A Network Emulation Tool

Kenneth Baclawski* kenb@ccs.neu.edu

August 24, 2002

Abstract

The Network Emulation Tool (NET) is a software sim-
ulation of a computer network. NET is designed for
research and teaching of distributed algorithms in a
computing environment that supports the Berkeley
Unix operating system. Two methods are provided
for customizing NET to simulate a particular computer
network. One can specify the parameters of a stan-
dard network provided by NET, or one can program a
new communication layer. This report describes the
NET interfaces and gives examples of the use of the
NET system.

1 Introduction

Networks and software designed to take advantage
of networks are increasingly common. The Network
Emulation Tool (NET) is a simulation of a commu-
nication network on a fixed number of computers,
each with its own shared database. NET is designed
to aid research and teaching of distributed operating
system and distributed database concepts. Written
in C, NET can be used by any computing environ-
ment that supports the Berkeley 4.2 or 4.3 bsd Unix
operating system. The NET system has already been
successfully used in a course on Distributed Database
Systems and is being used for research in distributed
concurrency control and recovery algorithms. The
course and the NET system were based on [4] and
[3]. The main programming assignment in the course
consisted of implementing parts of a banking net-
work such as the Cirrus Network [6]. The research

*College of Computer Science, Northeastern University,
Boston, Massachusetts 02115

is mainly concerned with performance and availabil-
ity issues as in [5] and [7].

The network being emulated is a collection of sites
that communicate with one another via messages.
Other communication paradigms, such as rendezvous
or remote procedure call are easy to simulate with
NET. A detailed example is given to illustrate remote
procedure call. All computation at a site is done by
processes. These processes are simulated by Unix
processes. They carry out their tasks by using Unix
system services and by calling procedures of the ex-
ternal interface of NET. As far as is possible, a process
is programmed like an ordinary Unix process, and the
emulation is made to be transparent. For example, a
process can call the printf function to display output
on the screen. NET will capture the output produced
by such calls and write it, one line at a time, to the
screen, with each line labelled by the site and process
that produced it.

In designing the NET system, it was recognized that
there are many kinds of network and that their char-
acteristics vary a great deal. NET is layered to allow
one to use it to simulate particular networks very
easily. A standard network is provided by NET, the
parameters of which can be adjusted. These param-
eters control the probability distributions of message
delay, loss and duplication, site failure, network parti-
tion and site insanity. By adjusting these parameters
one can simulate a great variety of networks. Alter-
natively, one can write a new communication layer
that simulates the target network more accurately.

The NET system maintains statistics of message
traffic sent and received by each site. These are stored
in a reserved page of the database at each site. This
can be used to monitor the performance of the simu-

lated network as well as that of the distributed algo-
rithms being tested.

This report is organized as follows. The archi-
tecture of NET, both internally and externally is de-
scribed in Section 2. The two sections after that
present the external interface and the internal inter-
face, respectively. Section 5 gives an example of the
use of NET. The last section describes some future
directions of work planned for the NET system.

2 System Architecture and De-
sign Goals

The NET system emulates a network having a fixed
number of sites, numbered consecutively beginning
with 0. At each site a variable number of processes
can be executing. The processes at each site share a
cached, shared database. The processes communicate
with each other by sending messages via the network.

The architecture of NET is divided into two layers:
the Service Layer and the Routing Layer. The Ser-
vice Layer is used by user processes via the External
Interface. Communication characteristics are deter-
mined by calls to procedures in the Routing Layer by
the Service Layer via the Internal Interface.

The Service Layer provides the user processes with
the External Interface described in more detail in the
next section. There are facilities for network com-
munication, database access and process control. All
of these except for network communication are com-
pletely emulated in the Service Layer itself. When-
ever the Service Layer receives a request to send a
message via the communication network, it calls pro-
cedures in the Routing Layer to determine what hap-
pens to the message. The Routing Layer determines
when the message arrives, if it arrives at all. In addi-
tion, the Routing Layer is periodically queried to de-
termine the current network state. The network state
includes information such as which sites are function-
ing as well as which sites can communicate with one
another. When a site goes down, the Unix processes
at that site are killed, and volatile storage is lost. A
“reboot” process is created when the site comes back

up.

