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while attempting to translate UML diagrams [8, 9] into formal speci�cations expressed in theformal speci�cation language Slang [19]; this step was part of the process of formalizationof the UML. In order to simplify this rather complex task, we wanted to take advantageof existing translation tools, like Re�ne1 [17]. Our goal, in addition to the translation,was also to establish a formal semantics for the UML and to prove the correctness of thetranslation. The theory-based object model that forms the basis for this formalization ofUML is introduced in Section 2.It is well known that UML diagrams, by themselves, are insu�cient for representing thesemantics of a software system. Additional conditions (such as pre- and post-conditions)are required. Establishing a formal semantics for the UML would clarify the meaning andlimitations of the diagrams as well as eliminate ambiguities and con
icts between di�erentdiagrams.One possible way of performing such a translation would be to translate data modelsof UML directly into expressions in the Slang grammar { a one-big-leap-transformationapproach. Even if we establish a clear representation for the UML data models and usethe Slang grammar, the process of such a direct translation would be quite complex. Thecomplexity of this step can be reduced by decomposing it into a number of smaller simplersteps. Another reason for such a multi-step approach is that there is no single tool that couldbe used in this process. On the other hand, a number of excellent tools exist that could beused for smaller steps.Existing tools can be used to generate a parser for a given context-free grammar. How-ever, as we discuss in Section 3, context-free grammars by themselves only specify syntax,not semantics. In our case, using such a tool involves translating an object-oriented represen-tation, with all its rich semantics, to a context-free grammar which has no semantics at all.Accordingly, there are then two ways to achieve our goal: either represent UML as a context-free grammar and then perform the translation(s) in the category of context-free grammars,or perform translation(s) of UML using only object-oriented representations, transformingto a context-free grammar only as the last step if necessary.In this paper, we argue for the latter solution. In Section 3, we show an example of anobject-oriented diagram and discuss the di�culties with representing this kind of diagram us-ing context-free grammars. Then in Section 4 we describe a system, called nu&, developed atNortheastern University by K. Baclawski. The nu& toolkit is the basis for our object-orientedapproach to parsing and transformation. We use this approach speci�cally for translatingUML to Slang. The translation is decomposed into a number of smaller stages, each ofwhich involves transforming, parsing and symbol table manipulation. The two processingpaths mentioned above { translation of data models and translation of context-free gram-mars { are discussed in detail. In Section 5, a speci�c example is used to illustrate the stepsin the transformation pipeline of Section 4. The intent here is to show that the process oftransformation of object diagrams is much simpler if it is carried out directly on the objectlevel than by continually constructing linear textual representations which must be parsedbefore the next stage of the transformation may be performed.1Re�ne is a trademark of Reasoning Systems Inc. Palo Alto California2



Simplifying the transformation pipeline is one of the main themes of this paper. Certainlysimpli�cation has many obvious bene�ts. Simpli�cation makes it easier to construct thetransformation and to prove that it is correct. It also makes it easier to comprehend whatthe transformation does. This is especially important for a formalization of the UML becausethe UML is only a semi-formal modeling language, and any formalization requires makingsome arbitrary choices. By making the transformation simpler and easier to comprehend, itis easier to understand what these choices are.2 Theory-Based Object ModelIn object-oriented systems, the object class de�nes the structure of an object and its responseto external stimuli based its current state. In our theory-based object model, we capturethe structure of a class as a theory presentation, or algebraic speci�cation, in O-Slang, anobject-oriented algebraic speci�cation language. In these class speci�cations, we use sortsto describe collections of data values. In our theory-based object model, the class sort is adistinguished sort that represents the set of all possible objects in the class. In an algebraicsense, this is actually the set of all possible abstract value representations of objects in theclass.class Person isimport Sex, Naturalclass sort Personsorts Person-Stateoperationsperson-attr-equal : Person, Person ! Booleanattributesage : Person ! Integergender : Person ! Sexstate-attributesperson-state : Person ! Person-Statemethodscreate-person : Sex ! Personincrement-age : Person ! Personstatesold, young : ! Person-Stateeventsnew-person : Sex ! Personbirthday : Person ! Personaxioms 8 (p, p1: Person, s : Sex)old 6= young;person-state(a) = young , age(a) < 30;person-state(a) = old , age(a) � 30;person-attr-equal(p, p1) , gender(p) = gender(p1) ^ age(p) = age(p1);age(create-person(s)) = 0 ^ gender(create-person(s)) = s;age(increment-age(p)) = age(p) + 1 ^ gender(increment-age(p)) = gender(p);person-attr-equal(birthday(p), increment-age(p));person-attr-equal(new-person(s), create-person(s))end-class Figure 1: Person Class3



