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Abstract

Large-scale component-based software systems are becoming increasingly important. Build-
ing such a system requires more than just specifications for the overall system and its compo-
nents. It is necessary to have a formal specification of how the components are composed to
form the overall system. Furthermore, it is also necessary to have an explicit specification of the
environment within which the system will be used. Finally, some mechanism must be available
to make verification a tractable problem. To address all of these concerns, we suggest that
component composition can be based on ontologies. An ontology is a shared understanding that
allows individuals in a community to communicate. The increasing popularity of ontology-based
computing has resulted in a rapid increase in the number of tools available for creating and for
using ontologies. We suggest that leveraging these tools can improve the coverage and effective-
ness of component composition compared with existing techniques. We also discuss a specific
application domain that can be used as a testbed for the use of ontology-based techniques to
achieve dynamic reconfiguration performed at run-time without direct human interaction.
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1 Introduction

To cope with the task of large-scale software systems, developers are increasingly using components
and component frameworks. Unfortunately, it is not easy to verify the correctness of a component
composition, even when the individual components have been formally specified. The problem
of “feature interaction” has been recognized for some time, and entire workshops (such as [7])
have been devoted to it. In a provocative paper, Lamport gives a rather dismal assessment of the
prospects for such verifications:

Composition of open-system specifications is an attractive problem, having obvious applica-

tion to reusable software and other trendy concerns. But in 1997, the unfortunate reality is that

engineers rarely specify and reason formally about the systems they build. It is naive to expect

them to go to the extra effort of proving properties of open-system component specifications

because they might re-use those components in other systems. It seems unlikely that reasoning

about the composition of open-system specifications will be a practical concern within the next

15 years. Formal specifications of systems, with no accompanying verification, may become

common sooner. [26]
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One hopes that it will not be another 11 years before reasoning about compositions becomes
a practical concern. One area where rigorous specifications are generating a great deal of activity
is ontologies: declarative specifications of entities and their relationships with each other within a
specialized application domain. An ontology is a shared understanding that enables a community
of people to communicate. Ontologies are increasingly also being used to enable communication
between autonomous computing entities (agents). To achieve effective communication between
agents, ontologies must also include facts, theorems and inference rules. For more about ontologies
see the Ontology FAQ [27].

In an ideal world, the components would be formally specified, the component specifications
would be composed, and a rigorous proof given to verify that the composition satisfies the require-
ments. The problem with this idealization is that finding proofs is an intractable problem in general
because theorem proving is an undecidable problem. As a result, it is necessary to find some way
to make the problem tractable.

The primary technique in use today to achieve tractability is the creation of specialized lan-
guages for component composition, such as CSP [22]. Lamport [26] calls these pseudo-programming
languages. Like all specialized languages the disadvantage of this approach is that such a language
has a limited domain of applicability. Component compositions that do not fit within the con-
structs and assumptions of the language cannot be analyzed at all. This has resulted in a “cottage
industry” of extensions to existing languages, each offering some additional constructs.

A more serious problem, stated by Lamport [26], is that these languages do not make it any
easier to verify correctness of the composition. In fact, Lamport argues that pseudo-programming
languages make it harder to verify correctness. He ends his paper with the following:

Any proof in mathematics is compositional – a hierarchical decomposition of the desired

result into simpler subgoals. A sensible method of writing proofs will make that hierarchical

decomposition explicit, permitting a tradeoff between the length of the proof and its rigor.

Mathematics provides more general and more powerful ways of decomposing a proof than just

writing a specification as the parallel composition of separate components. That particular form

of decomposition is popular only because it can be expressed in terms of the pseudo-programming

languages favored by computer scientists. Mathematics has been developed over two millennia

as the best approach to rigorous human reasoning. A couple of decades of pseudo-programming

language design poses no threat to its pre-eminence. The best way to reason mathematically is

to use mathematics, not a pseudo-programming language. [26]

Indeed, one could make a good case that the mathematical reasoning exhibited in the work of
Euclid [14] in 300 B.C.E., while not completely rigorous, is more rigorous than nearly all the
reasoning currently used in software development today.

