
Association in Level 2 fusion

Mieczyslaw M. Kokara, Christopher J. Matheusb, Jerzy A. Letkowskic,
Kenneth Baclawskid and Paul Kogute

aNortheastern University, ECE, Boston, MA, USA
bVersatile Information Systems, Inc., Framingham, MA, USA

cWestern New England College, Springfield, MA, USA
dNortheastern University, CS, Boston, MA, USA

eLockheed Martin, King of Prussia, PA, USA

ABSTRACT

After a number of years of intensive research on Level 1 fusion, the focus is shifting to higher levels. Level 2
fusion differs from Level 1 fusion in its emphasis on relations among objects rather than on the characteristics
(position, velocity, type) of single objects. While the number of such characteristics grows linearly with the
number of objects considered by an information fusion system, this cannot be said about the number of possible
relations, which can grow exponentially. To alleviate the problems of computational complexity in Level 2
processing, the authors of this paper have suggested the use of ontologies. In this paper we analyze the issue of
association in Level 2 fusion. In particular, we investigate ways in which the use of ontologies and annotations
of situations in terms of the ontologies can be used for deciding which of the objects, and/or relations among
such, can be considered to be the same. This is analogous to data association in Level 1 fusion. First, we
show the kinds of reasoning that can be carried out on the annotations in order to identify various objects and
possible coreferences. Second, we analyze how uncertainty information can be incorporated into the process.
The reasoning aspect depends on the features of the ontology representation language used. We focus on OWL -
the web ontology language. This language comprises, among others, constructs related to expressing multiplicity
constraints as well as such features like “functional property” and “inverse functional property”. We will show
how these features can be used in resolving the identities of objects and relations. Moreover, we will show how
a consistency-checking tool (ConsVISor) developed by the authors can be used in this process.

Keywords: Information fusion, Level 2, data association, ontology, inference

1. INTRODUCTION

One of the steps that is typically part of the processing in information fusion is the step called “data associa-
tion”.1, 2 The main idea of data association is that when two sources provide reports on a number of objects
(also referred to as “individuals”), it is important to know when the reports refer to the same object in the world.
This problem can occur at any level of processing,3 from Level 0 through Level 4. For instance, when a sensor
reports that there is an object O at location (x, y, z), the simple question is whether this location is the same as
the one that another sensor refers to as (p, q, r). Another question is whether the ID of the object is the same
as the one that this sensor refers to as P .

The issue of data association has been investigated for Level 1 fusion. In general, to determine the association
between two data items, a measure of distance is computed and the association function is selected that minimizes
the (weighted) distance over all possible associations.

While such an approach is feasible in Level 1 fusion, for higher-level fusion a different approach is required.
The main reason is that in higher-level fusion quantitative features of particular individuals are often not available,
since information about the individuals may be represented in text documents, which then are mapped into logical
representations, rather than quantitative form. Consequently, the association process needs to be compatible

Further author information: (Send correspondence to M. M. Kokar): E-mail: kokar@coe.neu.edu, Telephone: 1 617
373 4849



with the form of representation, i.e., the process must be based on text analysis tools, like lexical analyzers and
ontology-based annotators, and logical tools, like theorem provers, consistency checkers and others.

In this paper we discuss the issue of association for higher-level fusion. Although we consider text based
documents as input, we don’t go into any details of text processing tools. Instead, we consider only the logic
based representations assuming that text has already been processed by an ontology-based annotator.

First we introduce a simple example of two text documents in which either direct or indirect references
are made to some individuals. The text documents are then annotated using an ontology based tool, like
AeroSWARM.4 The annotation is based on an ontology. The ontology and the annotation are expressed in an
ontology language called OWL (Web Ontology Language).5 In the annotation, individuals are referred to by
individual names.

The annotations of two documents can then be merged into one annotation. This step is analogous to the
data fusion process of Level 1. It is very important to make sure that if references are made to the same individual
in both documents, the merged annotation states the fact that this is the same object. It can be achieved either
by using one name for the individual in the merged document, or by adding an assertion that the appropriate
two individual names in the merged annotation refer to the same individual.