Attributes, methods, and operations are de�ned as functions in O-Slang class spec-i�cations. Attributes are de�ned implicitly by functions that return speci�c data valueswhile methods are functions that modify an object's attribute values. In Fig. 1, the func-tions create-person and increment-age are methods. The semantics of functions, as well asinvariants between class attribute values, are de�ned using �rst order predicate logic axioms.Object instances are fundamental to any object-oriented model, and the theory-basedobject model captures the main uses of this notion by introducing state sorts and stateattributes to model the (internal) state of an object, statecharts to de�ne the transitionsbetween object states, events to specify how objects can communicate with each other, andclass sets to capture the notion of a set of objects in a class, such as the extent of a class.To capture the notion of the internal state of an object, we introduce state attributeswhich are functions from the class sort to a state sort that return the current state of anobject. State attributes are distinct from normal attributes. An O-Slang class speci�cationhas at least one state attribute. Multiple state attributes allow one to model concurrencyand substates. A class speci�cation may also have a set of states which are elements in astate sort (de�ned by nullary functions). In Fig. 1, the state sort is Person-State, the stateattribute is person-state, and the states are young and old.Communication between objects is handled by events, which are functions that mayinvoke methods, generate events for other objects, and directly modify state attributes.Events are distinct from methods to separate control from execution. Each class has a newevent which triggers the create method to create a new object and initialize its attributes.In Fig. 1, the functions new-person and birthday are events.Operations are functions that do not modify attribute values and are generally used tocompute derived attributes. In Fig. 1, the function person-attr-equal is an operation. Similarto methods and events, the semantics of operations are also de�ned using �rst order predicatelogic axioms.In order to manage a set of objects in a class, a class set is also created for each classde�ned. A class set is a class whose class sort is a set of objects from a previously de�nedobject class. A class set includes class event de�nitions for each event in the original class.This class event is de�ned so that the reception of a class event by a class set object sendsthe corresponding event to each object in the class set.2.1 InheritanceOur theory-based object model uses a strict form of inheritance that allows a subclass objectto be freely substituted for a superclass object in any situation as captured in the \substi-tution property" [15]:If for each object o1 of type S there is an object o2 of type T such that for all programs P de�ned in terms ofT the behavior of P is unchanged when o1 is substituted for o2, then S is a subtype of T .We can ensure the substitution property holds if we have a speci�cation morphism fromthe superclass to the subclass and the subclass class sort is a sub-sort of the superclassclass sort. In O-Slang, this is usually done using the import operation, which includes the4



