
The NU& Object-Oriented Semantic Data
Modeling Tool:

Intermediate Report

Kenneth Baclawski
College of Computer Science
Northeastern University

Boston, Massachusetts 02115

March 1, 1990

Abstract

The nu& system is a semantic object-oriented data modeling tool.
It is a research vehicle for studying ways to enhance the modeling
power of a transaction management system while maintaining its high-
performance characteristics. This is the second of a series of reports
on the nu& system.

The author was supported by NSF Grant # CCR-8716485
c© 1990 by Kenneth Baclawski. Version 1.0 February, 1990

1



1 Introduction

The nu& system is a semantic object-oriented data modeling tool. It is
intended to be a vehicle for both research and education on such tools,
and for this reason is a public domain software system. It is concerned
with studying ways to enhance the modeling power of a transaction
management system while maintaining its high-performance charac-
teristics. The name is a reference to Northeastern University where
most of the work is being carried out.

This is the second report on the nu& system. The first report [4]
described the objectives of the nu& system and gave some details about
one component of the system called the association model. This model
is now called the alpha component of nu&. It is one of six planned
components of the system. In this report the overall architecture of
nu& is described in general, the components are described in some
detail, and the various software modules that link the components
together are introduced.

2 Background on Database Manage-

ment and Object-Oriented Systems

Database management is concerned with the management of large
amounts of reliable, shared data. The specificity of this objective
contrasts with the situation in programming languages where there are
many competing concerns, and progress is more difficult to ascertain
since there is no goal to be achieved.

Object-oriented programming is a programming paradigm which
is popular especially among those who engineer data-intensive sys-
tems. In recent years, these areas needed to handle large amounts
of persistent and shared data (something which used to occur only
for business-oriented applications) and this need, together with the
changes in the cost ratio between core memory and hard-disk memory
provided the impetus for the development of object-oriented database
systems.

The main characteristics of an object-oriented system, as identified
in [6, 7], are:

1. Objects are encapsulated. There are three aspects to this: con-
trol, insulation and data hiding. The control aspect requires that

2



both the definition of the structure of an object and the defini-
tion of the operations allowed on the object are handled at the
same time. This gives the designer control over the use of the
data structure. Insulation means that the user of an object need
not be concerned with the implementation of the object. In par-
ticular, the implementation of the object can be altered without
affecting use of the object via the external interface. Finally,
data hiding is the requirement that the internal implementation
details be hidden from an external user of the object. Note that
data hiding does not imply insulation. For example, C++ sup-
ports data hiding and control, but not insulation. See [2] for
an example. Database systems usually provide a subschema or
view mechanism. This can used to support insulation and data
hiding, but not control.

2. Objects exist independently of their value; new attributes and
values can be attached or removed from objects without affect-
ing their existence. This feature of an object-oriented system
is known as object identity. There are various levels of object
identity. If the identity of an object persists only for the dura-
tion of the execution of a program, then this is the weakest form
of object identity. Many database systems, especially older ones
such as those based on the CODASYL model, offer the strongest
form of object identity: the identity of the object persists forever
(in principle).

3. The existence of a system of types and classes. While types are
used for grouping together objects that have the same charac-
teristics (as far as data structures and operational methods are
concerned), classes are designed to assist the user at run-time by
providing mechanisms for creating and storing objects. While
both databases and programming languages provide a system
of types, they are seldom compatible. This is one of the main
sources of the “impedance mismatch.”

4. Objects of different structures may share attributes and meth-
ods by inheriting some of their properties from more general
objects to which they belong. Both semantic data models and
object-oriented programming languages provide an inheritance
mechanism. Unfortunately the semantics of inheritance differs
markedly from one programming language to another and differs
from that used in semantic data models.

3



5. Methods, to be applied to objects, can be defined early before
their actual content is defined. The actual method to be applied
to an object is determined at run-time through a mechanism
called late binding. This approach simplifies programming ac-
tivity by allowing the programmer to use diverse objects in a
uniform manner. For example, a print statement that prints a
single object would display the object in a manner that is ap-
propriate for the object. A non-object-oriented language would
require a much more complex construction to accomplish the
same result, if it could be done at all.

