Web Technologies for Bioinformatics

Ken Baclawski
Data Formats

- Flat files
- Spreadsheets
- Relational databases
- Web sites

<table>
<thead>
<tr>
<th>component</th>
<th>variable</th>
<th>initial_value</th>
<th>physical_unit</th>
<th>interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>membrane</td>
<td>u</td>
<td>-85.0</td>
<td>millivolt</td>
<td>out</td>
</tr>
<tr>
<td>membrane</td>
<td>Vr</td>
<td>-75.0</td>
<td>millivolt</td>
<td>out</td>
</tr>
<tr>
<td>membrane</td>
<td>Cm</td>
<td>0.01</td>
<td>microF_per_mm2</td>
<td></td>
</tr>
<tr>
<td>membrane</td>
<td>time</td>
<td></td>
<td>millisecond</td>
<td>in</td>
</tr>
<tr>
<td>ionic_current</td>
<td>Iion</td>
<td></td>
<td>microA_per_mm2</td>
<td>out</td>
</tr>
<tr>
<td>ionic_current</td>
<td>v</td>
<td></td>
<td></td>
<td>in</td>
</tr>
<tr>
<td>ionic_current</td>
<td>Vth</td>
<td></td>
<td>millivolt</td>
<td>in</td>
</tr>
</tbody>
</table>
XML Documents

- Flexible very popular text format
- Self-describing records

```xml
<Interview RandomizationDate="2000-01-15" BMI="18.66" Height="62" Weight="102" ...
<Interview RandomizationDate="2000-01-15" BMI="26.93" Height="63" Weight="152" ...
<Interview RandomizationDate="2000-02-01" BMI="33.95" Height="65" Weight="204" ...
<Interview RandomizationDate="2000-02-01" BMI="17.38" Height="67" Weight="111" ...
```
XML Documents (continued)

- Hierarchical structure
Purpose of Data

- Data is collected and stored for a purpose.
- The format serves that purpose.
- Using data for another purpose is common.
- Data presentation (such as on a Web site) is one example of such a use.
- It is important to anticipate that data will be used for many purposes.
- Data is reused by *transforming* it.
Statistical Analysis as a Transformation Process

- Transformation consists of a series of steps.
- Specialized equipment and software is used for each step.
- Separation into steps reduces the overall effort.
Web Site Construction

- Web sites can be constructed using a Web site authoring tool (e.g., Front Page).
- Alternatively, one could use a transformation process to separate concerns.
Advantages of Transformation

- Reduces the overall effort.
- Presentation style is independent of the source content.
- Presentation style can be changed with immediate effect.
- Uniform enforcement of presentation style.
- Updates to content are immediate.
- Content can be used for many other purposes:
 - Many reports in many formats
 - Proposals
 - Data sharing with other institutions
 - Data mining
Transformation Languages

- Traditional programming languages such as Perl, Java, etc.
- Rule-based (declarative) languages such as the XML Transformation language (XSLT).
 - Rule-based rather than procedural
 - Transform each kind of element with a template
 - Matching and processing of elements is analogous to the digestion of polymers with enzymes.
Transformation as Digestion

- The blue enzyme attacks the polymer at two locations.
- The resulting three polymers are then attacked by the green enzyme.
An XSLT program consists of templates.

Each template processes a set of matching elements.

A template can break up the element to be processed by other templates.

```
<xsl:template match="chromosome">
  ...
  <xsl:apply-templates select="locus"/>
</xsl:template>
```

```
<xsl:template match="locus">
  ...
</xsl:template>
```
<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- Change all occurrences of P to Protein -->
 <xsl:template match="P">
 <Protein>
 <xsl:apply-templates select="@*|node()"/>
 </Protein>
 </xsl:template>

 <!-- Change all occurrences of S to Substrate -->
 <xsl:template match="S">
 <Substrate>
 <xsl:apply-templates select="@*|node()"/>
 </Substrate>
 </xsl:template>

 <!-- Don't change anything else -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates match="@*|node()"/>
 </xsl:copy>
 </xsl:template>
</xsl:transform>
<Array>
<P id="Mas375">
<interaction substrate="Sub89032">
<BindingStrength>5.67</BindingStrength>
<Concentration unit="nm">43</Concentration>
</interaction>
<interaction substrate="Sub89033">
<BindingStrength>4.37</BindingStrength>
<Concentration unit="nm">75</Concentration>
</interaction>
</P>
<P id="Mtr245">
<interaction substrate="Sub89032">
<BindingStrength>0.65</BindingStrength>
<Concentration unit="um">0.53</Concentration>
</interaction>
<interaction substrate="Sub80933">
<BindingStrength>8.87</BindingStrength>
<Concentration unit="nm">8.4</Concentration>
</interaction>
</P>
</Array>
<Array>
 <Protein id="Mas375">
 <interaction substrate="Sub89032">
 <BindingStrength>5.67</BindingStrength>
 <Concentration unit="nm">43</Concentration>
 </interaction>
 <interaction substrate="Sub89033">
 <BindingStrength>4.37</BindingStrength>
 <Concentration unit="nm">75</Concentration>
 </interaction>
 </Protein>
 <Protein id="Mtr245">
 <interaction substrate="Sub89032">
 <BindingStrength>0.65</BindingStrength>
 <Concentration unit="um">0.53</Concentration>
 </interaction>
 <interaction substrate="Sub80933">
 <BindingStrength>8.87</BindingStrength>
 <Concentration unit="nm">8.4</Concentration>
 </interaction>
 </Protein>
 <Substrate id="Sub89032"/>
 <Substrate id="Sub89033"/>
</Array>
Ontologies

- The structure of data is its ontology.
 - Database schema
 - XML Document Type Definition (DTD)
- An ontology defines the concepts and relationships between them in a domain.
- Transformations are fundamental:
 - Queries
 - Organizing data (views)
 - Transformation for new purposes
Research Areas

- Ontologies for bioinformatics
- Ontology development in general
 - Constructing ontologies
 - Validation and testing of ontologies
- New ontology languages to capture more meaning
- Transformation languages
Research Areas

- Inference and deduction
 - Logical inference
 - Probabilistic inference
 - Scientific inference
 - Other forms of inference

- Integrating inference with
 - Data mining
 - Experimental processes