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Abstract. When developing situation awareness applications we begin by con-

structing an OWL ontology to capture a language of discourse for the domain 

of interest.  Such an ontology, however, is never sufficient for fully representing 

the complex knowledge needed to identify what is happening in an evolving 

situation – this usually requires general implication afforded by a rule language 

such as SWRL.  This paper describes the application of SWRL/OWL to the rep-

resentation of knowledge intended for a supply logistics scenario.  The rules are 

first presented in an abstract syntax based on n-ary predicates. We then describe 

a process to convert them into a representation that complies with the binary-

only properties of SWRL.  The application of the SWRL rules is demonstrated 

using our situation awareness application, SAWA, which can employ either 

Jess or BaseVISor as its inference engine.  We conclude with a summary of the 

issues encountered in using SWRL along with the steps taken in resolving 

them. 

1 Introduction 

The problem of Situation Awareness involves the context-dependent analysis of the 

characterization of objects as they change over time in an evolving situation with the 

intent of establishing an understanding of “what is going on”.  Classic examples of 

tasks where situation awareness is of great importance include air traffic control, crisis 

management, financial market analysis and military battlespaces.  For domains such as 

these, significant effort has gone into both understanding the problem and developing 

automated techniques and applications for establishing situation awareness
1
.  A key 

part of this problem is identifying relations among the objects that are relevant to the 

situation and to the goals of the situation analyst.  For any non-trivial situation the 

number of possible relations that might be considered is so vast that it is necessary to 

reduce the space of candidate relations by using additional knowledge about the situa-

tion’s domain and about the specific objectives of the current situation.  In an auto-



mated system designed to assist in establishing situation awareness this additional 

knowledge falls under the broad heading of “domain knowledge” and its use requires 

some form of knowledge representation (KR). 

 

In our work on developing situation awareness systems we have been exploring the 

use of Semantic Web technologies for domain knowledge representation.  We have 

found the OWL Web Ontology Language to be a very useful means for capturing the 

basic classes and properties relevant to a domain.  These domain ontologies establish 

a language of discourse for eliciting more complex domain knowledge from subject 

matter experts (SME).  Due to the nature of OWL, these more complex knowledge 

structures are either not easily represented in OWL or, in many cases, are not repre-

sentable in OWL at all.  The classic example of such a case is the relationship un-

cleOf(X,Y).  This relation, and many others like it, requires the ability to constrain the 

value of a property (brotherOf) of one term (X) to be the value of a property (childOf) 

of the other term (Y); in other words, the siblingOf property applied to X (i.e., 

brotherOf(X,Z)) must produce a result Z that is also a value of the childOf property 

when applied to Y (i.e., childOf(Y,Z).  This “joining” of relations is outside of the 

representation power of OWL. One way to represent knowledge requiring joins of this 

sort is through the use of the implication (→) and conjunction (AND) operators found 

in rule-based languages.  The rule for the uncleOf relationship appears as follows:  

 brotherOf(X,Z) AND childOf(Y,Z) → uncleOf(X,Y)  

We initially started developing the complex knowledge structures needed for our 

situation awareness applications using RuleML
2
 as described in

4
.  With the introduc-

tion of the Semantic Web Rule Language
3
 (SWRL) we decided to investigate the 

potential for its use in our applications.  SWRL was attractive because of its close 

connection with OWL DL and the fact that it, like OWL, has well-defined semantics.  

The two biggest drawbacks we saw at the time were its restriction to binary predicates 

(a characteristic inherited from OWL) and the lack of tools, in particular editors and 

consistency checkers.  We confronted the lack of tools in part by developing our own 

graphical editor for SWRL called RuleVISor, but there is still an outstanding need for 

tools to check for consistency 1) within SWRL rules, 2) across SWRL rules and 3) 

between SWRL rules and the OWL ontologies upon which they are built.  As for the 

issue of binary predicates we employ an approach by which n-ary predicates, such as 

the unconstrained predicates permitted by RuleML, can be systematically converted 

into binary predicates represented in SWRL; we describe this approach in Section 5 of 

this paper. 

