Indexes

Kathleen Durant PhD
Northeastern University
CS 3200

Outline for the day

* Index definition

* Types of indexes

B+ trees
ISAM
Hash index

* Choosing indexed fields

* Indexes in InnoDB

Indexes

* A typical file allows us to retrieve records:
by specifying a file offsetor a rid, or
by scanning all records sequentially
* Sometimes, we want to retrieve records by specifying the
values in one or more fields
Examples:
Find all studentsin the “CS” department
Find all students with a gpa >3

. are file structures that enable us to answer such
efficiently.

Indexes

* An index on a file speeds up selections on the search key fields
for the index

Any subset of the fields of a relation can be the search key for an
index on the relation

Search key is not the same as a key in the DB

* An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given key value k.

Why Index?

» Database tables have many records and ..

linear search is very slow, complexity is O(n)

Keeping a file sorted to apply a binary search is costly
* Indexes improve search performance

But add extra cost to INSERT/UPDATE/ DELETE
* Many options for indexes

Hash Indexes (MEMORY and NDB)

Bitmap Indexes (not available in MySQL)
B-Tree Indexes and derivatives (MyISAM, InnoDB)

Index Concept

* Main idea: A separate data structure used to locate records

* Most generally, index is a list of value/address pairs

Each pair is an index “entry”
Value is the index “key”
Address will point to a data record, or to a data page

The assumption is that the value/address pair will be much
smaller in size than the full record

* If index is small, a copy can be maintained in memory

Permanent disk copy is still needed

Indexing Pitfalls

* Index itself is a data store

Occupies disk space
Must worry about maintenance, consistency, recovery, etc.

* Large indices won't fit in memory
May require multiple seeks to locate record entry

Essential for Multilevel Indexes

Should support efficient random access
Should also support efficient sequential access, if possible

Should have low height

Implies high fan out: refers to the number of children nodes for
an internal node.

Should be efficiently updatable

Should be storage-efficient

Top level(s) should fit in memory

Tree Structured Indexes

* Tree-structured indexing techniques support both
and

* Tree structures with search keys on

static structure

dynamic, adjusts gracefully under inserts and
deletes.

Range Searches

* “Find all students with gpa > 3.0”

If datais in a sorted file, do binary search to find first such
student, then scan to find others.

Cost of binary search can be quite high.

* Simple idea: Create an ‘index’ file.

K1 k2 KN Index File

N \

Page 1 Page 2 Page 3 Page N Data File

(1]

[SAM

* = |ndexed Sequential Access Method
IBM terminology
“Indexed Sequential” more general term (non-I1BM)
ISAM as described in textbook is very close to B+ tree
simpler versions exist
* Main idea: maintain sequential ordered file but give it an
index
Sequentiality for efficient “batch” processing
Index for random record access

[SAM Technique

Build a dense index of the pages (1st level index)
Sparse from a record viewpoint

Then build an index of the 1st level index (2nd level index)

Continue recursively until top level index fits on 1 page

Some implementations may stop after a fixed # of levels

Updating an ISAM File

* Data set must be kept sequential
So that it can be processed without the index
May have to rewrite entire file to add records
Could use overflow pages

chained together or in fixed locations (overflow area)
* Index is usually NOT updated as records are added or deleted
* Once in a while the whole thing is “reorganized”

Data pages recopied to eliminate overflows
Index recreated

ISAM Pros, Cons

* Pro
Relatively simple
Great for true sequential access
* Cons
Not very dynamic
Inefficient if lots of overflow pages
Can only be one ISAM index per file

_/\'1\ /\'1\ /%\ /%\

S o o S O o S S O S o o

Overflow ------- > R
page \ /7

Primary pages

* Leaf pages contain sorted data records
* Non-leaf part directs searches to the data records;
* Inserts/deletes: use , bad for frequent inserts.

Comments on ISAM

File creation: Leaf (data) pages allocated

sequentially, sorted by search key; then index E:;ZS
pages allocated, then space for overflow pages.
; they
, Which are in leaf Index Pages

pages.

