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Abstract

Combining independent observations is commonly performed by using
a least squares technique, as it is thought that this is necessary to achieve
an optimal solution. The purpose of this article is to show that this is not
always the case. The particular example combines observations that are
exponentially distributed. One application of this technique is to determine
the time of a singular event which initiated a set of decay processes having
known half-lives. The time of the singular event decays backwards in time
with an exponential distribution. We find that the accuracy of this method is
significantly better than the accuracy of a least squares technique.

1 Introduction
The combination (fusion) of independent observations is a fundamental mecha-
nism of probability theory that is important in many domains, especially in sensor
networks. For an introduction to information combination see [1]. Since the early
nineteenth century when the method of least squares was developed by Gauss [6],
it has been a common practice to use a least squares technique to determine the
combination of a set of independent observations. While such a method is well-
justified and optimal if observations are normally distributed, it is not optimal for
all distributions. To illustrate this phenomenon, we consider the case of a set of
independent observations that are exponentially distributed, and we show that the
additional information about the distributions can have a significant impact on
accuracy.

The Gauss-Markov theorem states that in a linear stochastic model whose er-
rors have expectation zero, equal variances and no correlations, the best linear
unbiased estimators of the coefficients of the model are the least-squares estima-
tors. [7, 8] This result makes no assumptions about the distributions beyond their
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means and variances, and so it can only yield simple estimation values, not distri-
butions. When one knows the distributions of the errors, one can not only make
an estimate, one can also determine a probability distribution. In other words,
both the inputs and the outputs of the information combination process are prob-
ability distributions. The normal distribution is the best known example of this
process. The distribution of the combination of a set of independent normally dis-
tributed observations is also normally distributed. Moreover, this result does not
depend on any other assumptions or results, such as a least squares technique or
Bayes’ Law [2, 9]. The fact that the normal distribution is closed under combina-
tion makes it an especially useful distribution for combining independent obser-
vations. In this article, it is shown that the class of exponential distributions is also
closed under combination. Whether there are other classes of distributions have
this property is an interesting question.

Time reversal is a useful technique for audio and radio signaling and detection
applications.[3, 4, 5] In this technique, a received signal is recorded, reversed, and
sent back to the original source. The time reversal theorem in this paper differs in
its concern with stochastic phenomena in which the time of an event (or more pre-
cisely knowledge of the time of an event) decays exponentially backwards in time.
The usefulness of the theorem is due to the improved accuracy of the estimation,
not the time reversal itself.

2 The Class of Exponential Distributions
An exponential distribution models the behavior of a continuous, memoryless
waiting time. In other words, if one has been waiting a period of time, then the
conditional distribution starting at the end of the period is the same as the distribu-
tion starting at the initial time. The behavior is determined by just two constants:
the starting point s and the expected duration τ > 0 after the starting point s. Let
ED(s, τ) denote the distribution in this case. If X is a random variable whose
distribution is ED(s, τ), then the probability density of X is given by:

dens(X = x) =

 0, if x < s,
1
τ e
−(x−sτ ), if x ≥ s.

The expectation of X is easily seen to be s + τ , and the variance is τ 2. The
exponential distribution models the time between independent occurrences in a
sequence that occurs at a constant rate. The rate is given by λ = 1

τ
. One can also
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regard the exponential distribution as modeling a quantity that decays at the rate
λ. When viewed in terms of a decay, one usually takes the base of the exponential
to be 2 rather than e, and the parameter analogous to the mean duration τ is the
half-life, which is commonly written t1/2. The half-life is related to the mean
duration by the formula: t1/2 = ln(2)τ . The half-life is the median duration, so
the median of the distribution is s+ t1/2.

The constraint that τ be positive is not essential, and one can easily generalize
the class of exponential distributions so that τ can be any real number. If τ = 0,
then the distribution is a discrete distribution with all probability concentrated at
s (i.e., the density is a delta function). Having the distribution ED(s, 0) means
that an observation has value s with probability 1. When τ < 0, the observation
decays in the reverse direction. The probability density of a random variable X
whose distribution is ED(s, τ) for a negative τ is given by:

dens(X = x) =


−1
τ e
−(x−sτ ), if x ≤ s,

0, if x > s.

Given a random variable X whose distribution is ED(s, τ), the random vari-
able X − s will have distribution ED(0, τ), and the mean of X − s is τ . If τ
is nonzero, then X−s

τ
has distribution ED(0, 1). As already discussed above, the

median of ED(s, τ) is s + ln(2)τ . Because this distribution is so highly asym-
metric, it is more reasonable to use the median rather than the mean when it is
necessary to reduce the distribution to an estimate consisting of a single number.