 

As we worked further on developing and using SWRL rules we encountered a num-

ber of additional issues that needed to be addressed before a practical implementation 

of our application could be realized.  These issues include 1) the lack of negation as 

failure, 2) the need for procedural attachments and 3) the implementation of SWRL 

built-ins.  Other concerns of particular importance to situation awareness – such as the 

representation of time, data pedigree and uncertainty – are not explicitly addressed in 

either SWRL or OWL; in fact, for the case of time (more specifically the changes of 

property values over time) the languages’ monotonicity assumption technically pre-

cludes them or at least requires significant extra effort to circumvent the imposed 

constraints.  We reported on some of these issues in our position paper and presenta-



tion
4
 at the W3C Workshop on Rule Languages for Interoperability

5
 and further 

elaborate on them in this paper. 

 

The primary intent of this paper is to describe our experience of using SWRL and 

OWL to represent the domain knowledge for a supply logistics scenario and show 

how this knowledge was employed in our situation awareness application, SAWA.
6,7

 

We begin the paper by introducing the supply logistics “repairable assets” scenario 

and then describe the OWL ontology we developed to capture the scenario’s key 

classes and properties.  We then describe the domain knowledge rules for the scenario, 

starting with an abstract set of higher-order rules (i.e., rules that permit n-ary predi-

cates) that are relatively easy to understand.  These rules are then converted into an 

abstract representation in which the n-ary predicates have been converted to instances 

of classes representing the predicates and properties corresponding to the n-ary terms.  

These abstract rules are then converted into the less easy to read SWRL syntax. The 

SWRL rules are made operational by translating them into rules appropriate for inter-

pretation by a forward-chaining inference engine – a process requiring additional 

operators such as gensym, assert and procedures to implement SWRL built-ins.  

The processing of these rules by SAWA is briefly summarized and a performance 

comparison is made between the use of two inference engines, BaseVISor (a Rete-

based inference engine optimized for triples) and Jess (a Java implementation of the 

Rete-based CLIPS inference engine), either of which can be plugged into SAWA. 

 

 

Figure 1.  Repairable Assets Pipeline 

2 Repairable Assets Domain 

With assistance from SMEs at AFRL Wright Research Site we analyzed a supply 

logistics scenario involving the monitoring of “repairable assets”.  Repairable assets 

for the USAF represent aircraft parts that when found to be malfunctioning on an 

aircraft can be repaired for reuse either locally at the airbase’s repair shop or at a re-

mote repair depot. The diagram in Figure 1 shows a simplified version of the repair-

able assets pipeline used by the USAF.  Each airbase has a supply of aircraft parts 

maintained at its local base supply along with the capability of repairing certain types 

of parts at its local repair shop.  Some parts cannot be repaired locally and so they are 

shipped (usually by commercial overnight carriers) to remote supply depots that have 

more extensive repair capabilities.  The supply depots repair whatever parts they can 

and place them into their depot supplies from which they are shipped out to airbases 

as needed. Keeping repairable parts at a sufficient level across a collection of airbases 

is a complicated process as it involves an understanding of the aircraft based at each 



facility, the repairable parts needed by each aircraft type, the repair capabilities of 

each base and the supply levels and repair capacity of all remote supply facilities.   

 

 

Figure 2. SAWA Interface for the Repairable Assets Domain 

The specific objective of our application was to demonstrate the ability to effec-

tively monitor the supply levels across a handful of airbases kept in supply by a set of 

remote supply depots.  While it would certainly be possible to develop a one-time, 

stand-alone application to achieve this task we were interested in demonstrating the 

applicability of our general-purpose situation awareness application, SAWA, to this 

problem.  SAWA uses OWL and SWRL to represent knowledge relevant to a domain 

of situation awareness problems and then employs a generic inference engine, 

BaseVISor or Jess, to reason about a specific evolving situation.  SAWA has been 

described elsewhere
6,7 

and so we will not go into the details of its workings in this 

paper.  To provide a glimpse into what SAWA does, a screenshot of its interface 

adapted for the Repairable Assets domain is shown in Figure 2.  The interface is com-

prised of five windows.  The top-most window is the control pane in which resides the 

control menus, current event info and performance meters.  In the middle right-hand 

window, a map depicts the physical locations of the airbases along with drillable 

summary sub-windows showing the status of the planes and parts present at each base.  

The middle left-hand window provides an interactive, graphical representation of the 

relations detected in the situation; these relations are also described in detail in the 

relations table that appears in the lower left-hand window.  Detailed information about 

all of the objects and object attributes appear in the object table in the lower right-

hand window. 