Search: Start at root; use key comparisons to go
to leaf. Cost log (N ;F =# entries/index pg, N =
leaf pgs

Insert: Find leaf data entry belongs to, and put it
there.

Overflow pages

Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

>

Definition of B+ tree

* A B-tree of order n is a height-balanced tree,
where each node may have up to n children, and
in which:

All leaves (leaf nodes) are on the same level

No node can contain more than n children

All nodes except the root have at least n/2 children
The root is either a leaf node, or it has at least n/2
children

* Ensures that a fixed maximum number of reads
would be required to access any data requested,
based on the height of the tree

Example B+ Tree

* Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

* Search for 5*, 15*, all data entries >= 24* ...

Root \

13 17 24 30

K O\ /\ v L/‘\ ¥ T\

* | 3 | 5 [7 14* | 16* 19*| 20* | 22* 24* | 27* | 29* 33* | 34*| 38* | 39*

B+ Trees in Practice

* Typical : 200. Typical : 67%.
Average fan-out for internal nodes = 133

* Typical capacities:
Height 4: 133% =312,900,700 records
Height 3: 1333 = 2,352,637 records

* Can often hold top levels in buffer pool:
Level 1 = 1 page = 8 Kbytes
Level 2= 133 pages= 1 Mbyte
Level 3 =17,689 pages = 133 MBytes

Insertionin B-Tree

o 1. 2.
° a, g fb: k:

~ = X
+ < o

n _

S \
-

—

- \

o |

i N N
r (-
Q e
Vp) “
= 0

Summary: B+ trees

- Typically, occupancy on average.

- Usually preferable to ISAM, modulo considerations; adjusts
to growth gracefully.

* Key compression increases fan-out, reduces height.

* Most widely used index in database management systems because

of its versatility. One of the most optimized components of a
DBMS.

Hashing mechanism

* Your index is a collection of buckets (bucket =
nage)

* Define a hash function, h, that maps a key to a
oucket.

* Store the corresponding data in that bucket.

* Collisions
Multiple keys hash to the same bucket.

Store multiple keys in the same bucket.

* What do you do when buckets fill?

Chaining: link new pages(overflow pages) off the bucket.

Extendible Hashing

* Main Idea: Use a directory of (logical) pointers to
bucket pages

» Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?

Reading and writing all pages is expensive

- Idea: Use double # of buckets
by doubling the directory, splitting just the bucket that
overflowed

Directory much smaller than file, so doubling it is much cheaper.
Only one page of data entries is split.

25
Trick lies in how hash function is adjusted! { J

LOCAL DEPTH | :
Example === A==
* Directory is array of size 4. 00 / 1* 5% 21* 13*
* To find bucket for r, take last 01 —
' " # bits of h(r); 10 |
we denote r by h(r). 5
Yy () | 1 \ 10*
If h(r) =5 = binary 101, it N
isin bucket pointed to by \
O1. DIRECTORY
15* 7* 19*
DATAPAGES
+» Insert: If bucket is full, it (allocate new page, re-distribute).

¢ If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing with for the split bucket.)

Bucket A

BucketB

BucketC

BucketD

Insert h(r)=20 (Causes Doubling)

LOCAL DEPTH—/Z—"|

GLOBAL DEPTH

32*16

ﬁ

/
00 /
o1 | —|
10 ~
11 . T~
DIRECTORY

1* 5*

. BucketA

21* 3% BucketB

15*7*

19*

4* 12*20*

BucketC

BucketD

Bucket A2

(‘splitimage’

of BucketA)

LOCAL DEPTH-— /"

GLOBAL DEPTH 32*16% Bucket/
T /
000 | 7 |51 5% 21*13] BucketE
001 | — 71
010 | z
011 N 10* Bucket(
100
101 ><
110 / 15*7* 19* Bucketll
11 | — |
DIRECTORY 4% 12%20* Bucket 2
(‘split imag

of Bucket

Points to Note

* 20 = binary 10100. Last 2 bits (00) tell us r belongs
in A or A2. Last 3 bits needed to tell which.
Max # of bits needed to tell
which bucket an entry belongs to.

of bits used to determine if an
entry belongs to this bucket.

