
Consistency Checking of RM-ODP Specifications

Kenneth BacÃlawski
College of Computer Science,

Northeastern University, Boston, Massachusetts 02115
kenb@ccs.neu.edu

MieczysÃlaw M. Kokar
Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts 02115

kokar@coe.neu.edu

Jeffrey Smith
Mercury Computer Systems Inc.

jsmith@coe.neu.edu

Jerzy Letkowski
School of Business, Western New England College, Springfield, MA 01119

jletkows@wnec.edu

Abstract

Ensuring that specifications are consistent is an important part of specification de-
velopment and testing. In this paper we introduce the ConsVISor tool for consistency
checking of RM-ODP specifications. This tool is a category theory based consistency
checker for formal specifications in a variety of languages, including both graphical and
non-graphical modeling languages. Because RM-ODP supports multiple viewpoints, it
is necessary to have a logical framework that can compose viewpoints and that can de-
tect inconsistencies (feature interactions) among multiple viewpoints. The ConsVISor
tool composes viewpoints by using the colimit operation of category theory. ConsVISor
checks consistency using a combination of theorem proving and model-based reasoning.
Some examples of the use of the tool are given.

1 Introduction

Consistency of a formal specification is a fundamental requirement. If a formal specification
is inconsistent, then one can logically derive anything, so that from a logical standpoint, the
specification is useless. The Reference Model for Open Distributed Processing (RM-ODP)
[8] is particularly vulnerable to inconsistency problems because it supports multiple view-
points. Even if every viewpoint is consistent by itself, it is possible for the combination of the
viewpoints to be inconsistent. When inconsistencies arise from incompatibilities among mul-
tiple views, the inconsistencies are called feature interactions. To ensure global consistency



of an RM-ODP specification, a consistency checking tool must support the composition of
multiple viewpoints.

Another important property of RM-ODP is its support for the specification of the dy-
namics of a system, not just the static model. A consistency checker must therefore support
dynamic modeling and must be able to check for reachability and deadlock avoidance.

ConsVISor is a consistency checking tool based on category theory [15, 18]. It has a
graphical user interface that supports modeling formalisms such as the General Relation-
ship Model (GRM) [7, 9] and the Unified Modeling Language (UML) [1, 2]. Consequently,
ConsVISor also supports graphical specification standards that are described in these lan-
guages, such as the Meta Object Facility (MOF), Component Warehouse Model (CWM),
CORBA, Software Communication Architecture (SCA), and Software Radio Architecture
(SRA). Consistency checking of RM-ODP specifications becomes more important to the
UML, and its derivative standards, since one proposed basis for the UML 2.0 Infrastructure
is to adopt some of the basic RM-ODP definitions (e.g. objects, actors, etc.) as its core.

In [10] it is argued that formal method based development involving consistency checks
and theorem proving is more cost-effective than relying on testing. There are a number of
ways to deal with inconsistencies. For instance, in [12] three levels of consistency handling
are proposed: ignore, tolerate (defer, circumvent or ameliorate) and resolve.

In the next section we introduce some background in category theory that we will use
in our examples, shown in Section 3. We also discuss how the ConsVISor tool is used.
A demonstration of the tool is available online at http://vis.home.mindspring.com/-
consvisor.html We then discuss the underlying methodology used for consistency checking
in Section 4, and we end with conclusions and future work.

2 Background

Category theory has been gaining popularity in formal approaches to software engineering.
While many formal specification techniques provide the ability to describe the static structure
and dynamic behavior of objects, category theory explicitly captures relationships between
specifications. The motivation for using a category theory based approach includes:

• Several organizations (e.g. the pUML, OMG subgroups, etc.) have been searching for
diagrammatic techniques for formal semantic representations.

• To have tool support for developing domain theories (ontological engineering), code
from specifications, specifications from code and specification refinement.

• The graphical and language support for specification composition is more powerful
than the include mechanism of languages such as Z and is more powerful than simple
algebraic specification techniques.