superclass speci�cation directly into the subclass speci�cation, and a statement that ensuresthe appropriate subsort relationship between the class sorts.An example of single inheritance using a subclass of the Person class is shown in Fig. 2.The import statement includes all the sorts, functions, and axioms declared in the Personclass directly into the new class while the class sort declaration Student < Person statesthat Student is a sub-sort of Person, and as such, all functions and axioms that apply to anPerson object apply to a Student object as well.class Student isimport Person, Classclass sort Student < Personoperationsstudent-attr-equal : Student, Student ! Booleanattributesclass : Student ! Classmethodscreate-student : ! Studentincrement-class : Student, Date ! Studenteventsnew-student : ! Studentpromote : Student ! Studentaxioms 8 (s, s1: Student)student-attr-equal(a, a1) , class(s) = class(s1) ^ person-attr-equal(s, s1);class(s) = Freshman , class(increment-class(s)) = Sophomore;class(s) = Sophomore , class(increment-class(s)) = Junior;class(s) = Junior , class(increment-class(s)) = Senior;class(s) = Senior , class(increment-class(s)) = Alumni;age(increment-class(s)) = age(s);gender(increment-class(s)) = gender(s);class(create-student(s)) = Freshman ^ age(create-student(s) = age(create-person(s))^ gender(create-student(s)) = gender(create-person(s));student-attr-equal(promote(s), increment-class(s));student-attr-equal(new-student(), create-student())end-class Figure 2: Student ClassMultiple inheritance requires a slight modi�cation to the notion of inheritance statedabove. The set of superclasses must �rst be combined via a category theory colimit operationand then used to \inherit from". Importing the colimit speci�cation and specifying that theclass sort is a sub-sort of each of the superclass sorts ensures that the subclass inherits fromeach superclass and satis�es the substitution property.2.2 AggregationAggregation is a relationship between two classes where one class, the aggregate, representsan entire assembly and the other class, the component, is \part-of" the assembly. Not onlydo aggregate classes allow the modeling of systems from components, but they also providea convenient context in which to de�ne constraints and associations between components.Components of an aggregate class are modeled similarly to attributes of a class through the5



concept of object-valued attributes. An object-valued attribute is a class attribute whose sorttype is a set of objects { the class-sort of another class. Formally, object-valued attributesare functions that take an object and return an external object or set of objects.An aggregate class combines a number of classes via the colimit operation to specifya system or subsystem. The colimit operation also uni�es sorts and functions de�ned inseparate classes, associations, and events. To capture the entirety of a domain model withina single structure, we can create a domain-level aggregate. To create this aggregate, thecolimit of all classes and associations within the domain is taken.2.3 AssociationsAssociations model the relationships between aggregate components. We de�ne a link as asingle connection between object instances and an association as a set of such links. A linkde�nes what object classes may be related along with any link attributes or link functions.A link is basically a class speci�cation that uses object-valued attributes to reference otherobjects while associations are represented as a class set of links.Association multiplicities are de�ned as the number of links in which any given objectmay participate. These multiplicities are de�ned as constraints on the links in an associationand can be captured axiomatically in the association speci�cation.2.4 Object CommunicationIn our theory-based object model, each object is aware of only a certain set of events that itgenerates or receives. From an object's perspective, these events are generated and broadcastto the entire system and received from the system. In this scheme, each event is de�ned ina separate event theory as shown in Fig. 3.event Event-Name isclass sort Class-Sortsorts Param-Sorteventsevent-name : Class-Sort, Parm-Sort ! Class-Sortend-classFigure 3: Event TheoryAn event theory consists of a class sort, parameter sorts, and an event signature that aremapped via morphisms to sorts and events in the generating and receiving classes. If anevent is being sent to a single object then the event theory class sort is mapped to the classsort of that object class. However, if the event theory class sort is mapped to the class sortof a class set then communication may occur with a set of objects of that class. The othersorts in an event theory class are the sorts of event parameters. The �nal part of an eventtheory, the event signature, is mapped to a compatible event signature in the receiving class.The colimit of the classes, the event theory is used to unify the event and sorts of two or6



