
Panoramas and Grammars: A New View of Data

Models

Kenneth Baclawski

�

April 21, 1993

Abstract

We show that grammars can be regarded as de�ning a kind of data model and that

one can automate the translation from semantic data models to grammars and vice

versa. The semantic and structural distinctions between grammars and data models are

discussed in detail. In general, only part of the data in a database can be represented

in grammatical terms. We introduce the concept of a panorama for the subset of the

database that can be represented grammatically. The computation of a panorama

is a key step in the translation from a data model to a grammar, and an algorithm

for computing it is presented. One consequence of the automation of the translation

between grammars and data models is to automate the development of symbol table

software.

1 Introduction.

At �rst glance there appears to be little similarity between data models and grammars. Data

modeling is a technique for organizing the data in a database. A grammar, on the other

hand, is a way of de�ning a language. The purpose of this paper is to show that there are,

in fact, many similarities between grammars and data modeling. Indeed, grammars can be

regarded as de�ning a certain kind of data model, and one can automate the process of

translating between data models and grammars.

The idea that a data model can be grammar-based is not new. In any data model, after

all, it is necessary to have a language for expressing the structure or schema of a particular

database. However, the development of this language is not usually considered to be a

data modeling task. The language is only a means of expressing a schema. Similarly, the

development of a schema for a database is not usually regarded as a linguistic task. One

exception is the \p-string data model" of [10] which is an important precursor to our own

�

Northeastern University, College of Computer Science, Boston, Massachusetts 02115. Keywords: Data

model, semantic data model, context-free grammar, data model translation, symbol table, class library.

1

work. Another exception is the Demeter

TM

system [11], [12] which uses a grammar-based

approach to designing the classes of an object-oriented programming system.

In this paper we discuss grammars (or more precisely context-free grammars) from a data

modeling point of view. e show that it is possible to treat a grammar as a schema, and to

some extent, schemas as grammars. Furthermore, we discuss how to automate the process

of translating from a grammar to a schema and vice versa as well as from a sentence of a

language to a database state and vice versa.

The semantic data model that we will use is the ER model, extended to included inheri-

tance. Grammars will be written using the same style as the yacc compiler-compiler. Both

of these are discussed in section 2.

The relationship between grammars and schemas is discussed in detail in section 3. For

each major linguistic concept, there is a corresponding data modeling concept. At some

point, of course, the analogies begin to break down. Much of the discussion concerns dis-

tinctions between grammars and schemas.

For example, grammars implicitly specify a great deal of sequential information, while

schemas are more
exible in this respect. One can include sequential information or not

in a schema, but one cannot de�ne an unordered set of items in a grammar. One step in

translating from a schema to a grammar is to introduce linearity if it is not already speci�ed

by a process known as linearization.

Another distinction between grammars and schemas is that grammars have a preferred

starting point which corresponds to the root node in the parse tree of a sentence. Most

data models do not have such a distinguished entity. For a schema to be translatable to

a grammar, one must choose this preferred starting point. e call this the center or focal

point of the schema. Given a center, it is possible to determine how much of the schema

can be viewed in a \grammatical" fashion from this point. Such a view is called a panorama

or panoramic view of the schema. It is the panoramas that can be translated to grammars.

Panoramas and the algorithm for computing them are discussed in section 4.

Still another distinction between grammars and schemas is the concept of a key or identi-

�er in a schema. This concept is not expressible in a context-free grammar, but is nevertheless

an important aspect of most languages. It is generally implemented in an ad hoc manner

using a \symbol table." The translation from a schema to a grammar must therefore auto-

mate the production of symbol table software. In our system the symbol table software is a

exible and powerful C++ class library that can be used for much more than just parsing

sentences.

Some of the other aspects of data models and grammars are discussed in section 5, and

some of the directions for future work are mentioned in the concluding section.

ont t- r r rs nd ntic t od-

ls

The notation for grammars that we will use is a simpli�ed form of the standard yacc grammar

of the Unix

TM

Operating System. Since we do not use any of the special features of yacc,

2

invoice

item

contains

?

?

1

Figure 1: nvoice ER Diagram

our discussion should apply to any grammar notation.