3 Features

The following is a list of some of the features of the nu& system along
with the education and research areas that each addresses.

3.1 The mu data model

The mu model was developed as general framework for object-oriented
database concepts. Numerous features of database systems and object-
oriented systems have already been incorporated into the model, and
work continues on incorporating or expressing additional features into
the model.

• A strong form of object identity is supported in which an object
maintains its identity through changes of its attributes and even
of its type. Objects are persistent and remain in existence forever
(in principle).

• Encapsulation is supported through a view mechanism. The
same mechanism can be used to provide user views (subschemas),
privacy, security and data hiding.

• Both types (object specifications) and classes (object factories)
are supported either separately or as a combined concept (as in
C++).

• A great diversity of inheritance concepts can be expressed in the
model. This includes single inheritance, multiple inheritance,
multiple independent inheritance, prototype inheritance and pri-
vate inheritance Prototype inheritance can also be used to sup-
port incremental versions, although this is not as efficient nor as

4



flexible as the direct support for versions that is also provided.

• Both overloading and late binding are supported. Late binding
allows one to write procedures that exhibit a limited but very
useful form of polymorphism. A procedure is polymorphic if it
can act on a variety of types without being rewritten or even
recompiled.

• Both ordinary attributes and function attributes or methods can
be overloaded or late bound. This allows one to define late bound
derived data, and permits more flexibility for storage strategies.

• The model allows inheritance to be either covariant or contravari-
ant: attributes, functions and parameters can be defined to be
more specific in a more specific type (covariance) or more general
in a more specific type (contravariance), although the easiest one
to express is covariance. Each attribute, function or parameter
can be separately constrained to satisfy one of these two forms
of variation or both (in which case it is said to satisfy the exact
match condition).

• A full range of fundamental built-in data types is supported, in-
cluding all the C or C++ built-in types, along with many others.
Additional built-in types can be added as needed.

• Objects can examine their own type structure.

• Types can be used as attribute values of objects, and types can
have objects as values of their attributes.

• Generic or parametrized types can be defined. Types are instan-
tiated using much the same mechanism as the instantiation of
objects, namely, by using a constructor. Even higher levels of
generic types can be expressed in the model.

• Constraints are objects in the database. Efficiency of enforce-
ment depends on the constraint. For example, functionality con-
straints are supported within the model and are implemented at
a low level. For more details, see section 3.4 below.

• Several concepts of versioning can be expressed in the model.
There will be direct support for at least one of these.

The mu model is intended to assist in research on the foundations
of object-oriented systems. The fact that the model has been so suc-
cessful in expressing every concept of inheritance that has ever been
proposed is an indication that it is the correct model for fundamental
research in this area.

5



The mu model will form the basis for the textbook on data modeling
that is currently being prepared by the author and Dan Simovici.

3.2 Object-oriented semantic data models

The association model is an object-oriented semantic data model with
these features:

• Support for an object-oriented entity concept called a category.

• Support for a relationship concept called an association. Names
of associations can be overloaded.

• an association can also be a category. This is sometimes called
reification. The name as an association need not be the same as
its name as a category.

• The data definition language has no reserved words. This is
important for developing a graphical interface.

• Inheritance can be specified using either generalization or spe-
cialization. Specialization is the usual method for specifying in-
heritance, also called derivation, in which a more specific type is
defined using more general supertypes. Generalization is a tech-
nique whereby a more general type is defined from a collection
of more specific types.

• Transactions, constraints and triggers can be declared and at-
tached to categories.

• Arbitrary functionalities can be declared for each component of
an association using participation numbers.

• Both value-based and object-based categories and associations
can be defined.

• An attribute of a category can be single- or multi-valued, can be
mandatory or optional, and can be a key for the category.

• Covering and disjointness constraints can be placed on the in-
heritance hierarchy.

• A category can be subclassified in one or more ways into other
categories.

• Access paths to categories can be declared. This allows one to
make range queries on categories having the appropriate access
path.

• All the built-in fundamental types of C or C++ are supported.