more classes so that invocation of the event in the generating class corresponds an invocationof the actual event in the receiving class.Communicating with objects from multiple classes requires the addition of another levelof speci�cation which \broadcasts" the communication event to all interested object classes.The class sort of a broadcast theory is called a broadcast sort and represents the objectwith which the sending object communicates. The broadcast theory then de�nes an object-valued attribute for each receiving class. Multiple receiver classes add a layer of speci�cation;however, multiple sending classes are handled very simply. The only additional constructrequired is a morphism from each sending class to the event theory mapping the appropriateobject-valued attribute in the sending class to the class sort of the event theory and theevent signature in the sending class to the event signature in the event theory.3 Comparison of Grammars with Object-Oriented DataModeling LanguagesContext-free grammars (also known as abstract syntax trees or ASTs) are the basic formalismfor expressing modern programming languages. The �rst step in the compilation of a programis to parse the program as a sentence in the language de�ned by the grammar. The resultsof the parsing step are passed to the later phases of the compilation process. More generally,any translation from one language to another begins with parsing, when the source languageis de�ned by a context-free grammar. The grammar is said to de�ne the syntax of thelanguage, while the subsequent phases of compilation are said to represent the semantics ofthe language. Excellent tools are available that automate the task of generating a parserfrom a grammar. Such tools are often called \compiler-compilers" even though they onlyautomate the generation of the parser. To specify the semantics of the language with acompiler-compiler, one must specify the action associated with each grammar rule.The result of parsing is often referred to as the parse tree. A parse tree is a hierarchicalrepresentation of information that conforms to a data model de�ned by the grammar. Thata grammar de�nes a data model was �rst observed by Gonnet and Tompa in [13], whosep-string data model has powerful query operations for grammatical data models. Since thenthere has been much work on elaborate grammatical data modeling languages, such as SGMLand, more recently, HTML/XML. For a detailed discussion of the limitations of grammarsas data models see [4]. The reverse of parsing transforms a parse tree into linear text. Thisprocess is linearization or \pretty printing."In the rest of this section we present an example to compare the modeling power ofgrammars with object-oriented modeling languages.Consider the example of a database of state machines as speci�ed in Figure 4. This �gureuses the UML notation to de�ne a data model, but it does not de�ne the state machineconcept used in UML. Each state and each transition is contained in a state machine, andeach transition links exactly two states. State machines, states and transitions have variousattributes as shown in the �gure. In addition, we impose a few uniqueness constraints. The7
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GStatelabeldescription 1..1 *outgoing1..1 *incoming TransitionidlabelconditionFigure 4: State Machine Data Modelname of a state machine is unique, and the name of a transition is unique within the statemachine that contains it. Note that there is no requirement that a transition join states inthe same state machine.One can represent an instance of the state machine data model as a parse tree in a varietyof ways. One could represent it as a list of state machines, each of which contains a list ofstates and transitions. The grammar for this kind of parse tree is represented below. Forsimplicity, we have omitted some technical details from the grammar. The \syntactic sugar"was omitted. This includes the various keywords and delimiters that are needed to make agrammar unambiguous and context-free. In addition, it is not shown how to parse strings,such as names, ids and text descriptions.Root  State Machine�State Machine  string State� Transition�State  string stringTransition  string stringTo complete the representation of the state machine data model, it remains to representthe relationships between states and transitions. Although each transition links exactly oneoutgoing state with exactly one incoming state, one cannot simply include two states in eachTransition, as in the following grammar:Root  State Machine�State Machine  string State� Transition�State  string stringTransition  string string State StateThe problem with the grammar above is that the state objects contained in a transitionobject are di�erent objects from the ones contained in the state machine objects and alsofrom those contained in the other transition objects. This is a subtle point that can beeasily missed. The nonterminals of a grammar represent nodes in a tree, and the nodes thatoccur below a Transition nonterminal cannot also occur below a State Machine nonterminalor below another Transition node. Such an arrangement would violate the requirement that8



the parse tree be a tree. One could, in theory, add the constraint that each state linkedby a transition must have the same information as one of the states contained in a statemachine. Aside from the huge amount of redundancy that is caused by this design, it is alsoambiguous because there could be states that have exactly the same attributes, since thereis no uniqueness condition imposed on the states.Alternatively, one might try to represent the relationships between states and transitionsby including lists of incoming and outgoing transitions in each state, as in the followinggrammar: Root  State Machine�State Machine  string State� Transition�State  string string Transition� Transition�Transition  string stringHowever, this has the same problem as the previous grammar, except that it is now thetransition objects which are being redundantly represented. Yet another possibility is torepresent the two relationships as two independent entities. This design is even worse thanthe others, for now one is representing both the state objects and the transition objectsredundantly.In order to represent the incoming and outgoing relationships of the state machine datamodel, it is necessary to introduce some kind of reference mechanism. For example, insteadof having a two state objects within each transition object, one might specify that each tran-sition object contain two state identi�ers. This would work if states had unique identi�ers,but there is no uniqueness condition on the state attributes. In the grammar above transitionobjects are uniquely identi�ed within each state machine, so a compound identi�er consistingof a state machine name and a transition id will uniquely identify each transition, becausestate machine names are unique. Assuming that most transitions will be contained in thesame state machine as the states being linked, one should also allow transition references toconsist of just a transition id which can be disambiguated by the context. The following isthe grammar in this case:Root  State Machine�State Machine  string State� Transition�State  string string transition ref� transition ref�Transition  string stringtransition ref  string j string stringIt appears that one has, at last, fully represented the original data model of Figure 4 as agrammar. However, a number of important considerations are not included in the grammarspeci�cation. In particular, the strings occurring in each transition reference must occuras state machine names or as transition ids, such that if just one occurs then it representsthe transition id of a transition in the same state machine as the state, while if two strings9