In this paper, we attempt to go “back to basics” by making mathematical reasoning the primary
reasoning technique for verification of component composition. We make use of the category theory
technique of the colimit to “make that hierarchical decomposition explicit.” To achieve tractability,
we use ontologies that have sufficient depth and coverage.

Another point made by Lamport is that components often have implicit assumptions about
the environment within which they function [26]. We advocate formalizing the specification of the
environment as well as the system requirements. See Bunge [10] for a precise definition of the notion
of environment. In Section 4 we discuss sensor systems as an application domain that would provide
a thorough test of whether ontology-based techniques can be used in high-performance scenarios.

2



This particular application domain requires dynamic reconfiguration at run-time without direct
human interaction. In dynamic reconfiguration, both the system requirements (over which we
have some control) and the environment specification (over which one generally does not have
control) can evolve in time. Such changes can trigger a request for system reconfiguration. Such a
reconfiguration not only requires finding a new component composition but it also requires verifying
that it satisfies the (possibly new) system requirements for the (also possibly new) environment
specification at run-time under strict time constraints. Such a feat is possible only when one is
dealing with a specialized domain.

2 Related Work

The DARPA Agent Markup Language (DAML) [13] program is developing an ontology language
that is Web-enabled. The DAML program is also developing a large variety of DAML tools and
ontology-based applications. DAML has many similarities to the General Relationship Model
(GRM) [24] as well as the Unified Modeling Language (UML) [9]. Similarities and differences
between DAML and UML are discussed in [6] along with suggestions about extending UML so
that it is more compatible with DAML and other knowledge representation languages. DAML
does not yet have a rules and inferencing language, but such a language is in development (see
www.daml.org).

Knowledge-based approaches to software engineering are starting to appear within the broader
area of automated software engineering. The annual Automated Software Engineering conference
includes ontology-based approaches as one of its topic areas. There has been a conference [36] on
knowledge-based software engineering. However, there is not a lot of activity yet. Moreover most
of the work in this area uses the traditional monolithic development techniques. Object-oriented
and component-based techniques are not yet common.

Component composition in general has attracted a great deal of interest, including formal
approaches. Component composition is also called architectural configuration modeling and support
for it is generally found in a class of languages called architecture definition languages (ADL). There
is a good survey of most of the ADLs that support component composition in [33]. Examples include
ACME [16], Aesop [15], C2 [32], Darwin [30], MetaH [8], Rapide [28], SADL [34], UniCon [37],
Wright [3]. These languages vary considerably in their degree of formalization.

There are also languages that focus exclusively on component composition, such as Piccola [29].
In addition, there are many articles that introduce an ad hoc language within the context of the
article as a means of formalizing some aspects of component composition relevant to the article. For
example, [35] discusses verification techniques for object-oriented components and [12] is concerned
with specification matching.

One of the few examples of the development of an ontology for a specific application domain
is the treatment of astronomical software [40] by groups at SRI and NASA. They used the Snark
theorem prover [41]. Another example is the work of Goguen and Tracz [21] in which the domain
is avionics. They use the OBJ formal methods system [20]. Wing and Ockerbloom’s treatment of
type conversion [43] is another example. They use the Larch formal specification language [19].
The theorem prover for Larch is called LP [18]. Examples in business domains include the work of
Kent and his colleagues [25], and Iida et al. [23].
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3 Suggested Approach for Component Composition

In this section we give a brief sketch of how one might use ontologies as the basis for specifying and
verifying component compositions. We first sketch a metamodel for component composition, i.e.,
the meta-ontology. We then discuss the kinds of tool that would be important for ontology-based
component composition.