A c - [1] consists of a set of symbols divided into the

symbols and the symbols, and a set of (or c or)

each of which speci�es how a nonterminal symbol can be expressed in terms of a sequence

of symbols. In addition, one nonterminal symbol is designated as the symbol. Each

nonterminal symbol must have at least one rule, and we will assume that the grammar is

unambiguous. In a compiler-compiler like yacc, one also speci�es an c to be performed

whenever a rule is used. The actions will not be shown explicitly in any of the examples,

but the role of actions will be discussed.

A is an intellectual tool for interpreting data and the interrelationships

among items of data. To keep from becoming unwieldy and ine cient, most data models

restrict the scope of what kind of data can be represented and interpreted. c

were developed by researchers in arti�cial intelligence as a means of representing

and organizing general knowledge of the world. c incorporate ideas

from both traditional data models and semantic networks.

The data model we will use is the ER model [], extended to include inheritance. Our

implementation of this data model is part of the n data modeling tool [4], [2]. This system

is a vehicle for both research and education on such tools. It is concerned with studying ways

to enhance the modeling power of a transaction management system while maintaining its

high-performance characteristics. The name is a reference to ortheastern University where

most of the work is being carried out.

Objects in the ER model are called , and they are grouped into classes called

. Objects can be related to one another by links called , which are

grouped into . An ER schema is usually written using a diagram called

the in which entity sets are drawn using rectangles and relationship sets are

drawn using diamonds.

In �gure 2, we show an example of an ER diagram. The diagram represents the schema

of a classic business application: the storage of invoices. In this case there are two entity

sets: invoice and item. Each invoice consists of one or more (line) items, and each item is

used in exactly one invoice.

3

In the ER model, one can restrict the functionality of relationships to be one-to-one, one-

to-many, many-to-one or many-to-many. These constraints are indicated using decorations

of the basic ER diagram. For example, the one-to-many relationship set linking invoice with

item in �gure 2 is decorated with \1" and \ " to indicate its functionality.

In addition, an entity set is called a if the existence of each entity in

this entity set depends on the existence of another entity in the database. Although, strictly

speaking, this is a property of relationship sets and not entity sets, the ER diagram indicates

this constraint by using a \double" rectangle for the entity set. For example, in �gure 2, both

invoice and item are weak entity sets because both depend on the other for their existence.

ote that an ER diagram is not a complete schema for a database. In particular, the

attributes of the entity and relationship sets are not normally shown in the ER diagram

nor are the constraints presented in a precise manner (the weak entity constraint being an

example). For this reason, we distinguish between the ER schema and the ER diagram. The

syntactic details of the schema are beyond the scope of this paper, and we refer the reader

to [2].

l tions i t n r rs nd c s

In this section the relationship between grammars and schemas is introduced. An exam-

ple is used throughout the section to illustrate how linguistic concepts have analogous data

modeling concepts and vice versa. As the example is examined in more detail, the dis-

tinctions between grammars and schemas emerge, leading to the concepts of linearization,

delinearization and panoramas.

The following grammar de�nes a language in which a sentence speci�es zero or more

invoices, each of which consists of one or more items. In other words, essentially the same

information content as in the ER diagram of �gure 2.

sta t invoice_ ist

invoice_ ist : invoice_ ist invoice | ;

invoice : st in ' ' item_ ist ' ';

item_ ist : item_ ist ';' item | item;

item : st in ;

Each invoice has a \header" consisting of a string, and each item consists of a string. The

braces are punctuation marks that determine which rule is to be used, but that convey no

additional information once it has been determined which rule to use.

This example suggests that one can relate grammars to schemas as follows:

1. onterminals of the grammar correspond to entity sets of the schema.

2. If a terminal of the grammar has a value associated with it, then the terminal corre-

sponds to a domain or built-in type of the schema. The use of the terminal in a rule

4

is represented as an attribute of an entity set. However, an attribute in a schema is

identi�ed by its attribute name, while a symbol in a grammar rule is identi�ed by its

position in the rule.

3. If a terminal of the grammar is just a punctuation mark, then the terminal corresponds

to a domain with just one value. The use of the terminal in a rule need not be

represented as an attribute.

4. If a nonterminal has several rules, then each rule represents an entity set that inherits

from the entity set for the nonterminal. The entity set of the nonterminal has as its

attributes the common attributes of the alternatives.

5. hen a nonterminal is used in a rule, then this use is represented by a relationship set

in the schema. As with attributes, relationship sets in a schema are identi�ed by their

names, while symbols in a grammar rule are only identi�ed by their position.