* When does bucket split cause directory doubling?

Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by and fixing’ pointer to split
image page. (Use of least significant bits enables efficient

doubling via copying of directory!)

Directory Doubling

Why use least significant bits in directory?
< Allows for doubling via copying!

N o
01 10
o 6* 1 . 00 0 1 00
L 0} © 01 1 6 ° 6% 10
1 10| 6% 1 01 6*
11 11

Least Significant Vs. Most Significant

Comments on Extendible
Hashing

* If directory fits in memory, equality search answered with one
disk access; else two.
100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as

data entries) and 25,000 directory elements; chances are high that
directory will fit in memory.

Directory grows in spurts, and, if the distribution of hash values is
skewed, directory can grow large.
Multiple entries with same hash value cause problems

Need a decent hash function

* Delete: If removal of data entry makes bucket empty, can be
merged with ‘split image’. If each directory element points to
same bucket as its split image, can halve directory. (= J

Prefix Key Compression

* Height of a B+ tree depends on the number of data entries and
the size of index entries

Size of index entries determines the number of index entries that
will fit on a page — and therefore the fan-out of the tree.

* Key Compression can increase fan-out. (Why?)

» Key values in index entries only ‘direct traffic’; can often
compress them.

E.g., adjacent index entries with search key values
[Dave Jones, David Smith and Devarakonda Murthy]
Can we abbreviate David Smith to Dav?

Can only compress David Smith to Davi.

In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

* Insert/delete must be suitably modified.

Prefix Key compression

Alligator . Antelope Baboon

\

Creating Secondary Indexes

* You can create other indexes on your data

These secondary indexes do not need to have a UNIQUE values
for each record

Typically created on foreign keys to speed up JOIN operation
* Add a secondary index after the table has been populated

when the data and the primary index exists within the
database

(ALTER TABLE ... ADD INDEX)

Process can use the primary index to locate the records to be
indexed by the secondary index

Process: Choice of indexes

* One approach:
Consider the most important queries in turn.

Consider the best plan using the current indexes, and
see if a better plan is possible with an additional index.
If so, create it.
* Must understand how a DBMS evaluates queries
and creates query evaluation plans.

* Before creating an index, must also consider the
impact on updates in the workload.

* Trade-off: Indexes can make select queries go [34]
faster, updates slower. Require disk space, too.

Index selection guideline

* Attributes in WHERE clause are candidates for index keys.
Exact match condition suggests hash index.
Range query suggests tree index.
 Clustering is especially useful for range queries; can also help
on equality queries if there are many duplicates.
* Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
Order of attributes is important for range queries.

Such indexes can sometimes enable index-only strategies for
important queries: when only indexed attributes are needed.

For index-only strategies, clustering is not important.
* Try to choose indexes that benefit many queries.

Since only one index can be clustered per relation, choose it
based on important queries that would benefit the most from

clustering.

Indexes in InnoDB

* Every InnoDB table has a special index called the clustered
index (by default built on the primary key)
* Record locks always lock index records
Even if a table is defined with no indexes

InnoDB creates a hidden clustered index and uses this index for
record locking

* Accessing a row through the clustered index is fast because
the index search leads directly to the page with all the row
data.