3 Repairable Assets Ontology 

As is our practice
4
, we began the process of capturing the domain knowledge pertinent 

to the repairable assets problem by first developing an ontology in OWL. The primary 

objects in this ontology (shown in Figure 3) include airbases, airplanes, parts, facilities 

and remote supply depots.  Because we are concerned with quantities of items such as 

parts and aircraft it was also necessary to create a QuantityOf class that permits the 

association of a numeric count with a specific plane or part type.  In this way we can 

say that a particular facility has a QuantityOf instance relating a particular item with a 

specific number.  It was also necessary to be able to associate each airbase with an 

ordered list of remote supply facilities available to provide additional parts; as shown, 

this was achieved using an rdf:List structure. 

 

 

Figure 3.  Repairable Assets Ontology 

Simulated data was constructed for this scenario consisting of the inventory of air-

craft and parts at four airbases and three remote supply bases taken at various times.  

This data was annotated using both the Repairable Assets ontology and the Event 

ontology shown in Figure 4. Each event contained facility-specific information such as 

the quantity of good aircraft of each type, the quantity of aircraft parts in stock, and 

the quantity of fixable parts in stock along with the current need for parts that needed 

to be replaced on aircraft undergoing repair.  In addition to this “event” data, a file of 

annotations was created containing descriptions of the various aircraft types and the 

parts that make them up, while another annotation file was constructed to provide 

descriptions of the specific airbases, their aircraft and their remote supply facilities.     

 

 

Figure 4. Event Ontology 



4 Repairable Assets Domain Rules 

The objective in our repairable assets scenario is to monitor the supply levels of 

various parts at a number of airbases and compare them to the current needs for those 

parts by specific aircraft.  We developed an initial set of SWRL rules to achieve this 

using RuleVISor, a graphical rule editor we developed at Versatile Information Sys-

tems.  These rules deal with local and remote supply levels, local demand levels and 

repair rates on a per-part and per-facility basis, identifying when a specific part-type at 

a specific airbase is “critical”, “marginal” or “nominal”. In all there were nine rules, 

some of them recursive, that were developed for this task. The logic captured by these 

rules is shown here using an abstract Prolog-like Horn-clause representation, in which 

variables are prefaced with question marks: 
 

criticalPartAtFacility(?Part, ?Facility, ?Time) :-   

  localNeed(?Part, ?Facility, ?Time, ?Need) 

  localSupply(?Part, ?Facility, ?Time, ?Supply) 

  ?Need <= ?Supply. 

 

 marginalPartAtFacility (?Part,?Facility,?Time) :-  

  localSupply(?Part, ?Facility, ?Time, ?Supply)  

  localRepairable(?Part, ?Facility, ?Time, ?Repairable)  

  remoteAvailable(?Part, ?Facility, ?Time, ?RemoteSupply)  

  surplusRequired(?Part, ?Facility, ?SurplusRequired) 

?Supply + ?Repairable + ?RemoteSupply < ?SurplusRequired). 

 

In plain English these rules state that a part at a facility is determined to be “criti-

cal” if the current demand at the facility exceeds the current local supply; it is classi-

fied as “marginal” if the total resuppliable rate for the part at the facility is below a 

required-surplus threshold; and it is deemed “nominal” otherwise (note, there are no 

rules for this state as it is the normal state of all parts that are neither marginal nor 

critical). The notion of “resuppliable rate” used in the marginalPartAtFacility rule 

represents the total number of parts of a specific type that a facility could have on 

hand by the next day if its current local supply level of that part, its current local “re-

pair capacity” for that part and the current supply levels of that part at remote depots 

are all added together.  If this total falls below the required-surplus level (a static 

number established by an SME) the part at that facility is given a status of “marginal’.  

It is common practice in the USAF to ship parts as needed between facilities by over-

night delivery, which leads to the natural choice of a day as the basis for determining 

part resuppliability. The “repair capacity” at an airbase is a function of the number of 

parts waiting to be repaired locally, the repair capacity of the local repair shop and the 

status of any sub parts required for the repairs (this value is calculated by additional 

supporting rules not shown above). 

5 Converting from N-Ary to Binary Predicates 

As is evident in the abstract rules for criticalPartAtFacility and marginalPartAtFacil-

ity, we used predicates with more than two terms. We did this because it was the natu-

ral way to represent the critical concepts, all of which simultaneously involve a Part, a 

Facility and a Time; unfortunately such n-ary predicates are not permitted in SWRL.  