. A nonterminal can appear on both sides of a rule. In some cases, such as \left recur-

sion," this represents ordering or sequential information. Such information may not be

needed and can be omitted from the schema.

. A sentence (or equivalently, a parse tree) of the grammar corresponds to a state of the

database.

. The action performed by the compiler when each rule is invoked corresponds to the

action (constructor) to be performed when an entity is constructed. The symbols used

in the rule represent the entities passed as parameters to the constructor of the entity

represented by the left-hand side of the rule.

The process of translation between grammars and schemas will include provisions for

improving (or \optimizing") the translation. Optimization for data model translations is

similar to optimization for programming languages: if an optimization pattern is observed,

then the schema is transformed in a speci�ed way. Ideally an optimization should not alter

the semantics of the schema. However, there are circumstances where optimizations that

alter the semantics are desirable.

In the case of the Invoice grammar, the translation has performed two optimizations.

The �rst is the elimination of sequential ordering information. This optimization changes

the semantics. The second is the elimination of two grammar symbols so that there are

only two entity sets in the schema, not four as one would expect. This does not change the

semantics because the following grammar de�nes the same set of sentences as the one above:

sta t invoice_ ist

invoice_ ist : invoice_ ist st in ' ' item_ ist ' ' | ;

item_ ist : item_ ist ';' st in | st in ;

5

invoice

item

i st

?

?

1

1

ne t

-

�

1

1

ne t

-

�

1

1

Figure 2: e e nvoice ER Diagram

As already noted, the Invoice schema and grammar above di er in an important respect:

there is no ordering among the invoices (or among the items of one of the invoices) in a

database state. Figure 3 is the ER diagram of a schema that maintains sequential information

in the invoice database by using two one-to-one relationship sets named ne t. In addition

the one-to-many contain relationship set becomes the one-to-one i st relationship set. In

the OrderedInvoice schema, the item entities are grouped into linked lists, and only the �rst

item in each list is linked with an invoice. There are several constraints of the schema that

do not appear in the ER diagram. These constraints ensure that there is just one list of

invoices and that each item is contained in the list of exactly one invoice. These constraints

are called disjointness and covering constraints.

The implementation of the ER model in the n system is rich enough to allow one to

express constraints of the kind required above. et all constraints are built from just a

half-dozen elementary constraints. The ER model of n is called the alpha mo el. In this

model one can express data structures that use pointers, garbage collection, encapsulation,

overloading and identi�ers that depend on a local scope. For more information about the

n system see [2].

Another important distinction between grammars and schemas is that grammars have a

preferred starting point which corresponds to the root node in the parse tree of a sentence.

For a schema to be translatable to a grammar, one must choose this preferred starting point.

This choice leads naturally to the concept of a panorama which is developed in the next

section.

nor s

A (or) of a schema consists of:

1. A subset of an entity set (or another view). This entity set is the c or c

of the view.

2. A subset of the attributes of the focal point.

st ent

co e e

co se

ma o

- -

1

ta e

R

R

ive

	

	

1

Figure 3: nive sit ER diagram

3. Any number of computed using relationship sets and attributes

of other entity sets (or views).

A is a maximal nonredundant view of the database. In this section we give

some examples of panoramas and discuss how a panorama is computed.

Perhaps the most common example of a panorama is a set of data items stored as a
at

ASCII �le and not tied to any particular database management system. Such a database

will be called a peripatetic database. Address lists, BibT

E

�les and structured text as in a

dictionary are examples of peripatetic databases. Translating a schema to a grammar allows

the database to be \dumped" as an ASCII �le and loaded into another database which might

use a di erent schema, data model and database management system. Having a peripatetic

form makes a database more easily transportable. As we will see, a panorama is essential

for translating a schema to a grammar and hence for making a database peripatetic.

The p-string (\parsed string") data model [10], [14] develops a grammar-based data model

for structured text. This model is similar to ours in that grammars are regarded as de�ning

a data model. Furthermore, the p-string query language has an operator that reparses a

string. In other words, the operator dumps a database state and reloads it using another

schema. However, the p-string model di ers from our work in not considering the issues of

identi�ers and binding.