3 Information Combination of Exponential Distri-
butions

We now compute the distribution of the combination of a set of N independent
exponentially distributed random variables. The following is the general case:

Theorem 3.1 Let Xi be a set of independent random variables whose distribu-
tions areED(si, τi), for i = 1, . . . , N . Write Y for the combination of the random
variables {Xi}.

1. If τi > 0 for every i, then Y has the distributionED( maxNi=1(si), (
∑

( 1
τi

))−1).

2. If τi < 0 for every i, then Y has the distributionED( minNi=1(si), (
∑

( 1
τi

))−1).
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Proof. We first consider the case in which all the τi are positive. By the Contin-
uous Information Combination Theorem[1], the probability density of Y is given
by normalizing the product of the densities of the random variables Xi as follows:

dens(Y = y) =


0, if y < si for some i,

CΠN
i=1e

−(y−siτi
)
, if y ≥ si for all i,

where C is the normalization constant such that this formula defines a probability
density function. Now y ≥ si for all i if and only if y ≥ maxi(si). Let s =
maxi(si). The formula above may then be written as follows:

dens(Y = y) =


0, if y < s,

Ce
−
∑N
i=1 (y−siτi

)
, if y ≥ s.

The exponent in the formula above may be written as follows:

−
N∑
i=1

(
y − si
τi

)
= −

N∑
i=1

(
y

τi
− si
τi

)

= −
N∑
i=1

(
y

τi

)
+

N∑
i=1

(
si
τi

)

= −y
N∑
i=1

(
1

τi

)
+

N∑
i=1

(
si
τi

)

Let
τ =

1∑
( 1
τi

)
,

or in terms of the rate parameters, λ =
∑N
i=1 λi. Also let

D =
−s
τ

+
N∑
i=1

(
si
τi

)
.

Note that D does not depend on y. One can then write the sum above as follows:
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−
N∑
i=1

(
y − si
τi

)
=
−y
τ

+
N∑
i=1

(
si
τi

)

=
−y
τ

+
s

τ
− s

τ
+

N∑
i=1

(
si
τi

)

=
−y + s

τ
+D

The probability density when y ≥ s may then be computed as follows:

Ce
−
∑

( y−si
τi

)
= Ce

−y+s
τ

+D

= Ce−( y−s
τ

)eD

= CeDe−( y−s
τ

)

Since CeD is a constant independent of y, it follows that Y is exponentially dis-
tributed with distribution ED(s, τ). In the same way, one can also compute the
distribution of the combination when all of the τi are negative. The only differ-
ence is that the maximum of the {si} is replaced by the minimum. The result then
follows.

In the special case where all of the τi are the same, the formula simplifies to
the following:

Corollary 3.2 Let Xi be a set of independent random variables whose distribu-
tions are ED(si, τ), for i = 1, . . . , N . Write Y for the combination of the random
variables {Xi}.

1. If τ > 0, then Y has the distribution ED( maxNi=1(si),
τ
N

).

2. If τ < 0, then Y has the distribution ED( minNi=1(si),
τ
N

).

The case in which some of the τi are positive and some are negative does not
result in an exponential distribution, so it is not considered.

4 Experimental Observations
We now consider an experiment in which a particle splits into a set of N particles,
each of which subsequently decays independently. Suppose that the half-lives of
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the products are known to be {hi|1 ≤ i ≤ N} and that one can observe the time
when each of the products decays. The splitting of the original particle is called
the singular event. The problem is to determine the time when the singular event
occurred.

Theorem 4.1 If a singular event results in N independent exponential decay pro-
cesses with half lives {hi|1 ≤ i ≤ N}, then the time of the singular event decays
backwards in time from the time when the first decay product is observed, with a
half-life equal to (

∑
( 1
hi

))−1.

Proof. Let t be the time when the original particle split, and let {ti} be the times
when the product particles are observed to decay. Then the duration from t to ti
has the distributionED(t, hi/ ln(2)), and the duration from ti to t has the distribu-
tion ED(ti,−hi/ ln(2)). The latter set of distributions are all observing the same
time t, and they are assumed to be independent, so the Information Combination
Theorem applies. By Theorem 3.1, it follows that the distribution of the time t is

ED
(

N
min
i=1

(ti),
1∑

( ln(2)
hi

)

)
= ED

(
N

min
i=1

(ti),
1∑
( 1
hi

)
/ ln(2)

)
.