As a result, we needed to convert these rules into ones that contained only binary and 



unary predicates.  The presentation of two design patterns usable for this purpose have 

been described by Noy and Rector
8
; our approach is in line with the second of these 

patterns. This conversion was done manually for this small set of rules but the process 

we employed is systematic enough to automate; for a set of rules defined in RuleML a 

single XSLT script would suffice.  The approach involves converting the n-ary predi-

cates into instances of unique classes (one for each predicate) that are then given prop-

erties corresponding to the each of their respective terms. The results of this process 

can be seen in the following rule corresponding to the marginalPartAtFacility rule 

described above. 

 

if   
    ;; find the Local Surplus/Deficit (from another rule) 
    rdf:type(?SMNStatement, #SupplyMinusNeed) 
    #smnPart(?SMNStatement, ?Part) 
    #smnFacility(?SMNStatement, ?Facility) 
    #smnTime(?SMNStatement, ?Time) 
    #smnNumber(?SMNStatement, ?LocalSurplusOrDeficit) 
 
    ;; find the number Locally Repairable (from another rule) 
    rdf:type(?PLRStatement, #PartsLocallyRepairable) 
    #localPart(?PLRStatement, ?Part) 
    #localFacility(?PLRStatement, ?Facility) 
    #localNumber(?PLRStatement, ?NumberRepairable) 
     
    ;; find number Available Remotely (from another rule) 
    rpa:remoteSupply(?Facility, ?RemoteSupplyList) 
    rdf:type(?PRAStatement, #PartsAvailableAtRemoteFacility) 
    #remotePart(?PRAStatement, ?Part) 
    #facilityList(?PRAStatement, ?RemoteSupplyList) 
    #remoteNumber(?PRAStatement,?NumberAvailableRemotely) 
    #remoteTime(?PRAStatement, ?Time) 
 

    ;; look up Minimum Threshold 

    rpa:minimumPartsInSupply(?Facility, 

                             #MinimumThresholdStatement) 

    rpa:item(?MinimumThresholdStatement, ?Part) 

    rpa:number(?MinimumThresholdStatement, ?MinimumThreshold) 

 

    ;; add SurplusOrDeficit, Repairable, & RemotelyAvailable 

    swrlb:add(?TotalAvailable, ?LocalSurplusOrDeficit,  

        ?NumberRepairable, ?NumberAvailableRemotely) 

 

    ;; test if the Threshold is greater than the Total  

    swrlb:greaterThan(?MinimumThreshold, ?TotalAvailable) 

 

then  

    rdf:type(?MPFStatement, #MarginalPartAtFacility)  

    #marginalPart(?MPFStatement, ?Part)  

    #marginalFacility(?MPFStatement, ?Facility)  

    #marginalTime(?MPFStatement, ?Time)  

    #marginalNumber(?MPFStatement, ?TotalAvailable)  

In the conclusion of the rule (i.e., the five lines of code after the “then”) it can be 

seen that the marginalPartAtFacility(?Part,?Facility,?Time) predicate has been con-

verted into an instance of a locally defined class MarginalPartAtFacility represented 

by the variable ?MPFStatement.  To this instance three properties (marginalPart, mar-

ginalFacility and marginalTime) have been attributed with values corresponding to the 

variables ?Part, ?Facility and ?Time.  (A fourth property “marginalNumber” is used to 



encode the degree to which the required surplus level has been unmet.)  In the body of 

the rule there are three places where the predicates localSupply, localRepairable and 

remoteSupply from the abstract rule have been converted into statements referring to 

instances of local classes with properties corresponding to each of their original four 

terms.  For example, the localSupply(?Part,?Facility,?Time,?Supply) predicate  from 

the abstract rule is converted into a reference to an instance of the class SMNState-

ment (SMN stands for Supply Minus Need) which has the four properties - localPart, 

localFacility, localTime and localNumber - associated with the four terms correspond-

ing to Part, Facility, Time and Supply, respectively.  When this rule is processed, the 

inference engine will look for the occurrence of these class instances and their corre-

sponding properties in working memory; it will only find them if other rules (not 

shown) have previously fired and as a result asserted these instances and properties. 

 

Note that the classes used to stand in place of the n-ary predicates are all defined 

local to the rule set (as indicated by the preceding hash mark #) and are not a part of 

the main ontology described in Section 3.  These classes do not in fact have to be 

explicitly defined in the rule set because the mere use of one as the object of the 

rdf:type property requires (by the axioms of RDF/OWL) that there be a local class 

identified by that reference; any OWL-compliant reasoner will infer its existence.  The 

same holds true for the properties that stand in place of the predicate terms.  The only 

requirements of these local classes are that they be uniquely named and that whenever 

one is used in the body of a rule that there be at least one rule that asserts an instance 

of the same class in its head, otherwise the first rule will never fire. 