To resolve the question of whether two individual names denote the same object or not, we use the ConsVISor
tool.6 ConsVISor is a consistency checker of ontologies, i.e., it takes an ontology or an annotation as input and
outputs that the input is either consistent or inconsistent. The scenario of checking the association of two
individual names involves testing two hypotheses: (1) that the two names represent the same individual and (2)
that the two names represent two different individuals. One of these two hypotheses is added to the annotation
and ConsVISor is invoked. ConsVISor either finds the annotation consistent, which means lack of evidence
against the added hypothesis, or inconsistent, which means existence of evidence against the added hypothesis.

The paper is organized as follows. First, in the next section we discuss ontologies and their use in information
fusion (Section 2). Then in Section 3 we discuss an example of association in text based documents. In Section
4 we discuss constructs of the OWL language that can be utilized in reasoning about associations. In Section
5 we make some suggestions on how confidence of association can be quantified. And finally, in Section 6 we
present our conclusions and directions for future research.

2. ONTOLOGIES AND LEVEL 2 FUSION

One of the issues in Level 2 fusion is the focus on relations among objects, rather than on the characteristics
(position, velocity, type) of single objects. While the number of characteristics grows linearly with the number of
objects considered by an information fusion system, this cannot be said about the number of possible relations,
which can grow exponentially. To alleviate the problems of computational complexity in Level 2 processing, the
authors of this paper have suggested the use of ontologies.7–10 In this section we give a brief statement on what
ontologies are and how they can be used in Level 2 fusion.

An ontology is an explicit, formal, machine-readable semantic model that defines the classes (or concepts)
and their possible inter-relations specific to some specified domain.11 To construct an ontology one must have
an ontology specification language. The main driving force for using ontologies is the emergence of web-enabled
agents.11 These agents can reason about and dynamically integrate the appropriate knowledge and services
at run-time based on formal ontologies. Ontologies are also the basis for the Semantic Web,12 where they are
being used to create machine-readable, semantic-descriptions of Web content that can be shared, combined and
reasoned about automatically by theorem provers and intelligent agents.

As part of its Semantic Web effort, the W3C has developed a new XML-based language called the Web
Ontology Language (OWL).5 OWL is an emerging standard for ontologies and knowledge representations,
based on the Resource Description Framework (RDF)13 and the DARPA Agent Markup Language (DAML),
which is the immediate predecessor of OWL. OWL is a declarative, formally defined language that fully supports
specialization/generalization hierarchies as well as arbitrary many-to-many relationships. Both model theoretic
and axiomatic semantics have been fully defined for the elements in OWL/DAML providing strong theoretical
as well as practical benefits in terms of being able to precisely define what can and cannot be achieved with



these languages. The field is relatively young, yet several tools have been developed and many more are on the
horizon for creating OWL ontologies and processing OWL documents. In our work, we create ontologies as UML
diagrams and then programmatically convert them into DAML/OWL representations.14

Ontologies capture potential objects and potential relations; that is to say, they do not describe what is in
the world but rather what can be in the world. Ontologies, however, can be used to annotate, or mark-up,
descriptions of instances of the world in what are called instance annotations.

In Figure 1 we show an example of a very simple fragment of an ontology expressed in UML.15 It does not
include all the details which can be represented in an ontology representation language, like OWL.5 While the
OWL representation is appropriate for computer consumption, the UML representation, on the other hand, is
more appropriate for humans. The aspects captured in this UML representation include classes, subclasses and
associations. Classes are represented as boxes. Each class defines a “type”, i.e., it describes objects that have
some characteristics in common. In particular, it means that objects are linked to objects from other classes
according to the properties, which in this diagram are shown as arrows (or just lines). A hollow arrow represents
a special property called subclass.

In Figure 1 we see four classes and seven properties. The Leader class is a subclass of Person. This means
every leader (object from the Leader class) is a person. The adornments at some of the ends of the lines represent
the multiplicity constraints. For instance, this ontology shows that a leader can (actually must) lead exactly one
organization. Moreover, every organization is led by exactly one leader. (Only the latter constraint is realistic,
but this ontology is meant solely for illustration purposes and thus we did not try to accurately model the real
world.) Moreover, since every leader is a person, every leader must have one name and one age.

Person Leader Organization
1

1

+leaderOf+ledBy

String

1personName

1personAge
orgName

orgType

headquarters

1
1

1

1

Figure 1. A Simple Ontology in UML

Below we show a small fragment of this ontology represented in OWL. The first part declares a class Person.
The second part declares a property that this class has, personName, i.e., the name property.