occur, then the �rst must be a state machine name and the second is the transition id of atransition in that state machine. These requirements must be enforced by actions triggeredby the grammar rules.If this example seems a little contrived, exactly the same issues arise in programminglanguages for which identi�ers are used for variables and methods within classes and the sameidenti�er may be used in di�erent classes. In programming languages the disambiguation ofidenti�ers is a very complex problem.This example shows that a data model need not have any grammatical representationat all. If the state machines names were not unique or if transitions did not have to haveids (both of which are true in practice), then even compound identi�ers would not uniquelydetermine transitions. To represent such a data model it would be necessary to augmentthe data model with arti�cial unique identi�ers. In addition to modifying the original datamodel, such identi�ers can have an adverse impact on the readability of the language de�nedby the grammar.This example also shows that expressing an object-oriented data model in terms of agrammar typically results in a grammar that is much more complex and awkward than thedata model, if it is possible to express the data model at all. However, tree representations ofdata do have some advantages. There are easily available tools for automatically generatingparsers from a grammar, and there are several tools for transforming trees in one grammarto trees in another grammar.4 The nu& Approach to TransformationsThe purpose of the nu& Project [2, 3, 5] is to provide automated support for transformationsfrom one language to another with emphasis on object-oriented modeling languages. Thisproject combined the advantages of automated parser generation with the modeling powerof object-oriented data models. Like grammar-based compiler-compilers, the nu& tools auto-matically generate parsers. However, the nu& toolkit uses the more powerful object-orienteddata models rather than grammars, and the nu& toolkit transforms linear text directly into anobject-oriented data structure. The toolkit can also be used to linearize an object-orienteddatabase. Parsing and linearization of object-oriented data structures are similar to themarshaling and unmarshaling of data structures in remote procedure call mechanisms. Themain distinction between RPC and the nu& toolkit is that nu& allows one to specify detailsabout the grammar that is produced so that the resulting linear representation is readable.RPC linear representations, by contrast, are not 
exible and are not intended to be read bypeople.While the automated generation of parsers and linearizers is a useful feature, the mainfunction of the nu& toolkit is to support transformations from one modeling language toanother. In this respect, the nu& toolkit is similar to transformational reuse systems, such asRe�ne [17], except that nu& supports a large variety of data modeling languages, includingobject-oriented data models while existing transformational reuse systems are grammar-based. 10