6



In addition, fixed-length strings and variable-length text types
are provided.

The association model is suitable for research on and teaching of
data modeling concepts. A typical assignment in a data modeling
course is to design a database for a particular task in several data
models and compare them. The nu& system provides support for two
models: the association and mu models. It also supports a translator
from the association model to the mu model.

A more advanced project in the course would involve designing a
new data model. The availability of source code makes it possible for
a student or group of students to modify or extend the association
model. Such a project could eventually lead to a research project on
data modeling.

3.3 The class library generators

Several class library generators will be provided. Both C++ and
Smalltalk class library generators are currently being designed.

• The data definition language is a subset of the host language. In
particular, method bodies are written in a subset of the host lan-
guage. The semantics of the data definition language is designed
to mimic the host language as much as possible.

• Functionalities are expressed using data type operations in the
host language rather than by introducing an entirely new syntax.

• Although the data model permits covariance, the data definition
language permits only exact match semantics for better compat-
ibility with the host language.

• Mimic data types are used extensively as a tool for integrating
the data language in a manner that is almost transparent to the
application programmer.

• Set operations are provided by using a lazy evaluation technique
to implement generic objects at run-time. This permits one to
do set-at-a-time operations directly in the host language.

• Structural constraints can be compiled into the class library to
improve performance at the cost of reduced flexibility.

The class library generator is amenable to a great deal of ma-
nipulation. It is expected that the various features will form

7



the basis for assignments and class projects in courses on data
modeling as well as on object-oriented databases.

3.4 Constraint management

Constraint management involves so many aspects that a separate
component is provided for studying this important research area.
Functionality and other “structural” constraints are the easiest
constraints to understand, and are especially important during
the early design stages. Such constraints have more efficient
implementations since they represent a relatively limited class of
constraints. However, because structural constraints are limited,
more general constraints are also necessary. The following is a
partial list of the kinds of constraint that will be supported in
the nu& system.

• Functionality constraints are supported directly within the data
model and are implemented at a relatively low level.

• Tuple-structured, set-structured and union types are defined us-
ing type structure constraints. These constraints permit one to
build complex objects recursively by employing powerful data
structuring operations.

• Database restructurings are supported. A restructured database
can be viewed either in its original structure or in the new struc-
ture. For example, one can “reify” an attribute into an object.
The equivalence of the two views is maintained by a restructur-
ing constraint. Other restructurings are associativity of union,
associativity of product, distributivity of product over union and
the exponential law.

• Long-duration transaction-like sessions can be defined. Such ses-
sions are called superactions. The concurrency control mecha-
nism used to implement superactions is called the transaction
option. Transaction options are a form of dynamic constraint on
the database.

• Triggered constraints are supported. These allow one to define
complex constraints that are enforced only when triggered by an
event.

Each of these classes of constraint represents an entire research
area in it own right. The nu& system provides an environment in

8



which these concepts can be explored.

3.5 Implementation features

Since the nu& system is primarily a data modeling tool, it is expected
that there will be less emphasis on the internal file structures used
for low-level implementation. There are, however, some interesting
features of the interface with the internal level that will be developed.

• Name server A service is provided for managing the names of
type, attributes, functions and so on.

• Disambiguation A flexible mechanism for dispatching requests
for data and for execution of function members is provided. The
mechanism is based on the many-to-many relationship between
attributes and their names which is managed by the name server.

• File structures File structures can be specified in the schema,
using the operator new and operator delete operators.

• Transaction management The invocations of function members
in the schema are transactions by default. To obtain transaction-
like sessions that are larger than an invocation of a function
member, one can define superactions [1].

4 Architecture

The architecture of nu& consists of the following six components. Each
software module will either act upon one of these components in iso-
lation or will serve as part of the interface between two of the compo-
nents.

• The alpha component This component is the association model
described in the preliminary report [4] on the nu& system. This
model is an object-oriented semantic data model. The parser for
this component is complete.

• The mu component The central data model of the nu& system
is called the mu model. The model is defined in section 5 below.
This model is very close to the model presented in [5] where one
can find more details about its theoretical properties.