The Routing Layer can be the Standard Routing
Layer provided by the NET system. Alternatively, a
more specific Routing Layer can be written to simu-
late a target network more accurately. The Standard
Routing Layer already simulates a large variety of
network events, the occurrence of which is controlled
by adjustable parameters. The Internal Interface and
the Standard Routing Layer are described in more
detail in Section 4.

The implementation of NET makes heavy use of
Unix system services such as pipes, signals and I/0O
redirection. When NET is running, each user process
is implemented with a Unix process; and, in addi-
tion, a central hub process provides the NET services.
All these services are done as follows. The user pro-
cess calls a NET procedure in the External Interface.
This procedure sends a message via a pipe to the hub
process. The hub, in turn, reads this pipe and tries
to perform the service requested. The hub then ac-
knowledges or rejects the service request by sending
a message back to the process on another pipe. The
process, meanwhile, has been waiting for a response
on the second pipe. When this occurs, the appro-
priate information is passed to the process, and it
continues.

Each process can also write on the standard out-
put. This is redirected to a pipe, and the hub reads it
one line at a time. The hub then writes each line on
the standard output together with a suitable identi-
fying line. Input is disabled for all processes except
for the initial one at just one site.

If there are n user processes running, then there
will be 3n pipes in use. Each process has access only
to one end of each of its own 3 pipes. One pipe is
used for service requests, one for service acknowledge-
ments and one for redirecting standard output. The
file descriptors of the first two pipes, as well as the
site and process identifiers, are passed to the user
process in the environ global variable. The hub has
access to the other ends of all 3n pipes. The re-
quest/acknowledgement paradigm is designed to be
as close as possible to the Ada rendezvous structure.

The NET system is designed to be portable to any
4.2 or 4.3 bsd Unix system. Although perfect porta-
bility is probably not possible, a number of methods
were employed to make it easier to port NET. The soft-

ware not only compiles with no warnings, but it also
passes lint. Furthermore, the NET system has been
compiled, tested and used in teaching and research
on two completely different machines, a VAX 11/750
and a Pyramid 98x, using identical source code.

To begin the execution of the NET system, one ex-
ecutes the hub process, this being a program named
simply net. This program takes three parameters.
The first is the name of the database; the second is
the name of the “boot” program; the third is the
name of the “reboot” program. If any of these are
not specified, then the default names data, boot
and reboot, respectively, are used. The database
is stored in two separate files. The materialized
database has the extension .base, and the log file
has the extension .log. The databases of all the
sites are stored in these two files for simplicity. Each
page or log entry has a header that identifies the site
to which the item belongs. The user need not be
concerned with the format used in these files.

When the emulation begins, a special process is
created at each site, having process identifier equal
to 0. This special process is the first step in the boot-
strapping of the site. Process 0 has just two duties.
It creates a process that executes the initial or “boot”
program, after which it loops forever waiting to re-
ceive a message. When it receives one, it creates a
process that executes the program specified by the
message. Process 0 replies with a message containing
the process identifier of the process that was created.
See Section 5 for an example of how all this works.
If a site goes down, and then later comes back up,
the same steps are performed as above, except that
the “reboot” program is used instead of the “boot”
program.

3 External Interface

The functions described below implement the basic
operations that can be performed by the processes.
In every case, the function returns success if suc-
cessful and failure if unsuccessful. The constants
success and failure are integers with values 1 and
0 respectively.