One of the problems with traditional approaches to transformations is the insistence oncommunicating using linear text. This is �ne for simple transformations and has provedto be very e�ective in environments, such as the Unix shell, where \pipelines" join to-gether relatively simple transformations to form more complex transformations. For ex-ample, sort file j uniq -c j sort -nr j head -20 will compute the 20 most commonlyoccurring lines in a �le. However, this technique becomes increasingly unwieldy as the com-plexity of the textual representation increases. For more complex languages, one requiresa parser to produce a parse tree from the text, after which the identi�ers in the parse treemust be disambiguated using a symbol table, and �nally an internal (sometimes called an in-termediate representation) is constructed. The intermediate representation is then processedto produce linear text to be used in the next stage of the pipeline.Consider the problem of transforming a CASE tool diagram to a formal methods lan-guage. The traditional approach requires a series of transformational stages, each consistingof a series of steps. Each step involves processing output of the previous step. The wholeprocess forms a pipeline of steps. To simplify the transformation, the diagram is �rst trans-formed to an object-oriented formal methods language, which is then transformed to a moretraditional formal methods language. The formal speci�cation can then be used to generatecode in a programming language.To illustrate the traditional transformational pipeline, we will use the example of theSlang formal methods language[19], and the O-Slang object-oriented formal methods lan-guage [10]. The O-Slang language was developed in [10] as a target structure that couldbe later transformed into Slang. O-Slang is based on the formalization of object-orientedconcepts de�ned via a theory-based object model [11], as discussed in Section 2.The full pipeline looks like that depicted in Figure 5. The middle column in this �gureCASE Diagram dump // Export Format parse // Parse Treesymbol table
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consists of the various linear representations that act as the communication language betweenthe processing modules in the pipeline. The original diagram is dumped to a standard formatof some kind. This standard format is parsed, and the identi�ers placed in a symbol table,so that when one is encountered, it can be replaced with a reference to the object beingreferenced. The result is an intermediate structure which is essentially the same as theoriginal diagram. This structure is then translated to the O-Slang object-oriented formalmethods language and given to theO-Slang compiler. The same kind of parsing and symboltable manipulation is then performed so thatO-Slang can be translated to the Slang formalmethods language, which is then used to generate code in a Programming Language. Finally,the Programming Language is compiled. A speci�c example of the transformation pipelinein Figure 5 is given in Section 5 below.While many of the steps in the pipeline of Figure 5 are important, many of them representduplication of e�ort. None of the steps in the traditional transformational pipeline are easyfor nontrivial languages, and any one of the steps is a source of error. Proving the correctnessof the entire pipeline is a di�cult task. Reducing the number of steps is certainly desirablein itself, and this is one of the primary motivations for the nu& approach. More surprisingly,reducing the number of steps could also reduce the complexity of individual steps. Forexample, the two data structures labeled \CASE diagram" and \Intermediate structure"are, in principle, isomorphic.Using the nu& toolkit, one can make signi�cant simpli�cations to the transformationalpipeline of Figure 5. In Figure 6, the CASE diagram is isomorphic to a CASE tool's interme-diate object structure. This structure is typically translatable to any kind of new structureCASE DiagramIntermediateStructuretranslate
��O-Slang Structuretranslate
��Slang Structure code generate// ProgrammingLanguage parse // Parse Treesymbol table

rrf f f f f f
f f f f

f f f f
f f f f

f f f f
f f f f

f f f f
f f f f

f f f fIntermediateStructure optimize // Intermediate Codegenerate// Executable CodeFigure 6: Simpli�ed Transformation Pipelineby a vendor-provided scripting language. Rather than translate the CASE diagram to textin any form (as suggested by Figure 5), the nu& approach is to translate directly to theO-Slang structure using object-oriented techniques and to continue to translate entirely at12



the level of data structures (i.e., the left column of Figure 6). Unfortunately, it is di�cultto streamline the entire transformation pipeline because one rarely has access to all of theinternal data structures. For example, it is not currently possible to circumvent the parserof a compiler and present it with its intermediate representation directly.Another possibility for simplifying Figure 5 would be to transform at the level of theparse tree (i.e., the right column in Figure 5). This is the approach taken by traditionaltransformational code generation systems such as Re�ne [17] and GenVoca [7, 6]. Whilethis approach is certainly simpler than the original pipeline, it has the disadvantage that thetranslation code must deal with the table of identi�ers, so that identi�er lookup and disam-biguation must be handled at the same time as the transformation. Another disadvantageis that the parse tree structures (right column in Figure 5) are generally more complex andunwieldy than the internal data structures (left column in Figure 5).5 State Machine ExampleIn this section, we will give an example of the traditional transformational pipeline outlinedin the previous section. We then compare it to the nu& approach. This example is derivedfrom [10]. In UML, a state diagram is one technique for describing the behavior of a class.The objective in this example is to convert a state machine diagram to its correspondingO-Slang speci�cation. In this example, we will use the class pump whose state diagram isgiven in Figure 7. �new-pump(pump-id)/create-pump(pump-id)
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��pump-enabled? > = <8 9 : ;B C@ A disable-pumpOOFigure 7: Pump State DiagramThe CASE tool used by DeLoach was a commercially available object-oriented drawingpackage, ObjectMaker2. The textual output from ObjectMaker is parsed into a Re�ne parsetree using a Re�ne-based parser. Once in Re�ne, a rule-based conversion program transformsthe ObjectMaker parse tree into a Generic parse tree which is isomorphic to the originalCASE diagram.Once in the Generic parse tree, a rule-based transformation program implementing thetransformation rules transforms the Generic parse tree into anO-Slang parse tree within theRe�ne environment. Once in a valid O-Slang parse tree, the Dialect pretty printer is usedto produce a textual representation of the O-Slang parse tree. The actual transformation2ObjectMaker is a registered trademark of Mark V Systems Limited Encino California13