• The chi component The primary programming language of
nu& is C++. The chi component consists of the application

9



programs and their class library. The language used here is C++
with no alterations or extensions other than the class library.
The principal software module concerned with this component is
the C++ class library generator. A working module is expected
to be ready by the Spring Quarter of 1990.

• The sigma component A second language interface is planned
which will allow application programs to be written in Smalltalk.
The details of this interface will be discussed in a later report.

• The iota component The internal level of nu& is called the
iota component. Since the nu& system is primarily concerned
with data modeling and not file structures, we will use software
already available for this component. Several object-oriented
storage managers are being considered, but it is also possible to
use a standard SQL-based relational database management sys-
tem for this component. There are several interface modules that
must be provided, one for each application language and storage
manager supported. These modules are discussed in section 6.

• The eta component An important aspect of nu& is its flexible
constraint capability. The eta component is devoted to defining
and enforcing constraints.

5 The MU Data Model

In this section the nu&mu data model is introduced. We first give the
theoretical foundations in section 5.1. We then specialize the model
for the nu& system in section 5.2. This specialization involves choosing
objects that serve as “built-in” types, functionality constraints and so
on. The schema language is defined in section 5.3. This language is a
subset of C++ with semantics chosen to match the semantics of C++
as closely as possible. The design of a data model and data definition
language involves many design choices. We discuss these choices in
section 5.4 and compare our approach with some of the other models
that have been proposed.

5.1 Theoretical foundations

The starting point for the mu model is the observation that most data
relationships are binary. Accordingly, a database is defined to be a set
D of triples (o, a, p), where o and p are objects and a is an attribute

10



or component. The universe of all possible objects is denoted O, and
the universe of all possible attributes is denoted A. If (o, a, p) ∈ D,
then we say that the object o has value p for the attribute a, or more
succinctly, that o has a-value p. Notice that attributes are multivalued:
an object o can have many a-values. Constraints can be introduced
that can restrict attributes to be single-valued.

The first step in database design is to identify the “entities.” Con-
sequently, the most fundamental fact about any database is that ob-
jects are somehow organized into collections or types. As this relation-
ship is so basic, we distinguish it from all other attributes and gave it
special features in the mu model. This attribute is called the instance-
of relationship, and it will be denoted by instance of or simply by
a1 ∈ A. An object o is an instance of a type t in the database D when
(o, a1, t) ∈ D.

The mu model does not distinguish “object” from “type,” so that
every object is, in principle, also a type. However, to avoid logical
inconsistencies (such as the “lier’s paradox”) that arise when objects
are allowed to be instances of themselves, one must limit the pairs of
objects that can be related by instance of. Simply assuming that a1
is an acyclic attribute is not enough since that does not permit one
to give a satisfactory concept of a “schema” from database manage-
ment or the analogous concept of “compile-time” from programming
languages.

Accordingly, in the mu model it is assumed that there is a function
called the level function,

level : O −→ {0, 1, 2, . . .}

that stratifies the universe of all objects into “ordinary objects” (i.e.,
those for which level has value 0), “types” (i.e., those for which level

has value 1), “meta-types” (i.e., those for which level has value 2),
and so on. The attribute a1 relates objects on adjacent levels:

if (o, a1, p) ∈ D then level(p) = level(o) + 1.

Note that we refrain from formally defining the term type to mean an
object on level 1, since objects on this level are just ordinary objects
to the objects on level 2.

Like the instance of attribute, every attribute in A relates ob-
jects that are a fixed number of levels apart: for every attribute a ∈ A,
there is a number degree(a) such that

if (o, a, p) ∈ D then degree(a) = level(o)− level(p).

11



In particular, degree(instance of) = −1. Most attributes will have
degree 0, i.e., they relate objects on the same level. The restriction
of an attribute a to level n will be denoted by an.

