(username : String,text : String) : void
notifyMessage(username : String,text : String,objects : List<Object>) : void
notifyByEmail(user : String,email : String,text : String) : void

BootstrapService
<<interface>>

createDefaultAcreditor() : void
createSystemUser() : void

AdministrationService
<<interface>>

createKeptItemHeader(header : KeptItemHeader) : Long
register(admItem : KeptItem) : long
registerAndUpload(admItem : KeptItem,model : InputStream) : long
getModel(keptItemId : Long,model : OutputStream) : void
getKeptItem(id : long) : KeptItem
changeStatus(admItemIdStr : String,newStatus : String) : void
changeVisibility(admItemIdStr : String,newVisibility : String) : void

AcreditorService
<<interface>>

createRegistrar(registrar : Registrar,tempPassword : String) : void
createSteward(contact : Steward,tempPassword : String) : void
createSubmitter(contact : Submitter,tempPassword : String) : void
createReadOnlyUser(contact : User,tempPassword : String) : void
updatePassword(newPassword : String) : void
authenticate(username : String,password : String) : Contact
getSupervisor(username : String) : Contact
getContactInfo(username : String) : Contact
updatePasswordForUser(user : String,newPassword : String) : void
updateContactInfo(username : String,contactInfo : String,contactName : String,contactTitle : String,email : String) : void

well as Web Services annotations. This enables the system to expose the interfaces
both as EJBs and as a WSDL. Figure 3 shows the main classes that represent the
users, kept items and procedures (process definitions).

Figure 3

Note in Figure 3, that the Procedure class references an MDRProcess attribute. This
attribute specifies the process that an item must undergo upon its registration. For
example, an item may require the approval of both the steward and the registrar in
order to become a standard. This results in a process definition that starts with the
registration of the item and then the steward and registrar take turns in reviewing the
item and deciding its validity. These users may need to input some information for
the process to make a decision. This procedure is modeled according to the schema
on Figure 4 that consists of states connected by transitions. These states can be tasks
that users need to complete (such as the FormTask) or processes executed
automatically by the system upon its execution (such as ChangeVisibilityState).
Figure 5 shows a sample instantiation of this model (as an xml serialization, which is
easier to read). Note how the process example includes the different states,
transitions, assignees and conditions for the accreditation of the item.

Accreditor

Contact

contact_information : String
contact_name : String
contact_title : String
username : String
password : String
creator : Contact
role : KeeperRole
email : String

User

Submitter

Steward

RegistrationAuthorityIdentifier

OPI_source : String
organization_part_identifier : String
organization_identifier : String
international_code_designator : String

RegistrationAuthority

registration_authority_identifier : RegistrationAuthorityIdentifier
documentation_language_identifier : List<LanguageIdentification>

Registrar

registrationAuthority : RegistrationAuthority

Procedure

id : long
approved : boolean
descrpition : String
process : MdrProcess
owner : Steward

Organization

organization_mail_address : String
organization_name : String

KeptItemHeader

id : Long
origin : String
description : String

KeptItem

id : Long
version : String
status : String
visibility : String
uri : String
submitter : Contact
modificationDate : Date
header : KeptItemHeader
changeDescription : String

1

1
0..*
1

Figure 4

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process>
 <name>process_requires_registrar_and_steward_aproval</name>
 <startState>Steward Approval</startState>
 <states xsi:type="formTask" >
 <name>Steward Approval</name>
 <instructions>
 Dear Steward, Please approve this model by setting approveSteward=y.
 </instructions>
 <transitions>
 <toState>Registrar Approval</toState>
 <transitionName>toRegistrarAproval</transitionName>
 </transitions>
 <asignee>steward</asignee>
 <fields>
 <length>10</length>
 <name>approveSteward</name>
 <type>java.lang.String</type>
 </fields>
 </states>

