Emerging Semantic Web Commercialization Opportunities

Ken Baclawski
Northeastern University
The Semantic Web: It's not just for searching anymore!

- The web is a versatile infrastructure for basic data availability.
- The main emphasis was on human-mediated interactions via web browsers but new uses are rapidly increasing.
- These new uses can benefit from the ontology based techniques and tools of the Semantic Web.
Identifying an opportunity

- Domain knowledge
 - Technical background
 - Community organization
- Identify urgent needs
- Understand the trends
 - Short-term evolution
 - Possible paradigm shifts
- Recognize an opportunity
Outline

- Interoperability and integration of legacy systems
- Web services and composite applications
- Records management
- Uncertain, incomplete and conflicting information
- Decision and policy making
- Collaboration tools
- Recent developments
Interoperability of legacy systems

- Legacy systems and databases are characterized by:
 - A large variety of formats
 - High degree of complexity
 - Many technologies of various ages

- Need to interoperate and integrate

- Trend is toward encoding more semantics in the data representation itself

- Opportunity to develop products and services for interoperability and integration.
Web services and composite applications

- The web is being used not only for retrieval of data but also for using tools and services.
- The need is to find the required services, and to get them to communicate with each other.
- The trend is to use semantic annotation to describe/advertise services, to express requests, and to represent the responses, but very unevenly.
- The opportunity is to build agile workflow management tools that can deal with the differing levels of semantic annotation.
Simple Semantic Web Architecture and Protocol (SSWAP)

• SSWAP is a protocol for semantic web services. See http://sswap.info

• Unlike other protocols, SSWAP uses a single format and protocol for description, registration, discovery and invocation.

• SSWAP was developed using OWL as its basis, and OWL inference is fundamental to its operation.
Solving the electronic health record problem will add little to the existing paper-based records if the systems are not interoperable.

Simply automating paper-based processes has relatively little impact on productivity.

Gains in efficiency and improved patient care require a change in the overall process of medical care delivery.
Records Opportunity

- Develop event ontologies that:
 - Support interoperability
 - Are independent of workflows and processes
 - Are compatible with existing processes

- Develop products that:
 - Assist organizations to evolve toward electronic data management
 - Serve the interests of many stakeholders
Reasoning with uncertainty

- The Semantic Web is an extension of the current web in which information is given well defined meaning… (Berners-Lee, Hendler & Lassila)
- The Semantic Web is based on formal logic for which one can only assert facts that are unambiguously certain.
- Unfortunately, there are many sources of uncertainty, such as measurements, unmodeled variables, and subjectivity.
The challenge is to develop a full-featured stochastic reasoning infrastructure, comparable to the logical reasoning infrastructure of the Semantic Web.

The *Bayesian Web* is a proposal to add reasoning about uncertainty to the Semantic Web.
Bayesian Web facilities

- Common interchange format
- Ability to refer to common variables
- Context specification
- Authentication and trust
- Open hierarchy of probability distribution types
- Component based construction of BNs
- BN inference engines
- Meta-analysis services
Decision Analysis

- Important part of policy and development processes.
- Formal annotation of decisions and their analyses can have many benefits.
 - Integration with the process
 - Recognition of need to reconsider when circumstances evolve
 - Decisions can be delayed
 - Decisions can be reused for other situations
- An annotated decision is called a rationale
Rationale Ontology

- Rationale
- Evidence
- Choice
- Artifact
- Decision Analysis
- Influence Diagram
- Decision Tree
- Decision Table
- Evidence*
- Alternative*
- Decision
- Issue
- IsA
- Analysis
- Criterion*
- Reasoning
Collaboration tools

- People need to collaborate to solve problems.
- The need is to support rapid team formation and problem solving even when the people are geographically dispersed.
- The trend is to use wikis and blogs rather than face-to-face meetings.
- The opportunity is to develop tools that facilitate collaboration over the web without losing the advantages of face-to-face meetings that make them desirable.
Wikis

- Wikis are a popular tool for collaboration.
- They have been used for rapid team formation and collaboration.
- They have a number of disadvantages:
 - Mix of natural language and untyped links.
 - Focus is on simplicity and presentation, not structure and semantics.
Semantic Wikis

- A wiki with an underlying knowledge model (ontology) is a *semantic wiki*.
- Data in the wiki is annotated with meta-data in RDF or OWL.
- Links are typed and annotated, also in RDF or OWL.
- Machines can infer new facts from the explicitly asserted facts.
- Search and retrieval are facilitated by the semantics.
- Interoperability is greatly improved.
Recent Developments

- **RDF storage provided by database vendors**
 - Oracle has both a product and an active Database Semantic Technologies Group
 - Many RDF stores are layered on a general purpose RDBMS: Jena, Sesame, RDQL, ...

- **Non-relational RDF storage products**
 - Siderean, Tucana, OWLIM, Allegro Graph, ...
Open Ontology Repository (OOR)

• Recent initiative of the Ontolog Forum
• The purpose of the initiative is to promote the global use and sharing of ontologies by:
 – 1. establishing a hosted registry-repository;
 – 2. enabling and facilitating open, federated, collaborative ontology repositories;
 – 3. establishing best practices for expressing interoperable ontology and taxonomy work in registry-repositories.