3.1 Network Communication

send_message (site_id, process_id, message)
int site_id, process_id;
char *message;

send_string (site_id, process_id,
message, length)
int site_id, process_id;
char *message;
int length;

The send function transmits information from one
process to another. It succeeds if the specified site
exists. The two versions differ only in how this in-
formation is specified. The send message function
transmits a null-terminated array of characters. The
send_string function transmits an array of charac-
ters and a length. This second version can transmit
an arbitrary sequence of characters. The first version
is easier to use; the second is more general. Other
functions below are also in two versions, and no fur-
ther comment is made about this.

broadcast_message (message)
char *message;

broadcast_string (string)
char *string;

The broadcast function performs the send func-
tion to all the currently active processes, except for
process 0 at each site and the process doing the
broadcast. The broadcast function succeeds if the
network being emulated provides this service. The
standard network can provide this service if desired.

receive_message (site_id, process_id,
message, timeout)
int *site_id, *process_id;
char **message;
int timeout;

receive_string (site_id, process_id,

string, length, timeout)
int *site_id, *process_id;
char **string;
int *length, timeout;

The receive function waits until a message is re-
ceived or the timeout expires, whichever comes first.
The function succeeds if the message is received be-
fore the timeout expires. The timeout period is
specified in seconds. The receive function allocates
a string using malloc, and a pointer to the string is
returned. This allows one to make use of messages
having a size not known in advance.

Messages from a process at one site to one at an-
other may require a period of time for transmission.
Messages sent from one site to another can arrive
in a different order than they were sent and can be
replicated one or more times. Messages can also be
lost due to a site being down, or due to network par-
tition. These all depend on the network being em-
ulated. The standard network can simulate any of
these.

3.2 Process Control

self (site_id, process_id)
int *site_id, *process_id;

The self function returns the site identifier and
the process identifier of the process that executes it.

create_process (program_name, process_id)
char *program_name;
int *process_id;

exit_process ()

The create function creates a new process at the
local site, which executes the specified program name.
The program name is a null-terminated string. To
terminate a process, the exit_process function can
be called. It has the same effect as a call to the Unix
exit function.

enable_interrupts (interrupt_handler)
int (*interrupt_handler) ();

disable_interrupts ()

When interrupts are enabled, the arrival of a mes-
sage causes the receiving process to be interrupted,
and the specified interrupt_handler procedure is
called. When the interrupt_handler returns, the
process continues where it was interrupted.

Interrupts are implemented using the Unix SIG-
INT signal. Interrupts are disabled temporarily while
an interrupt is being processed and during a call to
the receive function.

3.3 Database Site

Database

Operations:

allocate_page (page_id)
int *page_id;

deallocate_page (page_id)
int page_id;

These allocate and deallocate the specified page
in the site database. The process that allocates a
page is given a write lock on it, so it can be written
immediately after it is allocated. To deallocate a page
a process must have a write lock on it.

lock_page (page_id, mode, timeout)
int page_id;
enum lock mode;
int timeout;

unlock_page (page_id)
int page_id;

These functions acquire and release locks on pages
of the local database. The mode parameter is an
enumerated type that takes two possible values:
read_lock and write_lock. The timeout is in sec-
onds.

write_page (page_id, value)
int page_id;
char *value;

read_page (page_id, value)
int page_id;
char *value;

These functions read and write entire pages of the
local database. The value of a page is a fixed-length
string of length equal to the page size. A page must
be appropriately locked before it can be read or writ-
ten.

purge_page (page_id)
int page_id;

Database pages are cached as in a high-
performance database system. When a page is read
or written, the page in the cache is used. As a result,
the page in the disk file may differ from the page in
the cache. The purge request ensures that the page
in the database is brought up to date. When the em-
ulation terminates (or a site goes down), the pages in
the cache can be lost.

3.4 Database Operations: Log File

write_log_message (message)
char *message;

write_log_string (string, length)
char *string;
int length;

The write_log function writes a new log entry
atomically on the end of the log file of the site. Un-
like page writes, no caching is done. The entry is
immediately written to the log file. If the log entries
are ascii text strings then the log file can be read as
any text file would be read.

read_log_message (read_direction, message)

enum direction read_direction;
char **message;

read_log_string (read_direction,
string, length)
enum direction read_direction;
char **string;
int *length;

The read_log function reads the current log en-
try in the specified read direction, and the cur-
rent log entry is updated. Each process has its own
current log entry. The initial current log entry is
the most recent one written. The read_direction
is an enumerated variable which can take the values
forward_direction and backward_ direction. All
reading is done sequentially. The read_log function
fails when the end (or beginning) of the log file is
reached. For example, if the first read_log call is in
the forward direction, then this call will fail.