• The general theory of diagrams enables nodes and arcs to be related in a way that
preserves the structure and content of the source diagram in the target diagram, making



it possible for diagrams of specifications to be parameterized and instantiated where
the result is a diagram, not a single specification [13].

• Category theory is intensional versus extensional - implicit versus explicit [4], i.e. to
check a specification against a category theory based form of semantics one would show
that the class of models of any instance is within the class of models of the specifi-
cation, rather than show an explicit association (of classes of models with algebraic
specifications in both the source and target specifications).

• Category theory has been described as a potential formal foundation for the emerging
UML RT standard [6].

The rest of this section briefly describes the category theory terms used in this paper.
Theory-based algebraic specification is concerned with:

1. modeling system behavior using algebras (a collection of values and operations on those
values) and axioms that characterize algebra behavior, and

2. composition of larger specifications from smaller specifications. Composition of specifi-
cations is accomplished via specification building operations defined by category theory
constructs [16].

A theory is the set of all assertions that can be logically proved from the axioms of a given
specification. Thus, a specification defines a theory and is termed a theory presentation.

In algebraic specifications, the structure of a specification is defined in terms of sorts,
which are abstract collections of values, and operations over those sorts. This structure is
called a signature. A signature describes the structure of a solution, but it does not describe
the meaning of that structure. To specify semantics, a signature is extended with axioms
defining the intended semantics of signature operations. A signature with its associated
axioms is a specification.

An algebraic specification as defined above allows one to formally define the internal
structure of objects and classes of objects, but does not provide the capability to reason
about relationships between objects and classes. To create theory-based algebraic specifi-
cations that parallel object-oriented specifications, the ability to define and reason about
relationships between theories, similar to those used in object-oriented approaches (inheri-
tance, aggregation, etc.) must be available. Category theory is an abstract mathematical
theory used to describe the external structure of various mathematical systems [17] and is
used to describe relationships between specifications.

Specification morphisms are the basic instrument for defining and refining specifications.
However, we can extend the notion of a specification morphism to allow for the creation of
new specifications from a set of existing specifications. Often two specifications derived from
a common ancestor specification need to be combined. The desired combination consists of
the unique parts of two specifications and some “shared part” common to both specifications
(the part defined in the shared ancestor specification). This combining operation is a colimit.



Conceptually, a colimit defines a specification that is the “shared union” of a set of
specifications based on the morphisms between the specifications. These morphisms define
equivalence classes of sorts and operations. In addition to the specification defined by the
colimit, the colimit operation creates a specification morphism from each specification to the
specification defined by the colimit.

From morphisms and colimits, we can construct specifications in a number of ways. We
can:

1. build a specification from a signature and a set of axioms,

2. form the union of a set of specifications via a colimit,

3. rename sorts or operations via a specification morphism and

4. parameterize specifications.

Many of these methods have been useful in translating object-oriented specifications into
theory-based specifications [3, 14].

3 Examples of Feature Interaction

In this section we give some examples of feature interaction inconsistencies that can arise in
data modeling.

3.1 Vehicles

Figure 1: Vehicle Specification



In this example, one models vehicles as being either land vehicles or water vehicles. This
view is shown in Figure 1. The vehicle is converted to a collection of facts in many-sorted
first-order predicate logic. The following is the vehicle model expressed in terms of such
logical facts using a single 3-place predicate called pv. The pv predicate can be interpreted
as asserting that the relationship in the first position relates the object in the second position
with the object in the third position.

pv(type,vehicle,class).

pv(type,landVehicle,class).

pv(type,waterVehicle,class).

pv(subTypeOf,landVehicle,vehicle).

pv(subTypeOf,waterVehicle,vehicle).

pv(disjointWith,landVehicle,waterVehicle).

In the second view, an amphibious vehicle class is introduced as in Figure 2. This adds
the following logical facts to the ones above:

pv(type,landVehicle,class).

pv(type,waterCraft,class).

pv(type,amphibian,class).

pv(subTypeOf,amphibian,landVehicle).

pv(subTypeOf,amphibian,waterCraft).