 <states xsi:type="formTask"
 <name>Registrar Approval</name>
 <instructions>
 Dear Registrar, Please approve this model by setting approveRegistrar=y.
 </instructions>
 <transitions>
 <toState>Decide</toState>
 <transitionName>toDecision</transitionName>
 </transitions>
 <asignee>registrar</asignee>
 <fields>
 <length>10</length>
 <name>approveRegistrar</name>
 <type>java.lang.String</type>
 </fields>
 </states>

Transition

id : long
transitionName : String
toState : String

ModifyStatusState

newStatus : String

ScriptTask

script : String

State
id : long
name : String
transitions : List<Transition>

Field

id : long
type : String
name : String
defaultValue : String
length : int

FormTask

asignee : String
instructions : String
fields : List<Field>

MdrProcess

name : String
startState : String
states : List<State>

ChangeVisibilityState

newVisibility : String

ConditionTransition

condition : String

DecisionState EndState

1 1..*

1..*

1

1 0..*

 <states xsi:type="decisionState" >
 <name>Decide</name>
 <transitions xsi:type="conditionTransition">
 <toState>endState</toState>
 <transitionName>toEnd</transitionName>
 <condition>

#{approveRegistrar!='y' || approveRegistrar!='y'}
</condition>

 </transitions>
 <transitions xsi:type="conditionTransition">
 <toState>mod</toState>
 <transitionName>toMod</transitionName>
 <condition>

#{approveRegistrar=='y' && approveSteward=='y'}
</condition>

 </transitions>
 </states>
 <states xsi:type="modifyStatusState" >
 <name>mod</name>
 <transitions>
 <toState>endState</toState>
 <transitionName>toEnd</transitionName>
 </transitions>
 <newStatus>standard</newStatus>
 </states>
 <states xsi:type="endState">
 <name>endState</name>
 </states>
</process>

Figure 5

Registrars and stewards are able to upload procedures, such as that on Figure 5.
Whenever a new item is submitted, the supervisor of the submitter (a steward) is
used to determine which procedure to use (items always undergo the latest procedure
uploaded by either a steward or a registrar). Registrars need to approve procedures
of stewards. Suppose a steward has in place the procedure of Figure 5. Then the
following set of calls (Figure 6) shows how the submitter would submit the item and
the item would be checked by the steward and registrar to change the status from
“pending” to “standard”.

The Submitter submits the item:

// create a sample kept item instance
admItem = createKeptItem();

// initial status should be pending
assertEquals("pending",admItem.getStatus());

// register the item through the administration service
long idItem = adminService.register(admItem);

The Steward approves the item:

// checks its tasks
List<TaskInstance> tasks = workflowService.getUserForms().getTaskInstances();
assertEquals(tasks.size(), 1); // there should only be one pending task for this user
TaskInstance task = tasks.get(0);
List<VariableValue> vars = new ArrayList<VariableValue>();
vars.add(new VariableValue("approveSteward", "y"));
workflowService.submitFormTask(task.getAdmItem(), vars);

// the item should still be pending as there is no change
admItem = adminService.getKeptItem(idItem);
assertEquals("pending",admItem.getStatus());

The Registrar approves the item:

tasks = workflowService.getUserForms().getTaskInstances();
assertEquals(tasks.size(), 1); // there should only be one pending task for this user
task = tasks.get(0);
vars = new ArrayList<VariableValue>();
vars.add(new VariableValue("approveRegistrar", "y"));
workflowService.submitFormTask(task.getAdmItem(), vars);

// the item should have become a standard
admItem = adminService.getKeptItem(idItem);
assertEquals("standard",admItem.getStatus());

Figure 6

Many more examples such like those in Figure 6 can be found on the test case source
files.