To express the concept of a schema or type specification, instances
of a type must be constrained by the attributes of the type. For exam-
ple, suppose that person and string are two types. We would like to
specify that an instance of person has a name which must be of type
string. This is done by inserting the triple (person, name, string)
into the database D. We call this a type constraint: it constrains any
name value of an instance of person to be an instance of type string.
Type constraints are important enough to make them an axiom of the
mu model called the type constraint axiom: if (t, a, u) ∈ D and o is an
instance of t, then every a-value of o must be an instance of u.

The type constraint axiom does not quite fully capture the con-
cept of a type specification, since it allows instances of a type to have
attributes other than those attached to the type. Moreover such “ex-
tra” attributes are unconstrained. There are situations where such at-
tributes are useful, for example, when types are considered instances
of a meta-type. However, for ordinary objects one generally assumes
the type specification condition: if (o, a, p) ∈ D, then there are types
t and u such that o is an instance of t, p is an instance of u and
(t, a, u) ∈ D.

The type constraint axiom and the type specification condition
apply only to “ordinary” attributes. This means that they do not
apply to the instance of attribute, nor to the is a attribute to be
introduced below.

The concept of inheritance is represented with a distinguished at-
tribute that has special features in the mu model. This attribute is
called is a or a0 ∈ A. When (s, a0, t) ∈ D, we say that s is derived
from t. When s and t are types, we say that s is a subtype of t and
that t is a supertype of s.

The first question concerning the is a attribute is whether it should
be allowed to have cycles. The objects in an is a cycle are equivalent
to one another with respect to the data model. It is easier to allow an
object to have several names than to deal with equivalence classes in
a data model. It is especially easy in the mu model, since attributes in
this model are multivalued by default. For this reason, it was decided
to require acyclicity of a0 as an axiom.

The last axiom of the mu model is called object inheritance to
distinguish it from an alternative form of inheritance called instance

12



inheritance to be discussed later. In this concept of inheritance, the
inheritance graph on one level is reproduced for each object instan-
tiated on the next lower level: if (o, a1, s) ∈ D and (s, a0, t) ∈ D
then there exists a unique object o′ such that (o, a0, o

′) ∈ D and
(o′, a1, t) ∈ D. If one borrows the terminology of C++, this can be
explained as follows: if an object (o) is an instance of a derived type
(s), then it is derived from a unique “base” object (o′) which is an
instance of the base type (s). Object inheritance is assumed as an
axiom of the mu model.

Instance inheritance is a very different concept of inheritance. A
database satisfies instance inheritance if instances of a subtype are re-
quired to be instances of any supertype: if (o, a1, s) ∈ D and (s, a0, t) ∈
D then (o, a1, t) ∈ D. If one thinks of types as collections of objects,
then this condition is purely set-theoretic: supertypes contain sub-
types. Instance inheritance is the intuitive picture one has in mind
when one is thinking about any inheritance concept. However, as
discussed in [3], it is object inheritance that is actually provided by
programming languages and databases. For this reason the mu model
uses object inheritance rather than instance inheritance as its inheri-
tance concept.

So far nothing in the axioms for the mu model prevents an object
from being an instance of an arbitrary set of types (or no type at all).
This is reasonable on higher levels, but on level 0 and possibly also
level 1, it is desirable to be more restrictive. A database is uniquely
typed on level n if every object on this level is an instance of exactly
one type. In other words, the attribute instance ofn is single-valued.
We will assume this condition on levels 0 and 1.

The inheritance mechanism of the mu model supports a number
of important properties. The first property is substitutability: an in-
stance of a subtype can be regarded as (or substituted for) an instance
of a supertype. Late binding on the other hand states that a derived
object still “remembers” that it is an instance of a subtype even when
it is being regarded as a base object. A database D is transitive if
for any objects or types o, p and q, (o, a0, p) ∈ D and (p, a0, q) ∈ D
implies (o, a0, q) ∈ D. Far from being a trivial property, transitivity
is the sole difference between “virtual” inheritance and “multiple in-
dependent” inheritance in C++. For a more complete discussion of
these properties and others, see [3].

If a type t has an attribute a, but an instance o of t does not have
this attribute, then we say that o has null value for attribute a. This

13



is the only concept of null directly supported within the model.