When the two views are composed, the colimit introduces an additional fact:

pv(equivalentTo,waterCraft,waterVehicle).

The disjointness in the first view is incompatible with the amphibian subtype introduced
in the second view.

Two steps are required to check consistency of these two views.

1. The two views must be composed. This is done by forming the colimit in which the
WaterVehicle of the first view is identified with the WaterCraft of the second view.

2. The theorem prover is invoked. In this case, the theorem prover shows that the Am-
phibian class is inconsistent (i.e., it cannot be instantiated).

The axiom that fails to be satisfied for this example is the following:

axiom Disjoint-With is pv?(disjointWith, c1, c2) <=>

class?(c1) & class?(c2) &

not (ex(x:Object) (pv?(type, x, c1) & pv?(type, x, c2)))

In this axiom, ex is the existential quantifier, & is the logical and operator, and | is the
logical or operator.



Figure 2: Amphibious Vehicle

3.2 Expressions

In this example, one is modeling an expression consisting of binary or higher operators that
can be combined recursively. For example, (x + y + 5) ∗ (z + 3) ∗ (a + b) would be such an
expression. This includes operators such as addition and multiplication. In the first view,
the notion of Expression is introduced with two disjoint, inclusive subtypes, Elementary
and Operation. An elementary expression has no further substructure. It would include
constants and variables. An operation is a subexpression that combines operands that are
either elementary expressions or other operations.

In the first view, shown in Figure 3, the classes are shown, together with the subtype
relationships between them. The second view in Figure 4 shows the operand relationship
which connects an operation object with the subexpressions being combined by the operation.

As in the Vehicle example, the views are combined by using a colimit to form a single
specification as follows:

spec EXPRESSION-ELEMENTARY-OPERATION-COLIMIT is

import colimit of diagram

nodes T1: TRIV, T2: TRIV, OP-COMPONENT-EXP,

ELEMENTARY-OPERATION-SUBTYPE-EXPRESSION

arcs

T1 -> OP-COMPONENT-EXP: {e -> Exp},

T1 -> ELEMENTARY-OPERATION-SUBTYPE-EXPRESSION: {e -> Expression},

T2 -> OP-COMPONENT-EXP: {e -> Op},

T2 -> ELEMENTARY-OPERATION-SUBTYPE-EXPRESSION: {e -> Operation},

end-diagram

end-spec



Figure 3: Expression Specification

Figure 4: Operands

In the specification above, the Expression class in the first view is identified with the Exp
class in the second view. The specification is written in Slang, the language of SpecwareTM

[15].
The resulting specification is not obviously inconsistent. The multiplicity constraints of

the relationship between Operation and Expression implies that there are at least twice as
many instances of Operation as there are instances of Expression. However, Operation is
a subtype of Expression, so every instance of Operation is also an instance of Expression.
Using the symbol # to mean the number of instances, we have shown that:

#Expression ≥ #Operation ≥ 2#Expression

which implies that the Operation class (as well as the Expression class) is either empty or
has an infinite number of elements.



The problem with this model is that the cardinality constraints are in the wrong order.
Reversing cardinality constraints is a common mistake in data models, and it is much easier
to make such a mistake when there are multiple views. The ConsVISor tool will, in this
case, warn the user that some of the classes cannot be instantiated.

In Figure 5 we show what the ConsVISor screen looks like for the Expression/Operation
example above. ConsVISor uses a Prolog fact and rule base (base.pl) for the underlying
modeling system, in this case RM-ODP. The model being examined is also converted to
Prolog (expression.pl) that is combined with base.pl and run. The Prolog output is
then shown by ConsVISor in the bottom of the window.