The schema of �gure 4 will be used to illustrate the computation of a panorama. The

computation of a panorama for the University schema presents a number of problems. Sup-

pose that we use the student entity set as the center. Each student majors in exactly one

college. However, a given college can have any number of student majors. If we view the

college entity set from the student entity set, then information about each college will be

replicated for each student record. Furthermore, there might not be any student majors in

some college, in which case the information for that college would not be represented at all.

Similar remarks apply to the course entity set relative to the student entity set. It follows

that the panoramic view centered at the student entity set consists of just the student entity

set itself. The panoramic view from the course entity set is also just the entity set itself.

Finally consider the college entity set as the focal point. The college entity set is linked

with the student entity set via the ma o s relationship set and with the course entity set via

the ive relationship set. In both cases the relationship set is single-valued and mandatory.

In other words, a course m st be given by exactly one college, and a student m st major

in exactly one college. Therefore both students and courses can be represented fully and

nonredundantly from the point of view of the colleges. One can translate everything in the

University schema except the ta es relationship set into the following grammar:

sta t co e e_ ist

co e e_ ist : co e e_ ist ';' co e e | ;

co e e : ... ' ' st ent_ ist ' ' ' ' co se_ ist ' ';

st ent_ ist : st ent_ ist ',' st ent | ;

st ent : ' ' ... ' ' ;

co se_ ist : co se_ ist ',' co se | ;

co se : ' ' ... ' ' ;

It remains to consider the ta e relationship set. To represent this relationship set, either

the courses taken by each student must be listed or the students taking each course must be

listed. However, it would be highly redundant (and very error-prone) to require that all the

information about a course (or student) be repeated in these lists. The usual solution to this

problem is to use an identi�er for an entity in lieu of repeating all the information about the

entity. This will only work if there is such an identi�er among the attributes of the entity.

Assuming that this is the case for the course entity set, then the University schema can be

translated into following grammar:

sta t co e e_ ist

co e e_ ist : co e e_ ist ';' co e e | ;

co e e : ... ' ' st ent_ ist ' ' ' ' co se_ ist ' ';

st ent_ ist : st ent_ ist ',' st ent | ;

st ent : ' ' ... ' ' co se_tit e_ ist ' ' ' ' ;

co se_ ist : co se_ ist ',' co se | ;

co se : ' ' ... ' ' ;

co se_tit e_ ist : co se_tit e_ ist ',' st in | ;

An attribute (or set of attributes) of an entity set that uniquely determines each entity

is called a or of the entity set. Data models without object identity (such

as the relational model) require the introduction of identi�ers for every concept represented

in the database. Object-oriented data models are more reasonable in this respect, but still

require identi�ers in some situations.

Unfortunately, the introduction of identi�ers takes one beyond the range of what can be

expressed entirely within a context-free grammar since the grammar itself does not specify

that the strings occurring in co se tit e ist have any connection with the strings iden-

tifying courses. For that matter, there is no way to express within a context-free grammar

that an attribute uniquely identi�es an instance of a nonterminal. Both of these features of

the schema are considered \semantic" rather than \syntactic" features of a language.

The use of identi�ers in a grammar is called in ing in the linguistics literature [],

[]. Binding involves three word-classes: anaphors (including self-references like the word

\itself"), pronomials (including pronouns like the word \them"), and referring-expressions

(including proper nouns). All of these occur in programming languages. For example, the

\this" variable in C++ can be regarded as anaphoric. However, the only strategy that we

will discuss is the use of referring expressions.

The linguistics literature deals very well with binding, especially with the way that one

looks up or \indexes" a reference in a natural language. However, there is no consideration

of why the identi�ers exist in the �rst place and when one might be able to do without them.

The relationship between grammars and schemas discussed here presents a simple model

that explains the circumstances that lead to the introduction of identi�ers.

In the case of yacc or Demeter

TM

, looking up an identi�er is handled by the actions

of the grammar. They are traditionally implemented by using a data structure called a

s m ol ta le. The translation of a schema to a grammar will produce a lexical scanner,

grammar, the grammar actions, and a C++ class library that implements a symbol table

and provides facilities for enforcing the constraints speci�ed by the schema. The C++

classes come complete with facilities for garbage collection, tracing, displays, persistent object

storage, and so on. The class library can be used as the foundation for an object-oriented

database management system.

If a grammar uses identi�ers, then the requirements for these identi�ers are buried in

the action code. As a result, when translating a grammar to a schema, it is currently not

possible to translate these uses of identi�ers into relationship sets in the schema. The need

for identi�ers is part of the more general issue of \object sharing" (or \instance sharing").