<owl:Class rdf:ID="Person">
<rdfs:label xml:lang="en">Person</rdfs:label>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#personName"/>



<owl:cardinality rdf:datatype=
"http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#personAge"/>
<owl:cardinality rdf:datatype=

"http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:ObjectProperty rdf:ID="personName">

<rdfs:label>person name</rdfs:label>
<rdfs:comment>Name of a person.</rdfs:comment>
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource=
"http://www.w3.org/2000/10/XMLSchema#string" />

</owl:ObjectProperty>

In the rest of this paper we make use of two ontologies - one ontology as shown in Figure 1 and a more relaxed
version of this one in which the multiplicity constraints have been removed. In the next section we will see that
such ontological commitments can make a difference in reasoning about associations.

3. EXAMPLES OF REASONING ABOUT ASSOCIATIONS

In this section we show a few examples of how ontologies can be used in the process of reasoning about associa-
tions, i.e., we will show how we can attempt to derive that either two individual names denote the same object
or they denote two different objects in the world.

Now assume that we have two text documents in which references are made to two individuals whose role
is “leader of an organization” and that the leaders are referred to by their IDs as A1 and A2. The fact that
the names associated with the leaders are Osama and Strossen may or may not be that relevant since it all
depends on what world we live in. For instance, it depends on whether people are allowed to have multiple
names, whether organizations can have multiple leaders and whether the same person can lead more than one
organization.

Assume also that the text has been processed using an ontology based annotation tool, like AeroSWARM4

and that the annotations generated by this tool have been merged into one annotation file. Below we show a
small fragment of such a file.

<Leader rdf:ID="A1">
<personName rdf:datatype=
"http://www.w3.org/2000/10/XMLSchema#string">Osama</personName>
<personAge rdf:datatype=
"http://www.w3.org/2000/10/XMLSchema#string">old</personAge>
<leaderOf rdf:resource="#X"/>

</Leader>
<Leader rdf:ID="B1">

<personName rdf:datatype=
"http://www.w3.org/2000/10/XMLSchema#string">Strossen</personName>
<personAge rdf:datatype=
"http://www.w3.org/2000/10/XMLSchema#string">mature</personAge>
<leaderOf rdf:resource="#Y"/>



<owl:sameAs rdf:resource="#A1"/>
</Leader>

This piece of annotation captures information about two individuals who are declared to be the leaders of
organizations. The question is whether these two individual names (in this case we use the IDs A1 and B1) denote
two different individuals or just one? In other words, the hypothesis is that Osama and Strossen are two names
of the same individual. To answer this question we inserted (see the line next to the last) a hypothesis that
they are actually denoting the same individual. Then we tested this annotation using ConsVISor. As expected,
ConsVISor derived that this annotation is inconsistent. ConsVISor’s reasoning is based upon the knowledge that
is represented in both the annotation and the ontology. The ontology in this case states that an organization can
be led by exactly one leader and a leader must lead exactly one organization. This is not the case in the current
annotation. But once the line <owl:sameAs rdf:resource=‘‘#A1’’/> of annotation is removed, ConsVISor
declares that the annotation is consistent. In this paper we submit that ConsVISor could be used in the process
of association in Level 2 fusion.

As our next step we analyzed possible scenarios of deciding whether two individual names denote the same
individual or not. These possibilities can be explained using the decision tree shown in Figure 2. This tree
represents various cases of the relation between an annotation and the ConsVISor decision with respect to the
hypothesis about two (syntactic) representations (annotations). At the top of the Figure we have descriptions of
three classification rules: Ground Truth, Hypothesis, ConsVISor’s Decision and Example. The meaning of these
rules is as follows:

Ground Truth This is the root node. It has two branches. The upper branch represents the situation in
which two individual names describe the same individual. The lower branch represents the situation in which
two individual names describe two different individuals. Note, however, that even when we know that we know
this is the same individual, the annotation might be logically incomplete, i.e., it might not be possible to prove
a theorem one way or the other. This kind of situation cannot be resolved by using tools of logic. So we need to
limit our analysis to only two cases:

• Two names represent the same individual and the ontology has support for this.