is performed by creating the root node of the O-Slang parse tree and then automaticallytransforming each class and association, one at a time, from the Generic parse tree to theO-Slang parse tree.The actual Re�ne transformation code is more complex than even Figure 5 suggests.The Export Format of ObjectMaker has a structure that is complex enough to require anadditional transformation stage. The actual transformation from CASE Diagram to O-Slang consists of the pipeline shown in Figure 8. The Re�ne tool allows some of the stepsCASE Diagram dump // Export Format parse // Parse Treesymbol table
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g gCASE DiagramStructure transform //O-Slang parse // O-SlangParse TreeFigure 8: Actual Transformation Pipeline from CASE Diagram to O-Slangin the pipeline to be combined, but it is still necessary to write (and debug) �ve separateRe�ne speci�cations to achieve the entire transformation from CASE Diagram to O-Slang.Several hundred lines of code are needed for specifying the rules for transforming a statemachine diagram. We now show some excerpts from this code.The grammar for the dynamic model portion of a Generic class is the following:Generic-Class = <name, {Superclass}, [Connection], {Attribute}, {State},{Transition}, {Axiom}, {Operation}, {Function}>State = <name, {State}, {Axiom}>Transition = <name, [Parameter], Axiom, {Action}, FromState, ToState>FromState = nameToState = nameAction = <name, [Parameter], {Action}>Parameter = <name, datatype>A simpli�ed version of theO-Slang grammar is shown below. Notice that both StateAttrand State are de�ned as functions. StateAttr is a function that takes an object as its domainand returns a state value as its range. States are de�ned as nullary functions that returnspeci�c values of the state attribute.Class = <name, ClassSort, {Operation}, {Import}, {Sort}, {Attribute},{Method}, {StateAttr}, {Event}, {State}, {Axiom}>StateAttr = OperationdeclState = OperationdeclOperationdecl = <name, [Domain-Ident], [Range-Ident]>Axiom = complex definition of 1st order predicate logic14



There are three distinct steps to transforming the dynamic model from the Generic parsetree to the O-Slang parse tree:1. Creation of state attributes,2. Creation of state values, and3. Creation of axioms that implement the transitions.For simplicity, we will just consider the axioms for transitions. Translation of the GenericTransitions into O-Slang axioms is performed by breaking down each Generic Transitionobject and processing it in �ve parts: the current state, transition guard, new state, methodinvocation, and the sending of any new events.function create-oslang-transition-axiom (x: Transition) : Axiom-Def =let (s:object=undefined)s <- Make-OslangAxiom(concat(create-oslang-current-state-string(x),create-oslang-guard-string(x),create-oslang-new-state-string(x),create-oslang-method-invocation-string(x),create-oslang-send-event-string(x),")"))The �ve parts are concatenated into a string which is parsed into an O-Slang axiom parsetree by the Make-OslangAxiom function of the formold-state ^ guard-condition) new-state ^method-invocations ^ event-sendsThe �nal result of the pipeline is an O-Slang parse tree which can be linearized intothe following textual form:class Pump isclass-sort Pumpsort Pump-Stateattributespump-id : Pump -> integerpump-state : Pump -> Pump-Stateoperationsattr-equal : Pump, Pump -> Booleanstatespump-disabled : -> Pump-Statepump-enabled : -> Pump-Stateeventsenable-pump : Pump, integer -> Pumpdisable-pump : Pump -> Pumpnew-pump : integer -> Pumpmethods 15