Objects can be shared in a number of ways:

1. A many-to-many relationship set between entity sets A and B permits many entities

of B to be related with (and hence shared by) a single entity of A and vice versa.

2. Two relationship sets having a entity set in common can result in sharing even if the

relationship sets are not many-to-many. In the OrderedInvoice schema, the i st and

ne t relationship sets would potentially allow sharing of item entities. Since this does

not occur in the grammar, it was necessary to impose a constraint to prevent it.

The rest of this section is devoted to describing how panoramas can be computed. This

is done in several steps. In the �rst step, the schema is translated to a more elementary data

model called the m mo el [5]. In this model, relationship sets, inheritance, attributes and

even key constraints are all represented using binary relationship links. This model is not

very useful for data modeling by a person, but it is very useful for implementing algorithms

because of its simplicity. For a succinct description of the mu model see [3]. In the mu

model, the schema is a directed graph in which both vertices and edges are labeled.

The next step in computing a panorama is a \greedy algorithm" in which one starts with

the central entity set of the panorama, and one adds edges and vertices whenever certain

criteria are satis�ed. The key fact is that whenever it is observed that an edge or vertex

should be added to the panorama, there is never an advantage to delay this operation. The

examples and discussion above illustrate the kind of criteria that must be satis�ed.

hen no more edges or vertices can be added to the panorama, the results are translated

back into the terminology of the alpha model. They are then used to de�ne a view that can

be translated to a grammar. The entire process of translating a schema to a grammar can

be summarized in the following steps:

1. Choose an entity set to be the center.

2. Compute a panorama at that center:

(a) Translate to the mu model.

(b) \Greedy algorithm."

(c) Translate back to original model.

3. inearize and optimize the panorama.

4. Express the linearized panorama in lexical and grammatical terms.

5. Produce a C++ class library for each entity set.

u r n u s

There are still other ways in which data models and grammars di er. These are not so much

formal distinctions as they are di erences in the way the concepts are generally used.

One distinction is that data models generally have well developed query languages, while

grammar-based models generally have limited support for queries. Most grammar-based

systems (such as yacc) only provide for an action to be performed whenever a rule is used.

Generally the actions construct the symbol table, along with a list of statements in an inter-

mediate language. Compiler-compilers like yacc generally o er little help with the symbol

table. The programmer typically constructs the symbol table in some ad hoc manner rather

than utilizing standard tools like database management systems.

One exception is the p-string data model [10] which includes a query language that has

powerful operators for manipulating and querying parsed strings. However, the model is not

concerned with issues of type and consistency constraints since the operators can manipulate

the parsed strings in essentially arbitrary ways. evertheless, one of the directions for our

future research is to study the extent to which one can express the p-string operators in our

framework.

Another exception is the ACOR system of Reiss, described in [15]. Our work is similar

to that of Reiss in that we automate the production of symbol table software. However,

we can start with the structure of the symbol table and produce the grammar for it, rather

than just starting with the grammar and producing a symbol table structure for it. On the

10

other hand, the symbol table in the ACOR system is just a means to the ultimate goal

of translation to the target language, whereas in our case, the symbol table software is our

ultimate goal.

In most compilers the relationship between the program being translated and its symbol

table is very complex and di cult to extract from a compiler. As a result the interfaces

to standard libraries must be recompiled from scratch for each program, a task that can

dominate the compile time in a language like C++. It would certainly make more sense to

store standard library interfaces in persistent symbol tables which can be queried as needed

rather than continually recompiling the interfaces. Perhaps the reason why this has not been

done is that data models have not been rich enough to express the semantics of symbol tables

in a way that made a signi�cant improvement over ad hoc techniques. This may change with

the development of object-oriented data models.

Another way in which grammars di er from schemas is the fact that database manage-

ment systems typically deal with very large databases that are incrementally modi�ed rather

than being continually reconstituted. Compilers, on the other hand, generally compile a pro-

gram as a single unit each time the compiler is invoked. inkers do improve the situation to

some extent, but this technology is old, and the granularity of compilation is still relatively

large.

