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Indexes

• A typical file allows us to retrieve records:

• by specifying a file offset or a  rid, or

• by scanning all records sequentially

• Sometimes, we want to retrieve records by specifying the 
values in one or more fields

• Examples:

• Find all students in the “CS” department

• Find all students with a gpa > 3

• Indexes are file structures that enable us to answer such 
value-based queries efficiently.
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Indexes 

• An index on a file speeds up selections on the search key fields 
for the index

• Any subset of the fields of a relation can be the search key for an 
index on the relation

• Search key is not the same as a key in the DB 

• An index contains a collection of data entries, and supports 
efficient retrieval of all data entries with a given key value k.
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Why Index?

• Database tables have many records and ..

• linear search is very slow, complexity is O(n) 

• Keeping a file sorted to apply a binary search is costly

• Indexes improve search performance 

• But add extra cost to INSERT/UPDATE/ DELETE

• Many options for indexes 

• Hash Indexes (MEMORY and NDB) 

• Bitmap Indexes (not available in MySQL) 

• B-Tree Indexes and derivatives (MyISAM, InnoDB) 
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Index Concept

• Main idea: A separate data structure used to locate records 

• Most generally, index is a list of value/address pairs

• Each pair is an index “entry”

• Value is the index “key”

• Address will point to a data record, or to a data page

• The assumption is that the value/address pair will be much 
smaller in size than the full record

• If index is small, a copy can be maintained in memory

• Permanent disk copy is still needed
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Indexing Pitfalls

• Index itself is a data store 

• Occupies disk space

• Must worry about maintenance, consistency, recovery, etc.

• Large indices won't fit in memory

• May require multiple seeks to locate record entry
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Essential for Multilevel Indexes

• Should support efficient random access 

• Should also support efficient sequential access, if possible

• Should have low height

• Implies high fan out: refers to the number of children nodes for 
an internal node.

• Should be efficiently updatable

• Should be storage-efficient

• Top level(s) should fit in memory
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Tree Structured Indexes

• Tree-structured indexing techniques support both 
range searches and equality searches.

• Tree structures with search keys on value-based 
domains

• ISAM:  static structure

• B+ tree:  dynamic, adjusts gracefully under inserts and 
deletes.
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Range Searches

• ``Find all students with gpa > 3.0’’

• If data is in a sorted file, do binary search to find first such 
student, then scan to find others.

• Cost of binary search can be quite high.

• Simple idea:  Create an `index’ file.

 Can do a binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File
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ISAM

• = Indexed Sequential Access Method

• IBM terminology

• “Indexed Sequential” more general term (non-IBM)

• ISAM as described in textbook is very close to B+ tree

• simpler versions exist

• Main idea: maintain sequential ordered file but give it an 
index

• Sequentiality for efficient “batch” processing

• Index for random record access
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ISAM Technique

• Build a dense index of the pages (1st level index)

• Sparse from a record viewpoint

• Then build an index of the 1st level index (2nd level index)

• Continue recursively until top level index fits on 1 page

• Some implementations may stop after a fixed # of levels
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Updating an ISAM File

• Data set must be kept sequential

• So that it can be processed without the index

• May have to rewrite entire file to add records

• Could use overflow pages

• chained together or in fixed locations (overflow area)

• Index is usually NOT updated as records are added or deleted

• Once in a while the whole thing is “reorganized”

• Data pages recopied to eliminate overflows

• Index recreated
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ISAM Pros, Cons

• Pro

• Relatively simple

• Great for true sequential access

• Cons

• Not very dynamic

• Inefficient if lots of overflow pages

• Can only be one ISAM index per file 
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ISAM

• Leaf pages contain sorted data records

• Non-leaf part directs searches to the data records; static once built

• Inserts/deletes: use overflow pages, bad for frequent inserts.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

(static!)

Pages
Overflow 

page
Primary pages

Leaf
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Comments on ISAM

• File creation:  Leaf (data) pages allocated                  
sequentially, sorted by search key; then index        
pages allocated, then space for overflow pages.

• Index entries:  <search key value, page id>;  they   
`direct’ search for data entries, which are in leaf 
pages.

• Search:  Start at root; use key comparisons to go 
to leaf.  Cost     log F N ; F = # entries/index pg, N = 
# leaf pgs

• Insert:  Find leaf data entry belongs to, and put it 
there.

• Delete:  Find and remove from leaf; if empty 
overflow page, de-allocate. 

 Static tree structure:  inserts/deletes affect only leaf pages.

Data 

Pages

Index Pages

Overflow pages



Definition of B+ tree

• A B-tree of order n is a height-balanced tree , 
where each node may have up to n children, and 
in which:
• All leaves (leaf nodes) are on the same level 

• No node can contain more than n children

• All nodes except the root have at least n/2 children

• The root is either a leaf node, or it has at least n/2 
children

• Ensures that a fixed maximum number of reads 
would be required to access any data requested, 
based on the height of the tree 17



Example B+ Tree

• Search begins at root, and key comparisons direct it to a 
leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

<13
13 <17

17 <24 24 <30
30
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B+ Trees in Practice

• Typical order: 200.  Typical fill-factor: 67%.

