Web Technologies for Bioinformatics

Ken Baclawski

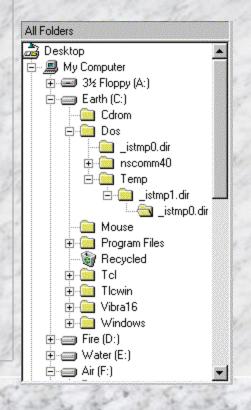
Data Formats

Flat files
Spreadsheets
Relational databases
Web sites

component	variable	initial_value	physical_unit	interface
membrane	u	-85.0	millivolt	out
membrane	Vr	-75.0	millivolt	out
membrane	Cm	0.01	microF_per_mm2	
membrane	time		millisecond	in
ionic_current	Lion		microA_per_mm2	out
ionic_current	v			in
ionic_current	Vth		millivolt	in

500	18.66	0	0	62	46.27102
500	26.93	0	1	63	68.95152
100	33.95	1	0	65	92.53204
100	17.38	0	0	67	50.35111

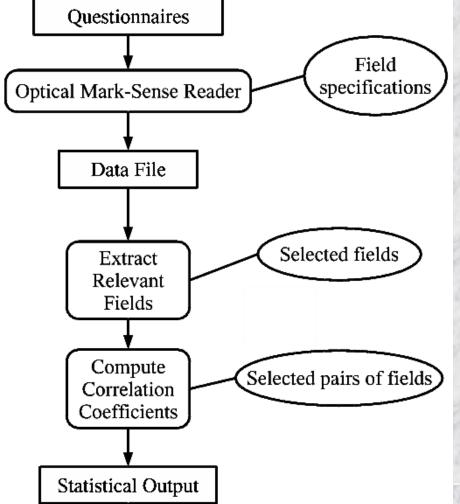
XML Documents


Flexible very popular text format Self-describing records

<Interview RandomizationDate="2000-01-15" BMI="18.66" Height="62" Weight="102" ... />
<Interview RandomizationDate="2000-01-15" BMI="26.93" Height="63" Weight="152" ... />
<Interview RandomizationDate="2000-02-01" BMI="33.95" Height="65" Weight="204" ... />
<Interview RandomizationDate="2000-02-01" BMI="17.38" Height="67" Weight="111" ... />

🛷 Wtkgs:	
BMI:	
🛷 RandomizationDate:	2000-1-15
Weight:	102
🛷 Height:	62

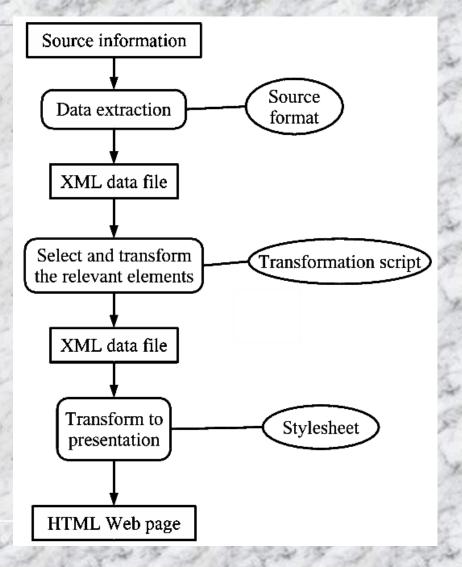
XML Documents (continued)


Hierarchical structure

Purpose of Data

- Data is collected and stored for a purpose.
 The format serves that purpose.
 Using data for another purpose is common.
 Data presentation (such as on a Web site) is one example of such a use.
- It is important to anticipate that data will be used for many purposes.
- Data is reused by transforming it.

Statistical Analysis as a Transformation Process

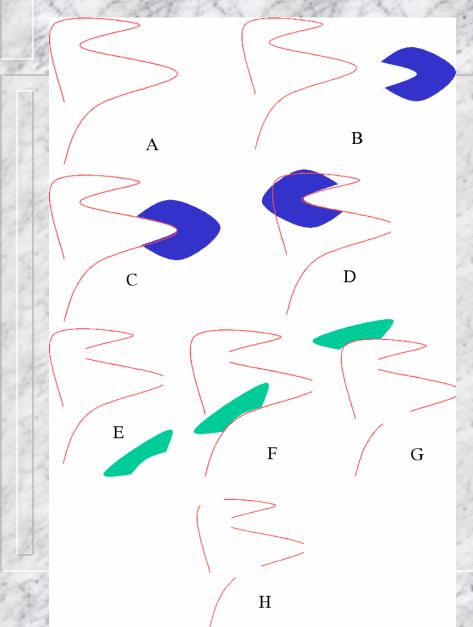

Transformation consists of a series of steps.