Implementation Details
The different interfaces were implemented as Enterprise Java Beans 3.0 by adding
suitable annotations. Additional annotations were required to expose the methods as
web services. The EJB annotations allow the beans to be deployed in any suitable
JEE container, such as JBoss [JB] or Glassfish [GF]. However, this reference
implementation uses the OpenEjb [OEJB], for two reasons: it does not require a
container, and it contains a mechanism to automatically publish EJBs as WSDL1.1
[WSDL] compliant web services. Most methods require implicit authentication and
in most cases JEE declarative security was used. Figure 7 shows a fragment of the
Administration bean implementation. Note the @Stateless and @WebService
annotations, the injection of the PersistenceContext used to persist and load objects
from the database, and the SessionContext, which is used for programmatic security.
The register method also uses declarative security by specifying the roles allowed for
invoking the method. JEE beans do not need to know about the actual security
protocol (secure HTTP, SSL, basic authentication, etc). This is potentially configured
in the container without any need to modify the application source code.

@Stateless(name="Administration")
@WebService(portName = "AdministrationPort",

serviceName = "AdministrationWebService",
 targetNamespace = "http://mdr.org/wsdl")
public class AdministrationServiceImpl implements AdministrationService {

 @PersistenceContext(unitName="mdr")
 EntityManager entityManager;

 @Resource
 SessionContext context;

 @Override @RolesAllowed({"submitter","registrar","steward"})
 public long register(KeptItem admItem) throws RepositoryException {
 ...
 }
Figure 7

The model classes, such as those in Figures 3 and 4, are persisted in a database by
annotating these classes with JPA annotations [JPA].

The Workflow bean uses the well-known workflow engine “Java Process
Management Suite” [JBPM] to manage the different workflows required by the
registration processes. JBMP allows one to create and instantiate process definitions.
However, the power of JBMP exceeds that of KEEPER, reason for which a Façade
of the process definition schema was created within KEEPER (this is, in fact, the
class diagram on Figure 4). In the background, KEEPER transforms this simplified
model into the schema required by JBPM.

Conclusions
As of this date, the KEEPER system is only a reference implementation and works
mainly as a proof-of-concept thus is not fully ready for a production environment.
More extensive testing needs to be performed, both for functional requirements and
stress checks. Nevertheless its design is scalable, flexible, reusable and can be quickly
deployed in a container.

One main area for improvement is its interface with other backend repository
systems, capable of storing and versioning large models. Right now, the system
stores all models locally or remotely through a URI. Additionally, KEEPER does
not provide any kind of user interface. Applications that use KEEPER may require
additional features, such as model browsing capabilities. Currently, KEEPER works
as a single centralized repository. More work is required to provide interfaces for
federation.

Regardless of its limitations KEEPER serves as a starting point to develop a more
complete and integrated service, as requirements go through a process of refinement.

References
[MDR] International Standards Organization, Metadata Repository 11179.
http://metadata-stds.org/11179/

[KB2010] Baclawski, K. Use Case Description Ontology,
http://www.ccs.neu.edu/home/kenb/ontologies/

[KBMG2010] Baclawski,Gurmendez 2010, Ontolog Forum, Use Cases for the OOR.

http://www.ccs.neu.edu/home/kenb/ontologies/oor-usecase.xml

[JEE] Java Enterprise Edition Technology, Oracle,
http://java.sun.com/javaee/technologies/javaee5.jsp

[WSDL] Web Services Description Language (WSDL) 1.1, 2001,
http://www.w3.org/TR/wsdl

[EJB3] Enterprise Java Beans v3.0, Oracle, http://java.sun.com/products/ejb/

[OEJB] OpenEjb, Apache Foundation, http://openejb.apache.org/3.0/index.html

[JB] JBoss, Reg Hat, http://www.jboss.com/products/platforms/application/

[GF] Glassfish, Java Net, https://glassfish.dev.java.net/

[JPA] Java Persistence API, Oracle,
http://java.sun.com/developer/technicalArticles/J2EE/jpa/

[JBPM] Java Business Process Management Suite, Red Hat,
http://www.jboss.org/jbpm/