• Two names represent two different individuals and the ontology has support for this.

Hypothesis: This is the statement about a hypothesis that is added to an annotation (a query). There are
two possible hypotheses - either that the two names represent the same individual in the world, or that they
represent two different individuals. This is expressed in OWL as sameAs and differentFrom.

ConsVISor’s Decision: ConsVISor can decide that a given annotation (with the added hypothesis) is either
“consistent” or “inconsistent”.

Example: This represents a URL of an annotation for this example. Note, however, that if ConsVISor is
correct, it should never conclude “inconsistent”, when two names represent the same individual and there is
support for such a conclusion in the ontology. So this branch of the decision tree is marked as “Impossible!”.
Similarly, it should not derive an inconsistency when there is support in the annotation for the conclusion
that two names represent two different individuals. Consequently, the bottom branch of the tree is marked as
“Impossible!”.

The examples (the annotation files) listed in Figure 2 and then tested using ConsVISor take advantage of
only one feature of OWL. The inconsistency derived by ConsVISor is based upon the fact that two annotations
of the same individual must always declare the same properties and property values. In other words, if we have
two annotations in which properties associated with one individual name are different and the sameAs clause is
added to the annotation, ConsVISor will detect an inconsistency. Other features of OWL that can be used in
the process of reasoning about association are discussed in Section 4.



Tw
o 

in
di

vi
du

al
s

ar
e 

th
e 

sa
m

e

Tw
o individuals 

are different

inconsistent

consistent

Impossible!

http://vistology.com/exp/1.owl

http://vistology.com/exp/3.owl

http://vistology.com/exp/4.owl

http://vistology.com/exp/5.owl

http://vistology.com/exp/6.owl

http://vistology.com/exp/7.owl

Ground Truth:

<sameAs>

<sameAs>

<differentFrom>

<differentFrom>

Hypothesis: ConsVISor’s Decision: Annotation Example:

consistent

consistent

consistent

inconsistent

inconsistent Impossible!

inconsistent

Figure 2. Possible Scenarios

4. ASSOCIATION THROUGH REASONING

The OWL language has a large number of constructs that can be used to specify the domain of interest. These
constructs can be used to determine whether two names refer to the same individual. Being a formal language,
OWL uses logical reasoning to make this determination. Generally speaking, when one considers whether two
names refer to the same individual, there are three possible outcomes of the reasoning process:

1. The two names can be shown to refer to the same individual.

2. The two names can be shown to refer to different individuals.

3. It is consistent for either of the two cases to be true.

In this section we discuss the most important constructs of OWL that can affect this decision, and we give some
examples to illustrate how this happens.

The OWL language specifies an individual name using a Uniform Resource Indicator (URI). A URI is a
unique identifier. It uses the same syntax as URLs. URIs generalize URLs in the sense that they may not specify
an Internet location, like URLs do. Characteristics of individuals (such as position or velocity) are specified
using properties. Properties are themselves URIs. A property that specifies a characteristic of an individual is
called a DatatypeProperty. One specifies a characteristic of an individual by two URIs and a value: the URI of
the individual whose characteristic is being specified, the property that specifies the kind of characteristic, and
the value of the characteristic.



Relations between individuals are also specified using properties. A property of this kind is called an
ObjectProperty. A relation between two individuals is specified by three URIs: the URI of the property
that specifies the kind of relation and the two URIs of the individuals that are being related.

There are two special OWL properties that can be used for explicit data association: sameAs and differentFrom.
These explicitly specify that two URIs refer to either the same individual or different individuals. One can specify
that a whole set of URIs refer to different individuals by using the AllDifferent construct.

OWL properties are always binary in the sense that they always relate one entity with another. For a datatype
property, the two entities are the URI of an individual and the property value. For an object property, the two
entities are the URIs of two individuals being related. The inverse of a property is the same as the property
except that every pair of URIs is reversed. For example, the inverse of leaderOf is ledBy. Higher arity relations
are synthesized by introducing a new URI to represent the instance of the relation. A series of binary relations
are then used to relate this new entity to the set of individuals that are to be related with one another.