3.1 Metamodel

The primary entities are theories and proof traces as shown in Figure 1.
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Figure 1: Component Composition Metamodel

Theories. A mathematical theory consists of entities, relationships, constraints, rules and theo-
rems. A theory need not have any direct connection with any software. One important property
of theories is that a theory can be reused. As a result, it is important for theories to be organized
in a library from which they can be retrieved, specialized and composed with other theories. For
example, the theory of real numbers can be reused in a theory of time and duration as well as in a
theory of locations in space.

There are many languages for specifying mathematical theories. For our initial work we plan to
use MetaslangTM , an enhanced version of the SlangTM formal methods language of the Specware
formal methods system [31]. Metaslang has theory management features that are especially useful,
including the ability to specialize and to compose theories using the colimit operation from category
theory. It also supports refinement of theories, including refinement to programming language code.

The simplest example of a colimit is a disjoint union of several theories, i.e., one simply forms
the disjoint union of all sorts, operations, axioms and theorems. A colimit is more interesting when
some of the sorts and operations are shared by the theories being composed. For example, one can
import a theory into another theory. In this case, all of the sorts and operations in the imported
theory are shared with the other theory. The import mechanism is commonly supported by most
formal methods systems. In general, a colimit can construct theories in which sorts and operations
are selectively shared.

Ontologies. An ontology is a theory that specifies entities and relationships for a particular
domain. Ontologies are often constructed by composing smaller theories. There is now a large
variety of languages for specifying ontologies. We plan to eventually use the DAML+OIL language
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being developed by the DAML program [13], primarily because of the many tools being developed
for it and because of the many ontologies being written in DAML+OIL The one disadvantage
of DAML+OIL is that it is a “work in progress.” In particular, DAML+OIL does not yet have
a standard logical inference language. It also does not have the theory management features
supported by Metaslang. Fortunately, DAML+OIL has a formal axiomatization, and it can, in
principle, be translated in an automated manner to Metaslang.

Requirements and Environment Specifications. Requirements that can be imposed and
environments within which a system operates are also theories. We view them as special kinds of
ontology. Environments are not commonly specified explicitly. An example of where they are is in
Lynch’s work on I/O automata [17].

Component Specifications. Each reusable component has a specification that is expressed in
terms of the theories in the Theory Library. This expression will generally require specializing
and composing theories in the Theory Library. We do require that components be coded in some
programming language, but we do not require that the component be expressed in any special form
(such as a class or Java Bean). In particular, a component could be a code fragment or template.

Proof Traces. A proof trace or justification is a formal mathematical proof represented as a data
structure. Our main use of justifications is to record the proofs of the properties of component
compositions. In particular, a proof trace can verify the theory produced by a component compo-
sition. It can also verify that a component composition satisfies a requirement specification in a
particular environment. The latter kind of verification is not shown in Figure 1.

Compositions. A composition of theory components combines one or more theories to produce
another theory. The actual combination need not be a simple conjunction of the theories. In
particular, it is possible that the theories being composed share sorts and operations. A composition
can also add requirements that must be proven. In mathematics, such a requirement is called a
conjecture. The proof traces for the conjectures added to a composition validate the composition
and furnish its justification.

It is useful to maintain a library of component compositions because one technique for con-
structing a component composition satisfying a requirement is to simply look it up in the library.
If such a composition is not in the library, another technique is to modify a composition that is in
the library.

3.2 Tools

The entities above are constructed, managed and used by various tools:

Specification Composer. This is a tool that manages and composes specifications (theories).
We are currently using the Specware formal method system produced the Kestrel Institute [42].
The features of Specware were discussed above.

Other examples of composers include a composer tool in Lynch’s IOA [17]. Another formal
methods system that supports composition of theories is OBJ [20] which had an influence on the
Specware system [38]. The idea of using the category theory notion of a colimit for composing
theories was first proposed by Burstall and Goguen [11, 1, 2].