• Average fan-out for internal nodes = 133

• Typical capacities:

• Height 4: 1334 = 312,900,700 records

• Height 3: 1333 =     2,352,637 records

• Can often hold top levels in buffer pool:

• Level 1 =           1 page  =     8 Kbytes

• Level 2 =      133 pages =     1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes
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Insertion in B-Tree

• 1.                                          2.

• a, g, f,b:                                 k:  

a    b    f    g

a     b g     k

f
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Insertion (cont.)

• 3.                                           4.

• d, h, m:                                    j:

• 5.                                            6.

• e, s, i, r:                                   x:

•

f

a   b d    g  h  k  m

f     j

a    b    d g   h k   m

f    j

a  b   d  e k m  r  sg  h  i

f    j   r 

g  h  i s    xk  ma  b  d  e 21



Insertion (cont.)

7.

c, l, n, t, u:

8.

p:

c   f    j     r

s   t   u   xk    l   m   n     g  h   ia    b d    e

j

a    b d   e k   l n   p

m   rc   f

g   h   i s    t    u   x  
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Summary: B+ trees 

• Typically, 67% occupancy on average.

• Usually preferable to ISAM, modulo locking considerations; adjusts 
to growth gracefully.

• Key compression increases fan-out, reduces height.

• Most widely used index in database management systems because 
of its versatility.  One of the most optimized components of a 
DBMS.
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Hashing mechanism

• Your index is a collection of buckets (bucket = 
page)

• Define a hash function, h, that maps a key to a 
bucket.

• Store the corresponding data in that bucket.

• Collisions
• Multiple keys hash to the same bucket.

• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.
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Extendible Hashing

• Main Idea: Use a directory of (logical) pointers to 
bucket pages

• Situation: Bucket (primary page) becomes full. 
Why not re-organize file by doubling # of buckets?
• Reading and writing all pages is expensive

• Idea:  Use directory of pointers to buckets, double # of buckets 
by doubling the directory, splitting just the bucket that 
overflowed

• Directory much smaller than file, so doubling it is much cheaper.  
Only one page of data entries is split.  No overflow page!

• Trick lies in how hash function is adjusted!
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Example

• Directory is array of size 4.

• To find bucket for r, take last 
`global depth’ # bits of h(r); 
we denote r by h(r).

• If h(r) = 5 = binary 101,  it 
is in bucket pointed to by 
01.

 Insert:  If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory.  (As we will see, splitting a
bucket does not always require doubling; we can tell by 
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*



Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'

of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH
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Points to Note

• 20 = binary 10100.  Last 2 bits (00) tell us r belongs 
in A or A2.  Last 3 bits needed to tell which.
• Global depth of directory:  Max # of  bits needed to tell 

which bucket an entry belongs to.

• Local depth of a bucket: # of bits used to determine if an 
entry belongs to this bucket.

• When does bucket split cause directory doubling?
• Before insert, local depth of bucket = global depth.  Insert 

causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  (Use of least significant bits enables efficient 
doubling via copying of directory!) 28



Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110

000

100

010

110

001

101

011

111

Least Significant Most Significant
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Comments on Extendible 
Hashing
• If directory fits in memory, equality search answered with one 

disk access; else two.

• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as 
data entries) and 25,000 directory elements; chances are high that 
directory will fit in memory.

• Directory grows in spurts, and, if the distribution of hash values is 
skewed, directory can grow large.

• Multiple entries with same hash value cause problems

• Need a decent hash function 

• Delete:  If removal of data entry makes bucket empty, can be 
merged with `split image’.  If each directory element points to 
same bucket as its split image, can halve directory. 
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Prefix Key Compression

• Height of a B+ tree depends on the number of data entries and 
the size of index entries

• Size of index entries determines the number of index entries that 
will fit on a page – and therefore the fan-out of the tree. 

• Key Compression can increase fan-out.  (Why?)

• Key values in index entries only `direct traffic’; can often 
compress them.

• E.g., adjacent index entries with search key values 

[Dave Jones, David Smith and Devarakonda Murthy] 

• Can we abbreviate David Smith to Dav? 

• Not correct! Can only compress David Smith to Davi.

• In general, while compressing, must leave each index entry greater 
than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.
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Prefix Key compression 

Alligator Antelope Baboon

32

… Amardillo …… Anteater

AntelKey 
Compression 



Creating Secondary Indexes

• You can create other indexes on your data 

• These secondary indexes do not need to have a UNIQUE values 
for each record

• Typically created on foreign keys to speed up JOIN operation

• Add a secondary index after the table has been populated 
when the data and the primary index exists within the 
database

• (ALTER TABLE … ADD INDEX)

• Process can use the primary index to locate the records to be 
indexed by the secondary index 
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Process: Choice of indexes

• One approach: 

• Consider the most important queries in turn. 