5.2 Special objects

To complete the description of the mu model one must distinguish a
number of built-in objects. For example, one must specify built-in
types such as int, string and so on. The built-in types represent the
starting point for building more complex types. The choice of which
types should be built-in is an important design decision of any data
model, and the ones that are provided match the built-in types of C
or C++, with some additional ones such as string that have been
recognized as generally useful in a wide range of application areas.

Dual to the concept of built-in type is the concept of a built-in
constraint. Some of these are important enough to deserve being dis-
tinguished as axioms, and are imposed universally. Others are imposed
more selectively. To allow constraints to be manipulated like any data
in the database, they are given object status. Like objects in general,
complex constraints can be built from more elementary constraints.
In particular, this means that some constraints will be built-in.

The specialization satisfies the following conditions:
SDB1 (level limit) All objects have level 0, 1 or 2; all proper at-

tributes have degree 0 or 1.
SDB2 (meta-types) There are four objects on level 2: TYPE, CONSTRAINT,

FUNCT and VIEW. Both FUNCT and VIEW are subtypes of CONSTRAINT.
SDB3 (constituencies) The database is uniquely typed on level 1

and uniquely typed and type specified on level 0.
SDB4 (constraints) A instance of CONSTRAINT has no instances.
SDB5 (functionalities) There are five distinguished objects in FUNCT:

one-to-one, one-to-many, many-to-one, mandatory-many-to-one

and many-to-many.
Both views and functionalities are specified the same way: an at-

tribute a of a type t is in a view v (or has functionality f) if (v, a, t) ∈ D
(or (f, a, t) ∈ D, respectively). Since the various functionalities have
syntactic consequences in C++, it is currently not feasible to allow a
subtype to override the functionality of an attribute.

5.3 The data definition language

The data definition language for nu&mu is a subset of C++. As we
acquire more experience, we plan to increase the number of C++

14



constructs that can be accommodated. However, it is unlikely that the
subset will be much larger than that currently allowed, since nu&mu

must be compatible with other languages as well.
A mu schema consists of a collection of units (called chapters), each

of which is one of the following: a class definition, using the reserved
word struct; a member function definition; or a global variable. A
class definition, in turn, consists of a collection of components, each
of which is one of the following: a data member; a function mem-
ber; a constructor; a destructor; a conversion; or an operator (ex-
cept new and delete). One may specify visibility of members, using
public, protected, private and friend class. Other constructions
for specifying visibility are not yet supported.

The only kind of inheritance currently supported is virtual public
inheritance. If the reserved word virtual is omitted, it is assumed,
but a warning is given. If the reserved word private is used, a syntax
error occurs.

The type of a data member, function member, conversion, opera-
tor, function parameter or global variable must be one of the following:

1. One of the fundamental built-in data types.

2. One of the user-defined data types in the schema.

3. A type obtained from one of the types in (1) or (2) above by using
one of the following type constructors: ordinary type (<type>),
pointer (<type>*), reference (<type>&), unbounded array (<type>[])
or unbounded array of pointers (<type>(*)[]). In the fifth type
constructor, the parentheses may be omitted, but a warning is
given in this case.

The following is a partial list of the most prominent features of
C++ that are currently not included. Any of these is an excellent
research topic. Some are suitable for a course project, while others
are material sufficient for a Ph.D. thesis.

• Private derivation.

• Non-virtual derivation.

• Named and unnamed unions.

• Static, const and volatile data and function members.

• Typedefs.

• Pointers to members, especially member functions.

• Register, static and volatile variables in function bodies.

15



• Friend functions.

• Allowing type names to be hidden.

• Enum types.

• Lazy prototyping.

• Initializer blocks.

• External data or functions accessed from the schema.

• Bounded arrays as type constructors.

5.4 Design choices

The mu model differs considerably from other models that have been
proposed. In this section we discuss some of the design choices that
led to the model as well as compare the model to other models. The
most important predecessors to the mu model are the Format model
of Hull and Yap [8], the LDM model of Kuper and Vardi [9] and the
O2 model of the Altäır group [10].