By default, every OWL property is many-to-many. A given individual can be related to any number of
other values or individuals. Furthermore, unless one specifies constraints on an OWL property, it can relate any
individual to any other value or individual. Without suitable constraints, no reasoner will be able to conclude
that two individual names refer to either the same or different individuals, unless they were explicitly specified
to be the same or different.

The two most important OWL constructs for data association are FunctionalProperty and
InverseFunctionalProperty. Both of these are classes of properties. When one specifies that a property
belongs to one of these classes, then that property is constrained to be either functional or inverse functional.
If a property is functional then a given individual can be related to at most one other value or individual.
In mathematical terms this means that the property is a partial function. If a property is inverse functional,
then an individual or value can be used by at most one individual. In other words, the reverse (or inverse)
property is functional. One specifies that a leadership is functional by asserting that ledBy is an instance of
FunctionalProperty or that its inverse leaderOf is an instance of InverseFunctionalProperty. If one of
these is specified, and if two individual names are both known to refer to the leader of the same organization,
then those names must represent the same individual.

The next most important OWL construct for data association is the cardinality constraint. A cardinality con-
straint restricts the number of individuals (or values) that a given individual can be related to. A maxCardinality
constraint specifies an upper bound on this number, a minCardinality constraint specifies a lower bound, and
a cardinality constraint specifies the exact number. A maxCardinality constraint of 1 is essentially the same
as a functional property constraint, except that a functional constraint is absolute while a cardinality constraint
is only relative to the individuals in a particular class. The maxCardinality and cardinality constraints are
especially useful for proving that two individual names refer to the same individual. They accomplish this in
much the same way as the functionality constraints discussed above. The minCardinality constraint is not very
useful for such a determination.

Another important OWL construct is the disjointWith property. When two classes are specified to be
disjoint, then they cannot have any instances (individuals) in common. Disjointness conditions are useful for
proving that two names must refer to different individuals. For example, if one specifies that Car and Airplane are
disjoint, then every instance of Car is different from every instance of Airplane. An extreme form of disjointness
is the complementOf construct. This specifies that two classes are not only disjoint, but also that every individual
is in one of the two.

The remaining OWL constructs are less important for data association, but they can sometimes achieve such
a result, especially when combined with other constructs. The oneOf construct is used for specifying that the
members of a class must all come from a given list of instances. For example, if one knows all of the members
of an particular organization, and if an individual is known to be a member of this organization, then one can
conclude that the individual is the same individual as one of the known set of members. One can then reason by
“process of elimination” to determine the precise member (i.e., if one can eliminate the other possibilities, then
the remaining one must be the same as the individual). The unionOf construct specifies that a class is the union
of some other classes. This is similar to the oneOf construct except that it uses classes instead of individuals.



The unionOf construct is much weaker than oneOf, but it is sometimes useful for data association via a similar
process of elimination.

One can specify in OWL that one class is a subset of another using the subClassOf construct. If two classes
are subsets of each other, then they have the same set of elements. This can be specified by either making two
subClassOf assertions or by asserting that one class is an equivalentClass of the other. Similarly, a property
can be a subPropertyOf another, and one property can be an equivalentProperty of another. None of these
constructs can be used by itself for data association. However, they can be used to determine additional facts
about an individual which could eventually lead to a data association. For example, if an individual is known to
be an instance of a class that is a subClassOf another class which has a oneOf constraint, then one may be able
to use a process of elimination to determine that the individual name refers to the same as another individual
name.

The OWL intersectionOf construct is a strong form of the subClassOf constraint. For example, if one
specifies that the AmphibiousVehicle class is the intersection of the LandVehicle and WaterVehicle classes, then
one is not only specifying that AmphibiousVehicle is a subclass of the other two, but also that every instance of
both of the other two is amphibious.

One can specify that a property has a domain and range. Thus if one observes that two individuals are
related via a property, and if the property has domain and range constraints, then one can conclude that the
first individual is in the domain and the second is in the range. The domain and range constraints are absolute
in that they apply globally to the property. The OWL allValuesFrom constraint is a relative form of the range
constraint.

One can specify that an OWL property is a SymmetricProperty or a TransitiveProperty. A symmetric
property is equivalent to its inverse property. A transitive property is transitive as a binary relation. Both of
these constraints allow one to infer new relationships from known relationships. When combined with functional
or inverse functional constraints they can be used to prove that two individual names refer to the same individual.