Theorem Prover. Many theorem provers are available, and many more are being produced by the
DAML program [13]. We currently use the Snark theorem prover [41]. An important requirement
of a theorem prover is that it produce a proof trace that can be queried by automated tools.
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Although theorem proving is, in general, an undecidable problem, in special cases it is not
only decidable but also tractable. This can be achieved by using ontological techniques such as
those being developed for DAML [13]. The DAML language is a rich mathematical language, yet
checking consistency of a DAML ontology is decidable. Furthermore, development tools and query
engines have been developed that are fast and scalable, not only for DAML but for other knowledge
representation languages. See [4, 5].

Meta Reasoner. This tool manages and examines the proof traces of the Component Composi-
tion Library. It is responsible for constructing and verifying component compositions. There are
various strategies that it can employ. For example, when the requirements and/or the environment
are changing in an incremental fashion, then it can construct new component compositions by
incrementally modifying existing component compositions.

The Meta Reasoner is similar to a Planner in the AI literature. The purpose of a planner is
to modify the behavior of a system in response to changes in the environment. There is a large
literature on planning, and many systems have been developed for handling a great variety of
scenarios. See [39] for a list of links to Web sites dealing with planning.

4 Dynamic Composition and Reconfiguration

for Sensor Systems

The application domain to which we plan to introduce dynamic component composition is in the
area of sensor systems. The sensors we consider are receivers located on a moving platform such as
an aircraft. When aircraft are operating in hostile territory, attempts will be made to detect and
to track their movements. This is most often done by using ground or missile based radars. Such
radars emit electromagnetic radiation that illuminates the aircraft. Radiation reflected from the
surfaces of the aircraft is used by the radar for detection, identification and tracking purposes. We
refer to these radars as emitters.

Because of the tactical importance of these radars, it is important for aircraft to detect that
they are being illuminated. For this reason, aircraft are equipped with receivers that attempt to
sense when the aircraft is being illuminated by an emitter. The aircraft receivers are called sensors.

It is normally assumed that the kinds of emitter that might be encountered during a mission
are known in advance. In other words, it is assumed that an environment is formally specified prior
to the mission. In particular, the system has data on the frequencies used by the emitters and the
times between successive illuminations when the emitters are operating. It is not normally assumed
that one will know when a given kind of emitter will begin operating or how long it will operate.

The software system that operates the sensor will necessarily assume that the environment is
known. If this assumption is invalidated during a mission, or if the requirements change during the
mission, then the software system may no longer satisfy the requirements. Hence there is a need
to reconfigure the system during the mission. There are several aspects of component composition
in this scenario that make it especially hard:

1. Component compositions must be constructed, verified and installed while a mission is taking
place. In particular, there is no possibility that the software could be taken out of service for
the sake of the reconfiguration.
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2. The pilot (if there is a pilot at all) is not in a position to be interacting with the system in
more than a perfunctory way.

3. The reconfiguration must be accomplished in a very short period of time, typically measured
in seconds, rather than minutes or hours

While there exists software that can be reconfigured at runtime as required by the first item
above, there are currently no systems that can satisfy even two of the conditions above, let alone
all three. Furthermore, an ad hoc or heuristic approach is not acceptable. Because lives can be lost
due to software that does not function according to expectations, it is essential that the system
provide rigorously proven guarantees of performance. Accordingly, it furnishes an extreme test of
what is possible with formal methods.

5 Conclusion

We have discussed the possibility of basing component composition on ontologies. This suggestion is
grounded in mathematics rather than in a pseudo-programming language. Rather than composing
software components using software-inspired connections, it composes theories using mathematical
composition techniques. It addresses the problem of tractability by relying on having an effective
domain-specific ontology. We intend to use existing, established ontology-based tools, theorem
provers and theory composers. Our primary contribution is to integrate these tools and to build
a high-level meta reasoner that manages them. We propose to apply these ideas in the specific
domain of sensor systems.
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