One of the more dramatic ways in which mu differs from other
models is the use of explicit typing and inheritance. In O2, for ex-
ample, types are abstractions determined by the structure of objects.
Objects have the same type if they have compatible structures in a
suitable sense. The type of an object is inferred. Inheritance is also
determined by inference. By contrast, the mu model requires that ob-
jects be explicitly specified as instances of a type. Two objects could
have exactly the same attributes and even attribute values without
being instances of the same type. Similarly, type inheritance is ex-
plicit. We noted that declarative programming languages like C++
and Smalltalk use explicit typing and inheritance. For the sake of
reducing the impedance mismatch, we decided to be explicit.

One of the features of O2 is that objects can have attributes not
specified by their type. This feature is allowed only on positive levels
in the mu model because it clashes with declarative object-oriented
programming languages which do not support such flexibility. The
feature is convenient on level 1, for otherwise the meta-type TYPE

would have to have every attribute of any type. The feature is essential
on level 2, for without it the model would force one to have an “infinite
tower” of meta-types on higher and higher levels.

Another curious feature of O2 is that the inheritance graph can
have cycles. As this has no analog in declarative programming lan-
guages or in semantic data models, we chose not to allow it.

16



Another significant difference between the mu model and other
models is the lack of an explicit null object or value. The disadvantage
of null objects or values is that the axioms of the model must make
constant reference to these special cases. This leads to a nonuniform
treatment that is much harder to understand. Except for the two
distinguished attributes, the axioms of the mu model do not recognize
any other distinguished attributes and do not recognized any distin-
guished objects at all. In general, it is much better to have a uniform
treatment (i.e., without special cases) than to introduce distinguished
cases. This is what makes late binding such a powerful programming
technique, and, by analogy, we felt that it would also help strengthen
the mu model which serves as the foundation of the entire nu& system.

Another problem with null objects or values is that the semantics
can be confusing and ambiguous. For example, in O2 there is a NIL
value. This value is distinguishable from the empty set and the empty
tuple (having no attributes). Experience with data modeling suggests
that such distinctions are artificial and confusing. Even in O2 it is not
clear what these distinctions are supposed to be. For example, there
are four distinguishable possibilities for an object to have a “nil” value
for an attribute: it might not have the attribute at all, the attribute
might be an object with NIL value, the attribute might be an object
with an empty set-structured value and finally the attribute might be
an object with an empty tuple-structured value.

We decided to avoid such semantic subtleties by having just one
concept of null value. An object has a null value for an attribute if
it does not have that attribute. That the object “should” have the
attribute is determined by the type of the object (which is specified
explicitly rather than being inferred by the structure of the object).
Thus the empty set of values for an attribute is the same as not having
a value which, in turn, is the same as having the null value.

Of course, there is nothing to stop a designer from introducing
“null” objects and incorporating their semantics into methods. Within
the mu model, however, these would be objects like any other with no
special privileges.

Another interesting design decision was that every attribute has
the potential to be multi-valued, and it will be so by default unless
constrained to be otherwise. This was done to allow one to perform
schema updates in the same manner as other updates. In fact, the
axioms do not distinguish any level. Of course, the usual function-
ality constraints (such as single-valuedness) are provided as special

17



objects to give a designer the option to improve performance of the
implementation at the cost of making it more difficult to update the
schema. This performance/flexibility trade-off is a well-known one.
Most database systems, such as SQL-based relational systems build
this choice into the database management system rather than defer-
ring the choice until final implementation.

Each type t in a mu database is automatically a “tuple-structured”
type, since it can have any number of attributes. Each of these at-
tributes, in turn, can have a set of types as its “value.” Say, for
example, that attribute a has values u and v. An instance of the type
is also tuple-structured, and each attribute value is constrained to be
an instance of an anonymous union type. For example, a value of
attribute a must be an instance of either u or v (or both). Finally,
each attribute of an object can have a set of values thereby making
each attribute “set-structured.” In other words, the mu model provides
both “tuple-structured” and “set-structured” data as in the Format,
LDM and O2 models. It also provides for unions which are part of the
Format model but not the LDM or O2 models.