6 SWRL Rules and Their Execution 

The SWRL code for the marginalPartAtFacility rule, developed with the help of 

RuleVISor, appears in Appendix A.  The primary reason for including the SWRL 

code in this paper is to demonstrate how a relatively simple rule expressible in just six 

lines of high-level code mushrooms into a much more complex listing of over one 

hundred lines of code that is extremely difficult to interpret and even more difficult to 

debug. The nine rules making up the SWRL rule set for the Repairable Assets sce-

nario amounted to nearly 1200 lines of code and demanded countless hours of debug-

ging.   One can argue that SWRL was never intended to be a language for the manual 

development of rules and that what is needed are more powerful editors that permit 

rules to be represented more abstractly and then compiled into SWRL for execution.  

Neither RuleVISor nor the SWRL editor provided with the Protégé OWL plug-in
9
 

provide this level of functionality – both simply permit the direct editing of SWRL 

code with its inherent constraint to binary predicates. The requirement to work at such 

a painfully low level of representation is a major hurdle for anyone wishing to use 

SWRL for even moderately complex tasks. 

 

Assuming one has a set of SWRL rules, such as the repairable assets rules de-

scribed above, there remains the question of how to execute them.  There are no infer-

ence engines known to the authors that have full native support for SWRL rules.  The 

Institut für Informatik, Freie Universität Berlin
10

 has developed a prototype engine for 

SWRL but it does not (as of this writing) permit full OWL reasoning (only inheritance 

reasoning is supported) nor does it implement the SWRL built-ins.  We have imple-



mented a Jess-based reasoner that includes a reasonably complete set of axioms for 

RDF/OWL and supports a large subset of SWRL built-ins; this reasoner is at the heart 

of our consistency checking service ConsVISor
11

.  We have also recently implemented 

a high-performance Java-based inference engine that incorporates a subset of the axi-

oms of RDF/OWL sufficient to support the reasoning required for our repairable as-

sets problem domain as well as support for the SWRL built-ins used by these rules.  

To execute SWRL rules in either the Jess or BaseVISor engines it is first necessary to 

translate them into the corresponding rule languages.  In doing so, engine specific 

characteristics need to be accounted for that lie outside the scope of SWRL.   Both 

Jess and BaseVISor are Rete-based, forward chaining inference engines that work by 

continuously evaluating the contents of working memory and firing rules when their 

antecedents are satisfied.  The firing of a rule can result in the “assertion” of new facts 

into working memory but this requires an explicit call to the “assert” operator.  There 

is nothing in SWRL that corresponds to the assert operator – the atoms in the head of 

a SWRL rule are simply inferred to be true whenever all of the atoms in the body are 

true but there is no notion of “working memory” into which facts must be asserted.  In 

the translation from SWRL to Jess or BaseVISor it is necessary to surround all atoms 

in the heads of rules with the assert() operator; this is done automatically by XSLT 

translation scripts. 

 

  Because of the use of instances of classes to represent n-ary predicates it is neces-

sary to be able to “generate” these instances as needed.  These instances in need of 

generation exist as variables in the head of rules that have no corresponding occur-

rence in the body of the rule.  When such a variable is detected the translation scripts 

add a gensym() operator to the head to generate a unique symbol to represent the 

instance.  At first this technique seems to be at odds with the “safety” condition in 

which all variables in the head of a SWRL rule must be present in the body, but as 

suggested in the SWRL specification, it would be possible to add a someValuesFrom 

restriction on this variable in the body; we don’t actually do this because it would have 

no bearing at all on the firing of the rule.  