Like the receive function, the read_log function
allocates space for the entry and returns a pointer to
it. This permits log entries to have arbitrary length.

reset_log ()

The reset_log function resets the current log en-
try of the process to be at the end of the site’s log
file.

3.5 Emulation Control

exit_emulation ()

This function terminates all active processes and
the emulation immediately, without waiting for the
processes to terminate on their own.

typedef struct {
int broadcasting_allowed;
double message_loss_prob;
double message_repeat_prob;
double message_delay_mean;
int message_delay_dist;

double site_failure_mean;
int site_failure_dist;
double site_repair_mean;
int site_repair_dist;
double site_insanity_mean;
int site_insanity_dist;
double network_failure_mean;
int network_failure_dist;
double network_repair_mean;
int network_repair_dist;

} network_parameters;

change_emulation_parameters
(new_parameters)
network_parameters *new_parameters;

This function allows one to alter the characteristics
of the standard network. If the standard network is
not being used, this function may not be recognized,
and even if the function is recognized, not all the pa-
rameters will be used. The standard network allows
this function to be called just once. All other calls
fail and have no effect. The meanings of the vari-
ous parameters above for the standard network are
defined in Section 4.

3.6 Diagnostic Output and Statistics

When one is testing a new program that uses NET, it
is helpful to be able to print diagnostics. These would
normally be removed when the program is executing
in a satisfactory fashion. To print such diagnostics,
simply use the normal C function printf. The emula-
tor captures the output and prints it on the standard
output after a line indicating the site and process that
produced the output. The initial process at site 0 is
the only exception to this. Output produced at this
site is sent directly to the standard output without
any identification of its source.

Statistics of message traffic for each site are main-
tained by the hub process and stored in page 0. All
values saved are integers. Each value counts events
according to four attributes, each of which has two
cases:

1. The count can be the number of messages
(mesgs) or the number of bytes (bytes).

2. The messages could be sent from the site (sent)
or were to be received by the site (recv).

3. The messages either arrived at their destination
(arri) or got lost along the way (lost).

4. The messages were either broadcast (bcst) or or-
dinary (norm) messages.

As an example, the number of ordinary messages
that were sent to the site but never arrived would
be stored in the field named norm lost _recv msgs.
Each of the sixteen possible names denotes one field
in page 0. Page 0 has the following type:

typedef struct {

int norm_arri_sent_bytes;
norm_arri_sent_mesgs;
norm_arri_recv_bytes;
norm_arri_recv_mesgs;
norm_lost_sent_bytes;
norm_lost_sent_mesgs;
norm_lost_recv_bytes;
norm_lost_recv_mesgs;
bcst_arri_sent_bytes;
bcst_arri_sent_mesgs;
bcst_arri_recv_bytes;
bcst_arri_recv_mesgs;
bcst_lost_sent_bytes;
bcst_lost_sent_mesgs;

int bcst_lost_recv_bytes;

int bcst_lost_recv_mesgs;
} statistical_information;

int
int
int
int
int
int
int
int
int
int
int
int
int

Note that a message may count as arrived from the
point of view of the source site but as lost from the
point of view of the destination site. For example,
if the destination process exists when the message is
sent but exits before receiving the message, then the
message is considered lost only at the destination site.

4 Internal Interface

The architecture of NET permits one to specify a spe-
cific network to be emulated. Alternatively, a stan-
dard network is provided whose parameters can be

varied so as to simulate quite a variety of networks.
In this section the internal interface and the standard
network are described.

4.1 Standard Emulation

The standard network emulation is used unless a
new Routing Layer is written. The characteris-
tics of the standard network are determined by the
network _parameters record. These fields of this
record are now defined.