If two classes are equivalent, it does not follow that they are the same, and similarly for properties. However,
this could be evidence that they are the same. More generally, when one cannot logically determine whether two
individual names refer to the same individual or to different individuals, one may be able to determine whether
the two names are likely or unlikely to refer to the same individual. This kind of decision requires a different
form of reasoning that is discussed in the next section.

5. CONFIDENCE

In this section we will further explore the results provided by ConsVISor and investigate how certain we can
be of their meaning. In this first paragraph we assume complete confidence in the information contained in
the annotations. Consider first the case where ConsVISor returns consistent for both hypotheses. Since it is
consistent to believe either that they are the same or that they are different we cannot make any association
claims at all; there simply is not enough information in the annotations to make any conclusions regarding
their equivalence or non-equivalence. The converse case in which both hypotheses produce inconsistent results
should never occur unless there is an inconsistency in the underlying ontology. The interesting cases occur
when one hypothesis is consistent and the other is inconsistent. Take the case where the sameAs hypothesis is
consistent and the differentFrom hypothesis is inconsistent. The first result does not really tell us much but,
since the two references cannot be referring to different individuals (i.e. differentFrom is inconsistent) they
must be coreferences. Conversely, if the sameAs hypothesis is inconsistent and the differentFrom hypothesis is
consistent, the two references cannot refer to the same individual.

As we indicated, the previous paragraph assumed that all of the information in the annotations was known
to be true. What happens in cases where the annotations may contain information of questionable certainty?
This situation is more realistic when considering real world data sources and so we need to consider how we
might approach this problem. We will assume in the examples that follow the use of a very simple confidence
measure that can be associated with part of an annotation. For simplicity, and without lost of generality, we
will use a certainty measure based on a scale from 0 to 1 with 0 representing no confidence and 1 representing
total confidence. Let us now assume one of the documents contains annotations that are tagged with uncertainty



measures indicating some degree of confidence in the validity of the information. In the simplest case all the
annotations may be given the same value representing the overall confidence in the source of the document. In
other cases specific annotations may have their own uncertainty measures owing perhaps to the judgment made
by the source of the information for example, an analyst notes a 90% confidence that the surveillance photo
contains an A10 aircraft. The question now is, how do we make use of this uncertainty information in evaluating
the results from ConsVISor?

There is no notion of uncertainty in OWL today and, as with all OWL reasoners, ConsVISor does not have
any way to deal with uncertainty even if an ontology has an explicit way for incorporating uncertainty into
its annotations. What ConsVISor can do, however, is provide us with the information about the annotations
involved in the determination of an inconsistency. Using an external process it is possible in some cases to combine
the uncertainties of the implicated annotations to make some statements about the uncertainty associated with
an association claim. Consider the case where one document contains annotations that are known to be certain
(i.e., certainty factor equal to 1 and the other document has annotations in which some are marked as having
certainty measures of less than 1. Now take the case where both the sameAs and the differentFrom hypotheses
produce inconsistent results (remember this was not possible above when everything was certain but it can occur
when there is uncertainty). If it is the case that the annotations involved in one of the results are all known
for certain whereas some of the annotations in the other result are not, we can conclude that the first results
are correct and use them to make the appropriate association claim. If it is the case that both results contain
uncertain annotations one could use a heuristic that picks the result that is dependent on the least uncertain
annotations and offer it as a “more probable” coreference result. For example, if the sameAs hypothesis produced
an inconsistent result based on annotations whose combined certainty factors amounted to less than the combined
certainties of the differentFrom hypothesis, a suggestion could be made that the two references are “more likely”
to be coreferences than not. Note that this heuristic has not been formally analyzed or tested and is simply
suggested here as a possible first approach from which to base future research.

The other cases are perhaps less interesting. If you have uncertainty when both results turn up consistent
you cannot say anything more or less than you could under certain conditions. If you have uncertainty involved
in the annotations implicated in an inconsistent result when the other result is consistent, you now no longer
can state with certainty that the references are equivalent or not. It would be nice to return a measure of the
likelihood of an association, but the determination of a sound method for calculating a reliable measure for the
uncertainty of an association conclusion based on implicated annotations containing uncertainty is an open issue
for future research.