 

There is also an issue with implementing the SWRL built-ins.  The definitions of 

the built-ins in the SWRL specification are given as relations with no explicit in-

put/output designations assigned to their arguments. In our rules we have always 

found that we need to use the built-in capabilities as if they were functions in which 

you specify the values for all but one of the arguments, which becomes the output 

variable. What this lack of input/output designation in SWRL built-ins means from an 

implementation perspective is that the code for the built-ins must determine which of 

the arguments is supposed to be the output variable and then select the appropriate 

functional method to apply to the other arguments. For example, consider swrlb:add 

which can be applied to an arbitrary number of two or more arguments with the first 

argument being the sum of the remaining arguments. If you use the atom (swrlb:add 

?X 1 2) the processor of this statement must detect that the first argument is unbound 

(i.e. a variable) and thus it becomes the output argument. Knowing that the value of 

the first argument is to be calculated the processor must apply its summation method 

to the remaining arguments. If, on the other hand, you pass (swrlb:add 10 ?X 5) to the 

processor, it needs to figure out that it should subtract 5 from 10 to calculate the value 

of the variable ?X. In this case we have used swrlb:add to do subtraction even though 

there is also a swrlb:subtract built-in. Now consider the case where more than one 



argument is unbound: (swrlb:add ?X 100 ?Y). What should the processor do in this 

case? According to the semantics of SWRL this is perfectly legal even though it would 

result in an infinite set. In our system we treat this case as an error, which it would be 

for the kinds of practical applications we are interested in.  Alternatively, if one really 

needed the set of all relations consistent with the bound terms, procedures could be 

implemented that return some notational form from which the members of the set 

could be derived.  In our cases, however, this approach would needlessly complicate 

the rules and make it cumbersome to deal with the most common case where what is 

really desired is a function. 

 

A final issue encountered with the practical application of SWRL was the need for 

some form of negation as failure.  Since there are so many parts on an aircraft it was 

highly desirable to require airbases to only report when there was a need for the repair 

of a specific part rather than report the status of all parts on the aircraft.  The quite 

natural assumption in this case is that a part is working properly unless informed oth-

erwise.  This becomes an issue because we need to be able to count the number of 

pairs needing repair at an airbase which requires looking up the number of parts 

needed for each aircraft in the airbase’s rdf:List of stationed aircraft.  As the rules 

walk through this aircraft list they can only fire if there is something in working mem-

ory that triggers them.  That is unless the not() operator is used in which case the ab-

sence of a particular fact can lead to the firing of a rule, which is exactly what we 

want.  In our rules that count the number of a specific part needing repair at an airbase 

there is one rule that checks for the occurrence of a fact stating that an aircraft at that 

base needs that part and another rule looking for the absence of such a fact.  In our 

scenario this is a perfectly reasonable thing to do since airbases are required to report 

on all parts needing repair.  We can thus safely assume that our world is closed within 

the scope of the status reports sent out by the airbases.  Both BaseVISor and Jess 

provide a not() operator that implements negation as failure (NAF).  Although neither 

of them provide a scoped NAF operator (SNAF) it would be easy to define the spe-

cific scope in this case using the URI specifying the Event that transmitted a base’s 

status report data for a specific Time.  Our rules actually implement a notion of Event 

scoping as most of them include an explicit reference to an Event for a specific Time 

(see the beginning of the rule listed in Appendix A). 

7 BaseVISor versus Jess 

We have used Jess as an inference engine for a number of RDF/OWL applications 

over the last couple years.  On several occasions we developed code to extend its 

capabilities, most markedly in the area of SWRL built-ins and performance monitor-

ing.  When working with the internals of the Jess source code it becomes apparent that 

a lot of legacy code exists that is there to support the LISP-like list structures that 

CLIPS and OPS-5 supported.  Since our RDF/OWL applications deal only with triples 

there is no need for all of the complexity enabled by Jess’ data structures, which carry 

with them significant overhead particularly when doing lookups within the Rete net-

work.  When it came time to augment the Rete network with uncertainty processing 

capabilities (an important requirement for many situation awareness tasks) we took the 

opportunity to develop a triples-based Rete network from scratch. The result is 

BaseVISor, which has now replaced Jess as the core of SAWA.  Space limitations 

prevent us from going into more details of the internals of BaseVISor or its support 



for SWRL; however, we do want to highlight the performance improvement afforded 

by BaseVISor over Jess as depicted in Figure 5.  This graph compares the perform-

ance of BaseVISor versus Jess as the number of ground facts increases.  Except for a 

very small portion at the lower left of the graph where BaseVISor is slightly slower 

(due to some index optimization that does not payoff on small data sets of less than 

500 facts), BaseVISor outperforms Jess and shows a near linear rate of change com-

pared to Jess’ polynomial increase. 

 

Figure 5.  BaseVISor vs. Jess performance. 