The first field is the simplest one. Broadcasting of
messages is allowed when broadcasting allowed is
nonzero. The default value is zero.

The next two fields determine the probability
that a message is lost or duplicated (for reasons
other than site failure, site insanity or network
failure). The probability that a message is lost
is message_loss_prob. The default value is zero.
The probability that a message is duplicated is
message_repeat_prob. The duplicated message can
also be duplicated, and so on. The average number
of spurious messages produced by this process is

p
(1-p)?

where p is message_repeat_prob.

The remaining fields define the probability distri-
butions of times until events occur. A pure (memory-
less) waiting time has an exponential distribution. If
an event requires a succession of independent events
to occur then the waiting time will have the distri-
bution of a sum of independent exponentially dis-
tributed random variables. For example, in a token
passing network, the a site must wait for the token
before sending a message. The time taken by each
site to relinquish the token can be modelled by an
exponential distribution. The total time taken is the
sum of as many exponential distributions as there are
sites in the network.

For each waiting time, one can specify the mean
(average) value of the waiting time and a field
called the “distribution parameter” (or dist for short)
that specifies how many independent, identically
distributed exponential random variables are to be

added to get the total waiting time. In the spe-
cial case when dist = 0, the waiting time is taken
to be constant. If the mean value is set to a negative
number, then the waiting will be “infinite.” In other
words, in this case the event in question will never
occur.

When the mean value is m, the variance will be

m2

dist
the standard deviation will be
m

dist

7

and the skewness will be

2

Vdist

When dist = 1, the skewness is very large. When
dist is around 4, the distribution is becoming similar
to the normal distribution, except for the skewness.
As dist increases, the skewness goes away, and the
shape of the distribution does not change much, the
only change being that the variance is decreasing. For
large values of dist, the distribution is essentially a
constant.

In all cases, the default value for dist is zero, i.e.,
the waiting time is the same as the mean waiting
time. Except for message delay, the default value for
each waiting time is “infinite.” This means that the
event in question never occurs. To get the default
value, set the mean waiting time to a negative num-
ber.

The time it takes for a message to be transmit-
ted from one site to another is determined by the
message_delay fields. The default value for the mean
message delay is one second.

The time until a site fails is determined by the
site_failure fields. When a site fails, all processes
at that site are terminated. The time it takes for a
site to be repaired is determined by the site_repair
fields. When a site comes back up, a process is cre-
ated and the “reboot” program is executed, just as
when the emulation starts. The pages in the cache
are lost when a site fails.

The time until a site goes “insane” is determined
by the site_insanity fields. Site insanity is difficult
to define precisely. It can mean that messages will
be garbled, repeated, lost or delayed. It can affect all
messages to and form the insane site, or it might just
involve messages to or from a particular other site.
Once a site goes “insane” it never recovers.

The time until the network partitions is determined
by the two network failure fields. The partition
itself can be into any number of subnetworks. The
time it takes for the network to be be repaired after a
partition is determined by the network repair fields.

4.2 Internal Interface Specification

The Service Layer and Routing Layer communi-
cate with one another using a shared variable called
current_state of type network_state, defined as
follows:

typedef struct {

int broadcasting_allowed;

int up[net_size];

int sanel[net_sizel;

int reaches [net_size] [net_size];
} network_state;

network_state current_state;

The Service Layer can read the fields of this vari-
able, but only Routing Layer can modify it. All
the fields would be boolean if C had such a type.
The broadcasting allowed field indicates whether
broadcasting is allowed in the network. The up field
indicates whether a site specified by the index is func-
tioning normally. The sane field indicates whether
a given site is still “sane,” as opposed to “insane.”
Finally reaches[i] [j] indicates whether site i can
send messages to site j.

initialize_routing_layer (current_time)
int current_time;

reinitialize_routing_layer (current_time,
new_parameters)

int current_time;
network_parameters *new_parameters;

query_routing_layer (current_time)
int current_time;