create-pump : -> Pump;enable-pump : Pump -> Pump;axiomspump-disabled <> pump-enabled;attr-equal(P1, P2) <=> (pump-id(P1) = pump-id(P2));(pump-state(P) = pump-enabled) =>(pump-state(disable-pump(P)) = pump-disabled);(pump-state(new-pump(P, A)) = pump-disabled& attr-equal(new-pump(P, A), create-pump(A)));(pump-state(P) = pump-disabled & (X = pump-id(P)))=> (pump-state(enable-pump(P, X)) = pump-enabled);(pump-state(P) = pump-disabled & (X <> pump-id(P)))=> (pump-state(enable-pump(P, X)) = pump-disabled);(pump-state(P) = pump-disabled)=> (pump-state(disable-pump(P)) = pump-disabled);(pump-state(P) = pump-enabled)=> (pump-state(enable-pump(P, X)) = pump-enabled);end-classBy contrast the transformation code using the nu& toolkit simply constructs each of thecomponents occurring in the O-Slang data structure as objects. One can use either rulesor a series of nested loops to express the transformation. The following are some fragmentsof the code that illustrate the nu& nested loop approach:for every c in allClasses {OSlangClass oclass = new OSlangClass (c.name);...for every state in oclass.states {oclass.addProperty (new State (state.name));...for every transition in state.outTransitions {oclass.addProperty (new Event (transition.name));oclass.addProperty (new Axiom (transition.currentState()&& transition.guard(),transition.newState()&& transition.methodInvocation()&& transition.sendEvent()));...}}} In addition to requiring fewer steps, the nu& approach involves much simpler code thatfocuses on the fundamental issues rather than myriad syntactic and symbol table issues.16



6 Related WorkSeveral authors have proposed techniques for transforming informal system requirements andspeci�cations into formal speci�cations. Babin, Lustman, and Shoval proposed a methodbased on an extension of Structured System Analysis. The method uses a ruled-based trans-formation system to help transform the semi-formal speci�cation into a formal speci�ca-tion [1]. Fraser, Kumar, and Vaishnavi proposed an interactive, rule-based transformationsystem to translate Structured Analysis speci�cations into VDM speci�cations [12]. In bothcases, the output of the process is a text-based formal speci�cation that would require parsingfor further automated re�nement.Specware [18] is a transformational program derivation system based on Slang [19] whichis the end target for this work. Specware provides the automated tool support for developingand transforming speci�cations using the Slang formal speci�cation language. Once de�nedin Slang, all transformations { including algorithm design and optimization, data type re-�nement, integration of reactive system components, and code generation { are performedon an internal AST-based representation of Slang. However, Specware does not provide thefront end as described in our research: an object-oriented, graphically-based semi-formal,community accepted representation.Although not speci�cally concerned with formalization, there have been many researche�orts and commercial products that support transformations from one language to another.Such tools are called transformational code generators or generative reuse tools. Krueger [14]has a survey of such tools. Some of the most prominent among these tools are Batory'sGenVoca [7, 6], Neighbors' Draco [16], and Reasoning Systems' Re�ne [17]. While the outputof these transformational systems can be object-oriented (e.g., by using components fromand generating code in an object-oriented programming language), all of these systems usea speci�cation language that is grammar-based. The nu& toolkit, by contrast, not only cangenerate object-oriented data structures, but also supports object-oriented speci�cations. Asnoted in Section 4, transforming object-oriented data structures is simpler, more powerfuland less error-prone than transforming parse trees.7 ConclusionsWhile object-oriented languages have become very popular in both programming and soft-ware speci�cation, the formalism for representing their structure is still that of a context-freegrammar, even though this formalism was developed mainly for a di�erent kind of language.In this paper, we argued that for object-oriented representations data models are bettersuited than such context-free grammars. We showed with an example the di�culties in-volved in representing an object-oriented diagram using a context-free grammatical repre-sentation. We analyzed two possibilities for transforming object-oriented representations(UML diagrams) into formal non-object-oriented representations (Slang speci�cations):1. Transform the data model of UML into a context-free grammar and then performconsecutive transformations in the realm of context-free grammars using CASE tools17
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