The fact that databases are generally modi�ed in small units while compilers deal with

large programming units has led to di erent strategies for specifying input and output. Com-

pilers utilize lexical scanners and can specify punctuation marks in the grammar. Database

management systems, on the other hand, have elaborate tools for designing screens for in-

put and reports for output. The n system helps to bridge the gap between the services

provided by database management systems and compiler-compilers.

onclusion

e have shown that context-free grammars and schemas have a close connection, and we

have discussed several strategies for translating between schemas and grammars. Some of

these strategies have already been implemented in the n data modeling tool.

Although schemas in general cannot be translated to grammars, even when one is allowed

to reference identi�ers, it is possible to characterize how much of a schema can be so trans-

lated. e introduced the concept of a panorama for a maximal view that can be translated

to a grammar. e also discussed how panoramas can be computed, and how panoramas can

be translated to grammars. e introduced the idea that translations can be optimized and

gave some examples of optimizations.

A signi�cant application of this work is the connection with symbol table software. One

product of translation from a schema to a grammar is a class library that implements a

symbol table for the language de�ned by the grammar. This has advantages for compiler

technology by making it possible to use database management systems for storing interface

information.

The n system itself takes advantage of the automation of symbol table development. It

11

was bootstrapped by building a minimal system that provided only some of the capabilities

that were planned. This was written using standard yacc and lex techniques. This early

system was used in several courses and by a series of graduate students who did projects

using this system. A great deal was learned about how to proceed with the system from this

early experience. The early system was then used to build the yacc grammars and C++

class libraries for more sophisticated models as well as other kinds of translators.

Most of the current work on the n system involves the development of translators of

various kinds both at the data level and at the schema level. anguages being studied include

the p-string query language mentioned earlier, Demeter

TM

, SGM (Standard Generalized

Markup anguage) [], S , EGO (a proof checking system) [13] and BibT

E

. The abil-

ity to construct complex C++ class libraries quickly and accurately has the potential for

simplifying and improving the development of software for translation.

c no l d nts

The author would like to thank Raoul Smith and Markku Sakkinen for their help with

references to the literature on linguistics and grammar-based data models. The author

would also like to thank the many graduate students, too numerous to list, who contributed

to the n project.

r nc s

[1] A. Aho and . Ullman. rinciples of ompiler esign. Addison- esley, Reading, MA,

1 .

[2] . Baclawski. The n object-oriented semantic data modeling tool: intermediate

report. Technical Report U-CCS- 0-1 , ortheastern University, College of Com-

puter Science, 1 0.

[3] . Baclawski. The structural semantics of inheritance. Technical Report U-CCS- 0-23,

ortheastern University, College of Computer Science, 1 0.

[4] . Baclawski, T. Mark, R. ewby, and R. Ramachandran. The n object-oriented

semantic data modeling tool: preliminary report. Technical Report U-CCS- 0-1 ,

ortheastern University, College of Computer Science, 1 .

[5] . Baclawski and D. Simovici. An algebraic approach to databases with complex objects.

nformation stems, 1 (U-CCS- 0-14):33{4 , 1 2.

[] P. Chen. The entity-relationship model { toward a uni�ed view of data. rans.

on ata ase stems, 1: {3 , 1 .

[] . Chomsky. ect res on overnment an in ing. Foris, Dordrecht, 1 1.

12

[] . Cook. homs 's niversal rammar: n ntro ction. Basil Blackwell, Oxford,

U , 1 .

[] Anonymous et al. Information processing { text and o ce systems { standard general-

ized markup language (SGM), 1 . ISO -1 (E).

[10] G. Gonnet and F. Tompa. Mind your grammar: a new approach to modelling text. In

roc.

t

onf., pages 33 {34 , Brighton, U , 1 .

[11] . ieberherr. Object-oriented programming with class dictionaries. . on isp an

m olic omp tation, 1:1 5{212, 1 .

[12] . ieberherr and A. Riel. Contributions to teaching object-oriented design and pro-

gramming. In roc. , October 1 .

[13] . uo, R. Pollack, and P. Taylor. ow to se reliminar ser's an al .

Edinburgh, U , October 12, 1 .

[14] H. Mannila and . Raiha. On query languages for the p-string data model. In Ohsuga

angassalo and aakkola, editors, nformation o elling an nowle ge ases. IOS

Press, 1 0.

[15] S. Reiss. Automatic compiler production: the front end. rans. oftware ngi-

neering, SE-13: 0 , 1 .

13