8 Conclusion 

In our recent efforts to develop a situation awareness application for a supply logistics 

scenario we explored the utility of using SWRL and OWL to represent pertinent do-

main knowledge and apply it to simulated data using forward chaining inference en-

gines.  We encountered several challenges in applying SWRL to this problem includ-

ing foremost the language’s limitation to binary predicates and the lack of tools for 

editing and checking SWRL rules.   We partially resolved the latter problem by devel-

oping RuleVISor, a graphical SWRL editor that permits the construction of rules 

using elements from OWL ontologies.  Even with RuleVISor the restriction to binary 

predicates forced us to operate at a very low implementation level compared with the 

n-ary predicates that were more natural for representing the important domain con-

cepts.  Our approach to this problem was to develop abstract higher-arity rules by 

hand and then systematically convert the n-ary predicates into classes representing the 

predicates and collections of properties to associate values of the higher-arity terms 

with the predicate’s class.  While this was a manual process it is such that a simple 

translation script could perform the process automatically.  The final steps of our rule 

development effort involved converting the abstract rules represented with binary-only 



predicates into SWRL syntax followed by the application of an XSLT script to trans-

late the SWRL into either Jess or BaseVISor rules for their execution within the ap-

propriate inference engine.  We used Jess as our engine up until the completion of our 

own Rete-based inference engine, BaseVISor, which we have optimized for the proc-

essing of triples and incorporated support for uncertainty reasoning.  Initial compari-

sons between the two engines demonstrated BaseVISor’s near linear performance in 

the number of ground facts compared with Jess’ polynomial performance. 

Appendix A: SWRL Code for “Marginal Part at Facility” Rule 

<ruleml:imp>  
    <ruleml:_rlab  
        ruleml:href="#Marginal part at facility"/> 
    <ruleml:_body>   
      <swrlx:classAtom>  
        <owlx:Class owlx:name="&evt;Event"/>  
        <ruleml:var>?Event</ruleml:var>  
      </swrlx:classAtom>  
      <swrlx:datavaluedPropertyAtom  
          swrlx:property="&evt;time">  
        <ruleml:var>?Event</ruleml:var>  
        <ruleml:var>?Time</ruleml:var>  
      </swrlx:datavaluedPropertyAtom> 
      <swrlx:classAtom>  
        <owlx:Class owlx:name="#SupplyMinusNeed" />  
        <ruleml:var>?SMNStatement</ruleml:var>  
      </swrlx:classAtom>  
      <swrlx:individualPropertyAtom  
          swrlx:property="#smnPart"> 
          <ruleml:var>?SMNStatement</ruleml:var>  
          <ruleml:var>?Part</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#smnFacility">  
          <ruleml:var>?SMNStatement</ruleml:var>  
          <ruleml:var>?Facility</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="#smnTime">  
          <ruleml:var>?SMNStatement</ruleml:var>  
          <ruleml:var>?Time</ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
           swrlx:property="#smnNumber">  
          <ruleml:var>?SMNStatement</ruleml:var>  
          <ruleml:var>?LocalSurplusOrDeficit</ruleml:var>  
      </swrlx:datavaluedPropertyAtom> 
      <swrlx:classAtom>  
        <owlx:Class owlx:name="#PartsLocallyRepairable"/>  
        <ruleml:var>?PLRStatement</ruleml:var>  
      </swrlx:classAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#localPart">  
          <ruleml:var>?PLRStatement</ruleml:var>  
          <ruleml:var>?Part</ruleml:var>  



      </swrlx:individualPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="#localNumber">  
          <ruleml:var>?PLRStatement</ruleml:var>  
          <ruleml:var>?NumberRepairable</ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  
          <ruleml:var>?PLRStatement</ruleml:var>  
          <ruleml:var>?Facility</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom  
           swrlx:property="&rpa;remoteSupply">  
          <ruleml:var>?Facility</ruleml:var>  
          <ruleml:var>?RemoteSupplyList</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:classAtom> 
         <owlx:Class  
           owlx:name="#PartsAvailableAtRemoteFacility" />  
        <ruleml:var>?PRAStatement</ruleml:var>  
      </swrlx:classAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#remotePart">  
          <ruleml:var>?PRAStatement</ruleml:var>  
          <ruleml:var>?Part</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#facilityList">  
          <ruleml:var>?PRAStatement</ruleml:var>  
          <ruleml:var>?RemoteSupplyList</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="#remoteNumber">  
          <ruleml:var>?PRAStatement</ruleml:var>  
          <ruleml:var>?NumberAvailableRemotely 
          </ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#remoteTime">  
          <ruleml:var>?PRAStatement</ruleml:var>  
          <ruleml:var>?Time</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom 
            swrlx:property="&rpa;minimumPartsInSupply">  
          <ruleml:var>?Facility</ruleml:var>  
          <ruleml:var>?MinimumThresholdStatement 
          </ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="&rpa;item">  
          <ruleml:var>?MinimumThresholdStatement 
          </ruleml:var>  
          <ruleml:var>?Part</ruleml:var>  
      </swrlx:individualPropertyAtom> 
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="&rpa;number">  
          <ruleml:var>?MinimumThresholdStatement 
          </ruleml:var>  
          <ruleml:var>?MinimumThreshold</ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  