The result then follows.
In the special case where all of the half lives are the same, the formula simpli-

fies as follows:

Corollary 4.2 If a singular event results in N independent identically distributed
exponential decay processes with half-life t1/2, then the time of the singular event
decays backwards in time from the time when the first decay product is observed,
with a half-life equal to t1/2/N .

5 The Least Squares Method
We now apply the least squares method to the scenario of Section /refsec:experiment
above. For simplicity we consider only the case where the N exponential distri-
butions have the same half-life t1/2. The mean lifetime is τ = t1/2/ ln(2), and
the variance is τ 2. Let xi be the actual decay observation for the ith product par-
ticle. Each decay observation Xi may be written in the form t + τ + ei, where
ei is a random “error” having mean 0 and variance τ 2. Therefore each Xi − τ
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Figure 1: Information Combination versus Least Squares Methods for N=4

has mean t and variance τ 2. The least squares estimate for t is the sample av-
erage 1

N

∑N
i=1(xi − τ) = ( 1

N

∑N
i=1 xi) − τ . This estimate estimate has variance

τ 2/N and standard deviation τ/
√
N . The information combination method with

the least squares method are compared in Figure 2.

Method Estimate Variance Standard deviation

Least Squares ( 1
N

∑N
i=1 xi)− τ τ 2/N τ/

√
N

Information Combination minNi=1(xi)−
ln(2)τ
N

τ 2/N2 τ/N

Figure 2: Comparison of Information Combination and Least Squares Methods

It is apparent that information combination will be more accurate than the
least squares technique, especially for large N . For example, consider the case in
which t = 5, τ = 1 and N = 4. Information combination yields the distribution
ED(min(ti),−0.25). The median value for min(ti) is t + ln(2)/4 = 5.17329.
If this experiment is run many times, the values for min(ti) will vary. To show a
representative sample of the behavior, the quartiles are shown for the two methods
in Figure 1, and in the later graphs. The peaks of the exponential distribution
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should all be the same, but the graphs do not show this due to round-off errors.
The least squares method yields the estimate (1

4

∑
ti) − 1. This estimate is

normally distributed with mean 5 and standard deviation 0.5. Accordingly it will
be within 0.3372 of 5 about half of the time. The quartiles are therefore at 4.6628,
5 and 5.3372. These are shown in Figure 1. The information combination distri-
bution is approximately 4 times more accurate than the least squares distribution.
Half of the improvement is due to the fact that the normal distribution is a two-
tailed distribution while the exponential distribution is a single-tailed distribution.
The other half of the improvement is the result of the improvement in the variance.

In Figure 3 the density functions are compared for the case in which N = 16.
In this case the information combination distribution is approximately 8 times
more accurate than the least squares distribution. In general the information com-
bination distribution will be approximately 2

√
N times more accurate. The factor

of 2 in this approximation is somewhat arbitrary, and represents the fact that the
exponential distribution is single-tailed, while the normal distribution is double-
tailed. Based on the estimates alone, one might take the factor to be 1.4. See
Figure 5 which compares the estimates for various values of N .
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Figure 3: Comparison of Information Combination and Least Squares Methods
for N=16

In Figure 4 the density functions are compared for the case in which N = 1.
Here there is no information combination, so it is only comparing the exponential
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distribution with the normal distribution.
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Figure 4: Comparison of Information Combination and Least Squares Methods
for N=1

6 Conclusion
We have shown an example for which one can significantly improve estimation
based on observations whose probability distributions are known, compared with
techniques such as a least squares technique that do not require specific probabil-
ity distributions. Using information combination rather than estimation has the
further advantage that the result of the method is a probability distribution rather
than a simple estimated value. Consequently the result may be used as input for
further computations.

The information combination and least squares methods were compared for an
example in which a singular event initiates an independent set of decay processes
having known half-lives. The result can be viewed as reversing time, because our
knowledge of the time of the singular event decays backwards in time with an
exponential distribution whose parameters were computed. The accuracy of this
technique was found to be significantly better than the accuracy obtained by using
a least squares method.
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Method N (25th percentile)-5 (75th percentile)-5

Information Combination 1 -0.693 0.405

Least Squares 1 -0.674 0.674

Information Combination 4 -0.173 0.101

Least Squares 4 -0.337 0.337

Information Combination 16 -0.043 0.025

Least Squares 16 -0.169 0.169

Figure 5: Estimates for Information Combination and Least Squares Methods

The information combination technique has many advantages, but there are
only a few examples of classes of probability distributions to which the technique
is currently being applied. Introducing additional classes of distributions that are
closed under combination could have a significant impact on the accuracy of esti-
mation in a variety of domains.
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