These functions are the only way that Service
Layer can modify the current_state. All three
functions return success of failure as in the
External Interface. The first function is called
when the emulation begins. If it doesn’t suc-
ceed, then the emulation stops immediately. The
reinitialize_state function is called whenever a
process calls change_emulation_parameters. The
Service Layer simply passes without change the pa-
rameter given to it by the process, and returns the
result back to the process. In principle, this allows
processes to communicate directly with the Rout-
ing Layer, bypassing the Service Layer. The last
function, is frequently called by the Service Layer to
update the current_state. All three functions are
given the current_time, which is an arbitrary mea-
sure of time whose unit is a second. One can only as-
sume that the current_time is a large positive num-
ber which will not overflow until several decades into
the next century.

int message_arrival_time (sending_time,
source_site_id, destination_site_id,
string, length, copy_number)
int sending_time, source_site_id;
int destination_site_id;
char *string;
int length, copy_number;

This function determines when and if messages
reach their destination in the communication net-
work. The string and length parameters define
the message being sent. The two site_id parame-
ters determine the source and destination of the mes-
sage. The time when the message was sent is the
sending time. The function returns the time when
the message arrived at its destination. Since time
is never negative, if the result is negative, then it is
assumed that the message never arrived.

The copy_number parameter is the number of times
the function will have been called for a given message.
In other words, for the first call, the value is 1; for the
second it is 2; and so on. The Service Layer will con-
tinue to call message_arrival_time until a negative
arrival time is returned, and each such call produces
a new copy of the message. This allows the Routing
Layer to duplicate messages via the network. Such
messages can arrive in any order that the Routing
Layer may dictate.

5 Examples

The following example of the use of NET illustrates
two of the capabilities of NET. One part of the exam-
ple shows the use of the local database at two of the
sites. The second part of the example illustrates a
“remote procedure call” issued from two of the sites
and executed at a third site. The remote procedure
logs the “parameter” it was given and returns a “re-
sult.” Both the “parameter” and the “result” are in
the form of a message.

In the first part of this example, the initial pro-
cesses at sites 1 and 3 allocate a page and write a ran-
dom value in the first integer of the page. The page
is then purged and unlocked. The preceding page is
then read and the first integer on the page is dis-
played. By running this example several times, one
can test the persistence of the data in the database.

In the second part of the example, the initial pro-
cesses at sites 2 and 4 create processes at site 0, ex-
ecuting the program named remote. These are dif-
ferent processes, even though they execute the same
program and are at the same site. The remote pro-
cess writes the message it receives from another site
to its log file, and replies with an acknowledgement.

To begin the emulation simply execute the follow-
ing command:

net data boot reboot

The parameters could have been omitted since they
are all default names.

The following is the actual output from an exe-
cution of the NET system. Another execution would

produce other numbers of course.

This is NET Version 2.0
OUTPUT FROM SITE 1 PROCESS 7548
At site 1, the value 7548 was written to

page 1

OUTPUT FROM SITE 3 PROCESS
At site 3, the value 22650

page 1

7550
was written to

OUTPUT FROM SITE 1 PROCESS
At site 1, the value 0 was

7548
read from page O

QUTPUT FROM SITE 3 PROCESS
At site 3, the value 0 was

7550
read from page O

OUTPUT FROM SITE 2 PROCESS 7549
Remote site acknowledged with
Thanks for the message.

OUTPUT FROM SITE 4 PROCESS 7551
Remote site acknowledged
with Thanks for the message.

NET: Emulation completed.

The second execution then produced the following:

This is NET Version 2.0

QUTPUT FROM SITE 1 PROCESS 7556

At site 1, the value 15112 was written to
page 2

QUTPUT FROM SITE 3 PROCESS 7558
At site 3, the value 45348 was written to
page 2

QUTPUT FROM SITE 1 PROCESS 7556
At site 1, the value 7548 was read from

page 1

OUTPUT FROM SITE 3 PROCESS 7558
At site 3, the value 22650 was read from

page 1

OUTPUT FROM
Remote site
Thanks for

SITE 2 PROCESS 7557
acknowledged with
the message.