      <swrlx:builtinAtom swrlx:builtin="&swrlb;add">  
             <ruleml:var>?TotalAvailable</ruleml:var>  
             <ruleml:var>?LocalSurplusOrDeficit 
             </ruleml:var>  
             <ruleml:var>?NumberRepairable</ruleml:var> 
             <ruleml:var>?NumberAvailableRemotely 
             </ruleml:var>  
      </swrlx:builtinAtom>  
      <swrlx:builtinAtom  
                swrlx:builtin="&swrlb;greaterThan">  
              <ruleml:var>?MinimumThreshold</ruleml:var>  
              <ruleml:var>?TotalAvailable</ruleml:var>  
      </swrlx:builtinAtom>  
    </ruleml:_body> 
    <ruleml:_head>  
      <swrlx:classAtom>  
      <owlx:Class owlx:name="#MarginalPartAtFacility"/>  
          <ruleml:var>?MPFStatement</ruleml:var>  
      </swrlx:classAtom>  
      <swrlx:individualPropertyAtom  
            swrlx:property="#marginalPart">  
          <ruleml:var>?MPFStatement</ruleml:var>  
          <ruleml:var>?Part</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:individualPropertyAtom 
            swrlx:property="#marginalFacility">  
          <ruleml:var>?MPFStatement</ruleml:var>  
          <ruleml:var>?Facility</ruleml:var>  
      </swrlx:individualPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="#marginalTime">  
          <ruleml:var>?MPFStatement</ruleml:var>  
          <ruleml:var>?Time</ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  
      <swrlx:datavaluedPropertyAtom  
            swrlx:property="#marginalNumber">  
          <ruleml:var>?MPFStatement</ruleml:var>  
          <ruleml:var>?TotalAvailable</ruleml:var>  
      </swrlx:datavaluedPropertyAtom>  
    </ruleml:_head>  
  </ruleml:imp>  



 

 

References 

1
  M. Endsley and D. Garland, Situation Awareness, Analysis and Measurement, Law-

rence Erlbaum Associates, Publishers, Mahway, New Jersey, 2000. 

2
  Rule Markup Language Initiative, http://www.ruleml.org/ 

3
  Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof 

and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and 

RuleML, 2004. http://www.daml.org/rules/proposal/ 

4
  C. Matheus, Using Ontology-based Rules for Situation Awareness and Information 

Fusion. Position Paper presented at the W3C Workshop on Rule Languages for In-

teroperability, April 2005. http://www.w3.org/2004/12/rules-ws/program2 

5
  W3C Workshop on Rule Languages for Interoperability. 

http://www.w3.org/2004/12/rules-ws/ 

6
  C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman, J. Salerno 

and D. Boulware, SAWA: An Assistant for Higher-Level Fusion and Situation 

Awareness. In Proceedings of SPIE Conference on Multisensor, Multisource Infor-

mation Fusion, Orlando, FL., March 2005. 

7
  C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman, J. Salerno 

and D. Boulware, Lessons Learned From Developing SAWA: A Situation Aware-

ness Assistant, FUSION'05, Philadelphia, PA, July, 2005. 

8
  N. Noy and A. Rector, Defining N-ary Relations on the Semantic Web: Use With 

Individuals, W3C Working Draft 21, July 2004. 

9
  SWRL Editor for Protégé with the OWL plugin. 

http://protege.stanford.edu/plugins/owl/swrl/ 

10
 Institut für Informatik, Fachbereich Mathematik und Informatik, Freie Universität 

Berlin, An Engine for SWRL rules in RDF graphs. http://www.inf.fu-

berlin.de/inst/ag-nbi/research/swrlengine/ 

11
 ConsVISor Consistency Checking Service, http://www.vistology.com/consvisor/  