One significant mismatch between declarative programming lan-
guages and data languages is the lack of true set structures within
programming languages. Declarative programming languages gener-
ally have facilities for handling tuple-structures and unions, but they
provide arrays rather than set-structures. Note that the lack of a set
structure occurs only at the lowest object level. At the type level,
unions are set structured as is multiple inheritance. The array con-
cept is also an incomplete one, since arrays cannot in general be passed
as a (value) parameter. The decision to provide set structures in the
data model in lieu of an array or list structure was a trade-off. On
the one hand, it leads to a mismatch problem with programming lan-
guages. On the other hand, incorporating an array or list structure
in the data model leads to a more complex data model which is less
powerful and whose semantics differs from level to level. Fortunately
nearly every class library provides some form of set structure, so that
if sets are not explicitly part of an object-oriented programming lan-
guage at its lowest object level, then they are easily available within
the class library. Accordingly, we chose to use set structures at every
object level. Other collective structures, such as lists and arrays will
have to be synthesized. Only time will tell if this is the right decision.

The decision to have a uniform treatment of objects, types and
meta-types led to the concept of a parametrized type as simply a

18



type on a higher level. The parametrized type instantiates ordinary
types by using a type constructor exactly as ordinary objects are in-
stantiated using a constructor. One big difference between types and
objects is that one may assume that every object is an instance of
some type, but one normally does not assume that every type is an
instantiation of some parametrized type. This is one of the reasons
why the axioms are somewhat loose about type constraints, and why
it is necessary to have axiom SDB3. We wanted the data model to
deal with all levels uniformly, but since most languages and database
systems are not uniform in this respect, this nonuniformity had to be
stated somewhere.

We could provide parametrized types within nu& immediately, but
we would like to be compatible with the notation being developed for
parametrized types (templates) in C++ which are still in development.

6 The Internal Level

The most interesting aspect of the interface to the internal level of
an object-oriented system are the mechanisms for overloading, over-
riding, disambiguation and late binding (or dispatching). The key to
these mechanisms is a flexible name facility, called the name server.
Instead of regarding attributes as being ambiguous, we take the point
of view that attributes in themselves are never ambiguous. Ambigu-
ity and hence the need for the concepts of overloading, overriding and
disambiguation arises from the fact that the relationship between com-
ponents and their names is many-to-many: each component has many
names and different components can have the same name. Moreover
every context has a different view of this many-to-many relationship.
Furthermore the disambiguation mechanism is both determined by
this view and helps to determine it.

References

[1] K. Baclawski. Database transaction options. Technical Report
NU-CCS-86-5, Northeastern University, College of Computer Sci-
ence, 1986.

[2] K. Baclawski. Mimicking data types in an object-oriented pro-
gramming language. Technical Report NU-CCS-89-33, North-
eastern University, College of Computer Science, 1989.

19



[3] K. Baclawski. The structural semantics of inheritance. Techni-
cal Report NU-CCS-90-19, Northeastern University, College of
Computer Science, 1990.

[4] K. Baclawski, T. Mark, R. Newby, and R. Ramachandran. The
nu& object-oriented semantic data modeling tool: preliminary re-
port. Technical Report NU-CCS-90-17, Northeastern University,
College of Computer Science, 1989.

[5] K. Baclawski and D. Simovici. An algebraic approach to
databases with complex objects. Information Systems, 17(1):33–
47, 1992.

[6] F. Bancilhon. Object-oriented database systems. In Proc. of
the Sympos. on Principles of Database Systems, pages 152–162,
Austin, Texas, March 1988.

[7] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou,
and H. Kim. Data model issues for object-oriented applications.
ACM Trans. on Office Information Systems, 5(1):3–26, 1987.

[8] R. Hull and C. Yap. The format model: a theory of database
organization. J. ACM, 31:518–537, 1984.

[9] G. Kuper and M. Vardi. A new approach to database logic. In
Proc. 3rd ACM Sympos. on Principles of Database Systems, pages
86–96, 1984.

[10] C. Lécluse, P. Richard, and F. Velez. O2, an object-oriented data
model. In Proc. SIGMOD, pages 424–433, 1988.

20