Specialized equipment and software is used for each step.

Separation into steps reduces the overall effort.

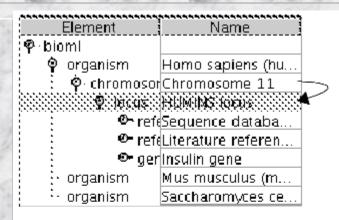
Web Site Construction

Web sites can be constructed using a Web site authoring tool (e.g., Front Page). Alternatively, one could use a transformation process to separate concerns.


Advantages of Transformation

- Reduces the overall effort.
- Presentation style is independent of the source content. Presentation style can be changed with immediate effect. Uniform enforcement of presentation style. Updates to content are immediate.
- Content can be used for many other purposes:
 - Many reports in many formats
 - Proposals
 - Data sharing with other institutions Data mining

Transformation Languages


- Traditional programming languages such as Perl, Java, etc.
- Rule-based (declarative) languages such as the XML Transformation language (XSLT).
 - Rule-based rather than procedural
 - Transform each kind of element with a template
 - Matching and processing of elements is analogous to the digestion of polymers with enzymes.

Transformation as Digestion

The blue enzyme attacks the polymer at two locations.
The resulting three polymers are then attacked by the green enzyme.

XSLT "Digestion"

<xsl:template match="chromosome">

```
<xsl:apply-templates select="locus"/>
</xsl:template>
```

<xsl:template match="locus">

```
</xsl:template>
```

An XSLT program consists of templates Each template processes a set of matching elements A template can break up the element to be processed by

other templates

```
<?xml version="1.0"?>
<xsl:transform version="1.0"</pre>
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<!-- Change all occurrences of P to Protein -->
<xsl:template match="P">
 <Protein>
    <xsl:apply-templates select="@*|node()"/>
 </Protein>
</xsl:template>
<!-- Change all occurrences of S to Substrate -->
<xsl:template match="S">
 <Substrate>
    <xsl:apply-templates select="@*|node()"/>
 </Substrate>
</xsl:template>
<!-- Don't change anything else -->
<xsl:template match="@*|node()">
  <xsl:copy>
    <xsl:apply-templates match="@*|node()"/>
 </xsl:copy>
</xsl:template>
```

```
</xsl:transform>
```

<Array><P id="Mas375"><interactionsubstrate="Sub89032">
<BindingStrength>5.67</BindingStrength><Concentration
unit="nm">43</Concentration></interaction><interaction
substrate="Sub89033"><BindingStrength>4.37</BindingStrength>
<Concentration unit="nm">75</Concentration></interaction></P><P
id="Mtr245"><interaction substrate="Sub89032">
<BindingStrength>0.65</BindingStrength><Concentration
unit="um">0.53</Concentration></interaction
substrate="Sub80933"><BindingStrength><Concentration
unit="um">8.4</Concentration></interaction><S
id="Sub89032"/><S id="Sub89033"/></Array>

<Array>

<Protein id="Mas375"> <interaction substrate="Sub89032"> <BindingStrength>5.67</BindingStrength> <Concentration unit="nm">43</Concentration> </interaction> <interaction substrate="Sub89033"> <BindingStrength>4.37</BindingStrength> <Concentration unit="nm">75</Concentration> </interaction> </Protein> <Protein id="Mtr245"> <interaction substrate="Sub89032"> <BindingStrength>0.65</BindingStrength> <Concentration unit="um">0.53</Concentration> </interaction> <interaction substrate="Sub80933"> <BindingStrength>8.87</BindingStrength> <Concentration unit="nm">8.4</Concentration> </interaction> </Protein> <Substrate id="Sub89032"/> <Substrate id="Sub89033"/> </Array>

Ontologies

- The structure of data is its ontology.
 - Database schema
 - XML Document Type Definition (DTD)
- An ontology defines the concepts and relationships between them in a domain.
- Transformations are fundamental:
 - Queries
 - Organizing data (views)
 - Transformation for new purposes

Research Areas

Ontologies for bioinformatics
Ontology development in general

Constructing ontologies
Validation and testing of ontologies

New ontology languages to capture more meaning

Transformation languages

Research Areas

Inference and deduction Logical inference Probabilistic inference Scientific inference Other forms of inference Integrating inference with Data mining **Experimental processes**