6. CONCLUSION

In this paper we demonstrated a technique for discovering associations (coreferences) in documents marked up
in OWL. The method assumes the existence of an ontology that appropriately defines the constraints that exist
among the individuals in the domain of interest. Because OWL is a formal language tools can be developed
that can reason about the contents of OWL documents, which is what our consistency-checking tool, ConsVISor,
does. With some simple examples we demonstrated how we could use a tool like ConsVISor to test hypotheses
about whether or not two individual names in different documents can be references to the same individual.
This is achieved by combining the documents into a single document and adding an annotation that equates the
individual names (using sameAs) or makes them different (using differetFrom). When this combined annotation
is processed by ConsVISor and it reports an inconsistency we can conclude that the added annotation must be
false; for example if the inconsistent result arose after adding the hypothesis that the individual names refer to
different individuals then we can conclude that they in fact refer to the same individual.

Our examples used a single OWL construct, the cardinality constraint, to detect inconsistencies. We discussed
ways in which other constructs may be used in a similar manner and we intend to explore such opportunities in
future experiments. It is also possible to extend our approach to situations in which uncertainty information is
included in the annotations. We discussed some thoughts on how this might be done in the absence of a formal
way of representing uncertainty in OWL. In future work we intend to experiment with various ways of combining
uncertainty metrics to provide a measure of confidence to the association conclusions that are made. This paper
focused on the process of comparing just two individual names for coreference. A working system employing this



technique would need to apply this process to all pairs of individual names that could possibly be coreferences;
this would include any pair of individuals that share a common class at some point in the class hierarchy captured
in an ontology. Since everything in OWL is a member of the class Thing, one could attempt to coreference all
pairs, but this would be computationally intractable. We will therefore need some way of limiting the search to
some set of appropriate classes; this is yet another area to be addressed in future work.

Acknowledgments

Some of this material is based upon work supported by the Air Force Research Laboratory, Contract Number
F30602-00-C-0188. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States Air Force.

REFERENCES
1. D. L. Hall, Mathematical Techniques in Multisensor Data Fusion, Artech House, Boston - London, 1992.
2. E. Waltz and J. Llinas, Multisensor Data Fusion, Artech House, Norwood, MA, 1990.
3. A. N. Steinberg and C. L. Bowman, “Revision to the JDL data fusion model,” in Handbook of Multisensor

Data Fusion, D. L. Hall and J. Llinas, eds., pp. 2–1–2–19, (CRC Press), 2001.
4. “AeroSWARM.” Available at http://ubot.lockheedmartin.com.
5. OWL-ref, “OWL Web Ontology Language Reference,” 2003. www.w3.org/TR/owl-ref.
6. K. Baclawski, J. A. Letkowski, C. J. Matheus, and M. M. Kokar, “The ConsVISor consistency checking

tool.” Available at vistology.com/consvisor.html.
7. C. J. Matheus, M. M. Kokar, and K. Baclawski, “A core ontology for situation awareness,” in Proceedings

of the Sixth International Conference on Information Fusion, pp. 545 –552, 2003.
8. C. J. Matheus, K. P. Baclawski, and M. M. Kokar, “Derivation of ontological relations using formal meth-

ods in a situation awareness scenario,” in Multisensor, Multisource Information Fusion: Architectures,
Algorithms, and Applications 2003, pp. 298–309, SPIE, 2003.

9. M. M. Kokar and J. Wang, “Using ontologies for recognition: An example,” in Proceedings of the Fifth
International Conference on Information Fusion, pp. 1324 – 1343, 2002.

10. M. M. Kokar and J. Wang, “An example of using ontologies and symbolic information in automatic target
recognition,” in Sensor Fusion: Architectures, Algorithms, and Applications VI, pp. 40–50, SPIE, 2002.

11. D. McGuinness, “Ontologies and online commerce,” IEEE Intelligent Systems 16(1), pp. 8–14, 2001.
12. T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American , May 2001.
13. RDF, “Resource description framework (RDF) model and syntax specification,” Feburary 1999.

www.w3.org/TR/REC-rdf-syntax.
14. P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, and J. Smith, “UML for ontology

development,” The Knowledge Engineering Review 17, 1, pp. 61–64, 2002.
15. “OMG Unified Modeling Language specification, version 1.3,” tech. rep., Object Management Group, 1999.


