
Tier Architectures
Kathleen Durant

CS 3200

1

Supporting Architectures for
DBMS

• Over the years there have been many different hardware
configurations to support database systems

• Some are outdated others offer different functionality

• The requirements of the enterprise system will determine the
appropriate architecture

• Given the increase in the users of database systems (due to
the web) most current database solutions involve multiple
computers each dedicated to achieve one specific type of task
for the database system

2

Traditional Architecture

• One computer with 1 CPU

• Multiple dumb terminals

• All processing done on the same physical computer

• Message passing via the operating system protocol

• Tremendous burden on the one computer

User Programs
Database Application

3

File-Server Architecture

Local Area Network

• One computer attached to a network providing shared storage
• DBMS run on each workstation - data request from workstations

• File system is a shared hard disk drive

• Generates a lot of network traffic

• Tremendous burden on the network

• Concurrency, recovery, and integrity constraints more complex
because multiple processes accessing the same file

4

Client Server Architecture

User Level
Client

Database Level
Server

Requires a
resource

Tier 1

Provides
a resource

Tier 2

May be different
computers

TASKS:
•User interface
•Check user input
•Processes
application logic
•Generates DB
requests
•Passes results to
user

TASKS:
•Checks
authorization
•Accepts and
process database
requests
•Sends data result
to client
•Provides
concurrent access
and recovery

5

Benefits from Client Server
Architecture
• Provides wider access to existing databases

• Potential increase in performance due to parallelism

• If solution has separate client and server hardware , then can be
processing applications in parallel

• Dedicated server hardware provides the opportunity to tune the
server machine for data processing

• Potential decrease in data storage cost

• Since just the server needs to store and manage data

• Increased consistency given that the server is the only point of
access to the data

• Maps to open systems architecture

6

3 Tier Architecture

User Interface Level

Application Server

Database Server

FIRST TIER TASKS
User interface

SECOND TIER TASKS
Business Logic
Data processing
logic

THIRD TIER TASKS
Data validation
Database access

7

3 Tiered Architecture
DESCRIPTION
• Client is only responsible for the application’s user interface

• Simple error checking on input data
• Leads to a ‘thin client’

• Core business logic of the application resides in its own layer
• One application server is designed to serve multiple clients

• Addresses the problem of enterprise scalability

BENEFITS
• Less expensive hardware for the clients because client proccesses

are thin
• Application maintenance is centralized
• Tier hardware configurations are independent from each other
• Load balancing is easier due to separation of the core business logic

from the database functions 8

Application Server Provides
• Hosts an application programming interface to expose

business logic and business processes for use by other
applications

• Concurrency for the clients

• Network connection management

• Access to all the database servers

• Database connection pooling and management

• Legacy database support

• Clustering support

• Load balancing

• Failover

• Examples: Oracle Tuxedo Application Server, Java Platform
Enterprise Edition, .NET Framework by Microsoft 9

N-Tier Architecture

User Interface Level

Web Server

Database Server

TIER 1
Client

TIER 2
Web Server

TIER 3
Application Server

TIER 4
Database Server

Application Server

10

Appropriate for
Large Enterprise
Systems

Each tier can be a cluster of
computers working together

• A cluster is a logical group of servers running server applications simultaneously
and appearing as a single server to the world

• The servers may or may not have communication with their peers in the cluster
• You can dynamically add or remove servers to the cluster, depending upon the

load
• Load balancers distribute customer requests among different servers in the cluster
• Scalability is an application's ability to support a growing number of users. It’s a

measure of a range of factors, including the number of simultaneous users a
cluster can support and the time it takes to process a request

• High availability can be defined as redundancy. While handling requests, other
servers in the cluster should be able to handle those requests as transparently as
possible. A failed server is removed from the cluster as soon as it fails so that
future requests are not routed to the failed server.

11

Middleware Software

• Software that mediates with other software
• Allows for communication between disparate applications in a

heterogeneous system
• Provides a common interface and hides the complexities of

distributed systems
• Necessary due to the number of computer systems and computer

applications used to solve a specific problem
• Types of Middleware

• Synchronous RPC - client blocked while server processes a call
• Publish/subscribe – asynchronous messaging protocol – subscribers

choose the message classes that want information on
• Message-oriented middleware – resides on both the client and the

server , supports asynchronous calls between them
• Object-request broker manages data exchange between objects
• SQL-oriented data access – connects applications to any type of DB

across a network, eliminates the need to write code for each
specific type of DB

12

Transaction Processing Monitor

• TPM is a middleware component that provides a uniform
interface to applications developing transactional software

• Used in environments with extremely high volume

• Provides access to the services of a number of resource
managers

• Transaction routing - direct specific queries to specific DBMS

• Manages distributed transactions on potentially
heterogeneous hardware

• Load balancing – direct client requests to specific DBMS that
are currently underutilized

• Increased reliability – acts as a transaction manager and
maintains the consistency of the database 13

Transaction Processing Monitor
in Second Tier

14Database Servers
Tier 3

Service

Service
TPM

Service

Service

Application Server
with TPM
Tier 2

Clients
Tier 1

Tiers versus Layers

•Tier is a physical structuring
mechanism for the system
infrastructure

•Layer is a logical structuring
mechanism for the elements
that make up the software
solution 15

MySQL Server Architecture

Optimizer

Query cache

Clients

Engines
MyISAM
MEMORY
InnoDB
BLACKHOLE

Connection Thread Handling

Parser

16

Falcon
NDB
Federated
Archive
Merge

Query Engine

• Separates query processing and other server tasks from data
storage and retrieval

• Plugins at run time

• My SQL lets you choose, on a per-table basis, how your data is
stored and what performance, features, and other
characteristics you want

• Default query engine is InnoDB

17

My SQL Engines
• InnoDB - general-purpose storage engine that balances high reliability

and high performance, follows ACID , row level locking
• MyISAM – ISAM Btree storage, supports indexes
• Memory - creates special-purpose tables with contents that are stored

in memory.
• CSV - stores data in text files using comma-separated values format.
• ARCHIVE - stores large amounts of data without indexes in a very small

footprint
• BLACKHOLE - accepts data but throws it away and does not store it
• MERGE – a collection of identical ISAM tables that can be used as one

table
• FEDERATED - access data from a remote MySQL database without using

replication or cluster technology
• EXAMPLE - stub engine that does nothing
• NDBCluster - high-availability, high-redundancy version of MySQL

adapted for the distributed computing environment
• Types of nodes: Management, data, and SQL nodes

• https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
18

https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

Data request flow
• Each client connection gets its own thread within the server

process.

• The connection’s queries execute within that single thread, which in
turn resides on one core or CPU

• The server caches threads, so they don’t need to be created and
destroyed for each new connection

• MySQL parses queries to create an internal structure (the parse
tree), and then applies a variety of optimizations

• the storage engine does affect how the server optimizes the query

• The optimizer asks the storage engine about some of its capabilities
and the cost of certain operations, and for statistics on the table data

• the server consults the query cache for result sets – if found return
the result from the cache as oppose to accessing disk

• Server sends the result set back to the client
19

MySQL Cluster Architecture

NDB CLUSTER

My SQL Server

20

DB

Application
Application

Application

Application
Application

Application

My SQL Server My SQL Server

Application
Application

Application

MGM Server MGM Client

DB DB

DB

SQL

Data