Figure 5: ConsVISor Screen



4 Methods

The ConsVISor tool uses a combination of techniques to perform consistency checking. This
is necessary because of the Gödel Incompleteness Theorem which states that the consistency
of a nontrivial theory is not expressible within the theory. Therefore, checking consistency
is, in general, an undecidable problem. This does not, however, make it impossible. The
ConsVISor tool attacks the problem as follows:

1. A model checking component uses Prolog to find syntactic inconsistencies and to per-
form model checking. If a model can be verified, then the specification is consistent.
The model checking component prints diagnostics that can be helpful even when the
specification is consistent.

2. A theorem proving component attempts to prove that there are inconsistencies. If
there is an inconsistency, then there is a good chance that the theorem prover can find
it. Since this algorithm need not terminate, it either finds an inconsistency or it gives
up when it runs out of time or space.

5 Conclusions and Future Work

We have introduced the ConsVISor consistency checking tool that can be used to verify
consistency of RM-ODP specifications. A demonstration version is now available [11]. We
are in the process of introducing new features to ConsVISor. In particular, we are intro-
ducing more complex model building capabilities, including the ability to evolve a model
progressively through versions beginning with a baseline. We are also planning to add sheaf
theory semantics [5] to deal with dynamic systems so that one can check dynamic consistency
conditions such as reachability and deadlock avoidance.

References

[1] G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified Modeling Language Spec-
ification, March 2000. Available at www.omg.org/technology/documents/formal/-
unified modeling language.htm.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. UML Semantics, September 1997.

[3] S. DeLoach. Formal Transformations from Graphically-Based Object-Oriented Repre-
sentations to Theory-Based Specifications. PhD thesis, Air Force Institute of Technology,
WL AFB, OH, June 1996. Ph.D. Dissertation.

[4] A. Evans and S. Kent. Core meta-modeling semantics of UML: The pUML approach. In
UML99 - The Unified Modeling Language: Beyond the Standard, Second International
Conference Proceedings. Springer-Verlag, October 1999. ISBN 3-540-66712-1.



[5] J. Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures
in Computer Science, 2(2):159–191, 1992. citeseer.nj.nec.com/goguen92sheaf.html.

[6] R. Grosu, M. Broy, B. Selic, and G. Stefânescu. What is behind UML-RT? In H. Kilov,
B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses and Sys-
tems, pages 75–90. Kluwer Academic, October 1999. ISBN 0-7923-8629-9.

[7] Information Technology–Open Systems Interconnection–Management Information
Services–Structure of Management Information–Part 7: General Relationship Model
(ISO/IEC 10165-7.2), August 1993.

[8] Basic Reference Model for Open Distributed Processing. Use of formal specification tech-
niques for ODP (ISO/IEC JTC1/SC21/WG7 N 753), November 1992.

[9] H. Kilov and J. Ross. Information Modeling: An Object-Oriented Approach. Prentice-
Hall, Englewood Cliffs, NJ, 1994.

[10] S. King, J. Hammond, R. Chapman, and A. Pryor. Is proof most cost-effective than
testing? IEEE Transactions on Software Engineering, 26(8):675–686, 2000.

[11] M. Kokar, J. Letkowski, K. Baclawski, and J. Smith. The ConsVISor consistency check-
ing tool, March 2001. www.vistology.com/consvisor/.

[12] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency in software de-
velopment. IEEE Computer, pages 24–29, April 2000.

[13] T. Schorsch. Formal Representation and Application of Software Design Information.
PhD thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, September
1999.

[14] J. Smith. UML Formalization and Transformation. PhD thesis, Northeastern University,
Boston, MA, December 1999.

[15] Specwaretm User Manual: Specwaretm Version Core4, October 1994.

[16] Y. Srinivas. Algebraic specification: Syntax, semantics, structure. Technical Report 90-
15, Department of Information and Computer Science, University of California, Irvine,
June 1990.

[17] Y. Srinivas and R. Jüllig. Specware: Formal support for composing software. Tech-
nical Report 90-14, Department of Information and Computer Science, University of
California - Irvine, 1990.

[18] R. Waldinger et al. Specwaretm Language Manual: Specwaretm 2.0.3, March 1998.