• Consider the best plan using the current indexes, and 
see if a better plan is possible with an additional index. 
If so, create it.

• Must understand how a DBMS evaluates queries 
and creates query evaluation plans.

• Before creating an index, must also consider the 
impact on updates in the workload.

• Trade-off: Indexes can make select queries go 
faster, updates slower. Require disk space, too.
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Index selection guideline
• Attributes in WHERE clause are candidates for index keys.

• Exact match condition suggests hash index.

• Range query suggests tree index.

• Clustering is especially useful for range queries; can also help 
on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a 
WHERE clause contains several conditions.
• Order of attributes is important for range queries.

• Such indexes can sometimes enable index-only strategies for 
important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

• Try to choose indexes that benefit many queries.
• Since only one index can be clustered per relation, choose it 

based on important queries that would benefit the most from 
clustering.
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Indexes in InnoDB

• Every InnoDB table has a special index called the clustered 
index (by default built on the primary key)

• Record locks always lock index records
• Even if a table is defined with no indexes

• InnoDB creates a hidden clustered index and uses this index for 
record locking

• Accessing a row through the clustered index is fast because 
the index search leads directly to the page with all the row 
data.

• All InnoDB indexes are B+ trees where the index records are 
stored in the leaf pages of the tree

• You can configure the page size for all InnoDB tablespaces in a 
MySQL instance with the variable innodb_page_size
• default size of an index page is 16KB
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InnoDB Index structure

• Root page is allocated when the INDEX is created and is stored 
in the data dictionary

• It can never be relocated or removed

• All pages at each level are double-linked to each other

• All pages have anchors for the beginning and the end of the 
linked list of records

• Statically defined: Infimum – lowest key, supremum – highest key

• Within a page, records are singly-linked in ascending order

• Records not stored in ascending order 

• Non-leaf pages contain page addresses to a child node

• Leaf pages contain the actual data record (non-key data)
37



Tree Levels in InnoDB

38
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InnoDB: Secondary Index

• You can create multiple indexes on a table

• These additional indexes that are not on the primary key are 
secondary indexes

• Each record in a secondary index contains the primary key 
columns for the row, as well as the columns specified for the 
secondary index

• InnoDB uses this primary key value to search for the row in 
the clustered index
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Index Optimizations in InnoDB

• The change buffer is a special data structure that caches changes 
to secondary index pages when affected pages are not in the buffer 
pool

• The buffered changes are merged later when the pages are loaded 
into the buffer pool by other read operations.

• secondary indexes are usually non-unique, and inserts into 
secondary indexes happen in a relatively random order.

• Merging cached changes at a later time, when affected pages are 
read into the buffer pool by other operations, avoids substantial 
random access I/O that would be required to read-in secondary 
index pages from disk

• Periodically, the purge operation that runs when the system is 
mostly idle, writes the updated index pages to disk

• The purge operation can write disk blocks for a series of index values 
more efficiently than if each value were written to disk immediately 40



InnoDB  locks
• My SQL sets record locks on every index record that is scanned 

in the processing of a SQL statement

• Types of  object locks 

• Record lock: This is a lock on an index record.

• Gap lock: This is a lock on a gap between index records, or a lock 
on the gap before the first or after the last index record.

• Next-key lock: This is a combination of a record lock on the index 
record and a gap lock on the gap before the index record.

• InnoDB uses next-key locks for searches and index scans

• If one session has a shared or exclusive lock on record R in an 
index, another session cannot insert a new index record in the 
gap immediately before R in the index order
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InnoDB hash indexes

• Based on the observed pattern of searches, MySQL builds a 
hash index using a prefix of the index key.

• Hash indexes are built on demand for those pages of the index 
that are often accessed.

• The prefix of the key can be any length, and it may be that 
only some of the values in the B+tree appear in the hash 
index.

• If a table fits almost entirely in main memory, a hash index can 
speed up queries by enabling direct lookup of any element, 
turning the index value into a sort of in memory pointer.
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Hash index limitations

• They are used only for equality comparisons 

• They cannot be used for comparison operators such as < that 
find a range of values. 

• The optimizer cannot use a hash index to speed up ORDER 
BY operations. (This type of index cannot be used to search for 
the next entry in order.)

• MySQL cannot determine approximately how many rows 
there are between two values (this is used by the range 
optimizer to decide which index to use). 

• Only whole keys can be used to search for a row. (With a B+-
tree index, any leftmost prefix of the key can be used to find 
rows.)
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Summary: Tree-based Index

• Tree-structured indexes are ideal for range-searches, 
also good for equality searches.

• ISAM is a static structure.
• Only leaf pages modified; overflow pages needed.

• Overflow chains can degrade performance unless size of data set and 
data distribution stay constant.

• B+ tree is a dynamic structure.
• Inserts/deletes leave tree height-balanced; log F N cost.

• High fanout (F) means depth rarely more than 3 or 4.

• Almost always better than maintaining a sorted file.

• InnoDB provides many optimizations to speed up the access to a 
record 44