OUTPUT FROM
Remote site
Thanks for

SITE 4 PROCESS 7559
acknowledged with
the message.

NET: Emulation completed.

At this point, the log file is checked by executing
the command:

more data.log

Here is what was produced:

0 7552 13 Hello
0 7553 13 Hello
0 7560 13 Hello
0 7561 13 Hello

remote!
remote!
remote!
remote!

The source code for the boot.c and remote. c pro-
grams is the following:

/* This is the program boot.c */
#include "net.h"

main ()

{

int sid, rsid, pid, rpid;
int page, *cast;
char p[256], *m;

self (&sid, &pid);
switch (sid) {
case 1:

case 3:

allocate_page (&page);
cast= (int *)p;

*cast= page * sid * pid;

write_page (page, p);

printf ("At site %d, the value %d ",
sid, *cast);

printf ("was written to page %d\n",
page) ;

purge_page (page);

unlock_page (page);

lock_page (page-1, read_lock, 10);

read_page (page-1, p);

cast= (int *)p;

printf ("At site %d, the value %d ",
sid, *cast);

printf ("was read from page %d\n",
page-1);

unlock_page (page-1);

exit_process ();

case 2:
case 4:
send_message (0, 0, "remote");
if (!receive_message
(&rsid, &rpid, &m, 10)) {
printf ("Remote program could not ");
printf ("be executed by site %d\n",
sid);
exit_process ();
}
sscanf (m, "%d", &rpid);
send_message (0, rpid, "Hello remote!");
if (!receive_message
(&rsid, &rpid, &m, 10)) {
printf ("No message received from ");
printf ("remote site by site %d\n",
sid) ;
}
printf ("Remote site acknowledged ");
printf ("with %s\n", m);
exit_process ();

default:
exit_process ();
}
}
/* This is the program remote.c */

10

#include "net.h"

main ()

{
int sid, pid;
char *m;

if (!receive_message
(&sid, &pid, &m, 10)) {

exit_process ();
}
write_log_message (m);
send_message (sid, pid,

"Thanks for the message.");

exit_process ();

6 Future Work

As the name suggests the NET system is a tool for
further work on distributed systems. There are two
research areas that are currently being developed in
connection with NET. The first is the area of concur-
rency control and recovery in distributed and high-
performance database systems in [1]. A prototype
system is being developed using NET as the base sys-
tem. The second area concerns a new probabilistic
model for data access [2]. This model represents
many observed properties of data access that earlier
models do not consider. For example, data access is
highly nonuniform, and this nonuniformity evolves in
time. This new model has already been implemented
for a centralized system. We plan to extend it to a
network environment using the NET system.

The NET system is scheduled to be used in several
other courses in the future. Some of these courses
are project courses. We hope that some significant
enhancements will result from these projects.

7 Conclusion

A detailed description of the NET system has been
presented. As a teaching and research tool, NET has

11

several advantages. Programming a NET process is
almost transparent. A variety of network character-
istics can be simulated, including a large variety of
failure modes. Finally, NET is easy to customize.

References

[1] K. Baclawski. Database transaction options.
Technical Report NU-CCS-86-5, Northeastern
University, College of Computer Science, 1986.

K. Baclawski. A stochastic model of data access
and communication. Advan. in Applied Math.,
10:175-200, 1989.

P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

S. Ceri and G. Pelagatti. Distributed Databases:
Principles and Systems. McGraw-Hill, 1984.

D. Gawlick. Processing of “hot spots” in high
performance systems. In Proc. COMPCON, 1985.

G. Gifford and A. Spector. The Cirrus banking
network. Comm. ACM, 28:798-807, 1985.

C. Thanos, C. Carlesi, and E. Bertino. Per-
formance evaluation of two concurrency control
mechanisms in a distributed database system. In
Trends in Information Processing Systems, vol-
ume 123, pages 266-279. Springer-Verlag, Berlin,
1981.