* All InnoDB indexes are B+ trees where the index records are
stored in the |leaf pages of the tree

* You can configure the page size for all InnoDB tablespaces in a
MySQL instance with the variable innodb_page size (36 }

default size of an index page is 16KB

InnoDB Index structure

Root page is allocated when the INDEX is created and is stored
in the data dictionary

It can never be relocated or removed

All pages at each level are double-linked to each other

All pages have anchors for the beginning and the end of the
linked list of records

Statically defined: Infimum — lowest key, supremum — highest key

Within a page, records are singly-linked in ascending order
Records not stored in ascending order

Non-leaf pages contain page addresses to a child node
Leaf pages contain the actual data record (non-key data) (J
37

Tree Levelsin InnoDB

B+Tree Structure

Infimum Page 3 Supremum

MWext
Record =4

=5

Level 1
Internal
I
©
A d
v
3]
o
=
[5:]
L
o
=t
[,
m
v
i
A d
v
o

&
()]
&
-"'I
3
&
5]
ok
w

e ————————————

I Page &

e ———————————

Levels are numbered starting from 0 at the leaf pages, incrementing up the tree.

Pages on each level are doubly-linked with previous and next pointers in ascending order by key.

Records within a page are singly-linked with a next pointer in ascending order by key.

Infimum represents a value lower than any key on the page, and is always the first record in the singly-linked list of records.
Supremum represents a value higher than any key on the page, and is always the last record in the singly-linked list of records.
MNon-leaf pages contain the minimum key of the child page and the child page number, called a "node pointer”.

http://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/

InnoDB: Secondary Index

* You can create multiple indexes on a table

These additional indexes that are not on the primary key are
secondary indexes

* Each record in a secondary index contains the primary key
columns for the row, as well as the columns specified for the

secondary index
* InnoDB uses this primary key value to search for the row in
the clustered index

Index Optimizationsin InnoDB

* The change buffer is a special data structure that caches changes

to secondary index pages when affected pages are not in the buffer
pool

* The buffered changes are merged later when the pages are loaded
into the buffer pool by other read operations.

* secondary indexes are usually non-unique, and inserts into
secondary indexes happen in a relatively random order.

* Merging cached changes at a later time, when affected pages are
read into the buffer pool by other operations, avoids substantial
random access I/0 that would be required to read-in secondary
index pages from disk

* Periodically, the purge operation that runs when the system is
mostly idle, writes the updated index pages to disk

* The purge operation can write disk blocks for a series of index values
more efficiently than if each value were written to diskimmediately { 40 J

InnoDB locks

* My SQL sets record locks on every index record that is scanned
in the processing of a SQL statement

* Types of object locks

Record lock: This is a lock on an index record.

Gap lock: This is a lock on a gap between index records, or a lock
on the gap before the first or after the last index record.

Next-key lock: This is a combination of a record lock on the index
record and a gap lock on the gap before the index record.

* InnoDB uses next-key locks for searches and index scans

* If one session has a shared or exclusive lock on record R in an
index, another session cannot insert a new index record in the
gap immediately before R in the index order

[41]

InnoDB hash indexes

* Based on the observed pattern of searches, MySQL builds a
hash index using a prefix of the index key.

Hash indexes are built on demand for those pages of the index
that are often accessed.

* The prefix of the key can be any length, and it may be that
only some of the values in the B+tree appear in the hash
index.

* If a table fits almost entirely in main memory, a hash index can

speed up queries by enabling direct lookup of any element,
turning the index value into a sort of in memory pointer.

Hash index limitations

They are used only for equality comparisons

They cannot be used for comparison operators such as < that
find a range of values.
The optimizer cannot use a hash index to speed up ORDER

BY operations. (This type of index cannot be used to search for
the next entry in order.)

MySQL cannot determine approximately how many rows
there are between two values (this is used by the range
optimizer to decide which index to use).

Only whole keys can be used to search for a row. (With a B+-
tree index, any leftmost prefix of the key can be used to find

rows.) (e J

Summary: Tree-based Index

* Tree-structured indexes are ideal for range-searches,
also good for equality searches.

* |ISAM is a static structure.

Only leaf pages modified; overflow pages needed.

Overflow chains can degrade performance unless size of data set and
data distribution stay constant.

* B+ tree is a dynamic structure.

Inserts/deletes leave tree height-balanced; log N cost.
High fanout (F) means depth rarely more than 3 or 4.
Almost always better than maintaining a sorted file.

- InnoDB provides many optimizations to speed up the access to a
record

