
Indexes

Kathleen Durant PhD

Northeastern University

CS 3200

Outline for the day

• Index definition

• Types of indexes

• B+ trees

• ISAM

•Hash index

•Choosing indexed fields

• Indexes in InnoDB 2

Indexes

• A typical file allows us to retrieve records:

• by specifying a file offset or a rid, or

• by scanning all records sequentially

• Sometimes, we want to retrieve records by specifying the
values in one or more fields

• Examples:

• Find all students in the “CS” department

• Find all students with a gpa > 3

• Indexes are file structures that enable us to answer such
value-based queries efficiently.

3

Indexes

• An index on a file speeds up selections on the search key fields
for the index

• Any subset of the fields of a relation can be the search key for an
index on the relation

• Search key is not the same as a key in the DB

• An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given key value k.

4

Why Index?

• Database tables have many records and ..

• linear search is very slow, complexity is O(n)

• Keeping a file sorted to apply a binary search is costly

• Indexes improve search performance

• But add extra cost to INSERT/UPDATE/ DELETE

• Many options for indexes

• Hash Indexes (MEMORY and NDB)

• Bitmap Indexes (not available in MySQL)

• B-Tree Indexes and derivatives (MyISAM, InnoDB)

5

Index Concept

• Main idea: A separate data structure used to locate records

• Most generally, index is a list of value/address pairs

• Each pair is an index “entry”

• Value is the index “key”

• Address will point to a data record, or to a data page

• The assumption is that the value/address pair will be much
smaller in size than the full record

• If index is small, a copy can be maintained in memory

• Permanent disk copy is still needed

6

Indexing Pitfalls

• Index itself is a data store

• Occupies disk space

• Must worry about maintenance, consistency, recovery, etc.

• Large indices won't fit in memory

• May require multiple seeks to locate record entry

7

Essential for Multilevel Indexes

• Should support efficient random access

• Should also support efficient sequential access, if possible

• Should have low height

• Implies high fan out: refers to the number of children nodes for
an internal node.

• Should be efficiently updatable

• Should be storage-efficient

• Top level(s) should fit in memory

8

Tree Structured Indexes

• Tree-structured indexing techniques support both
range searches and equality searches.

• Tree structures with search keys on value-based
domains

• ISAM: static structure

• B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

9

Range Searches

• ``Find all students with gpa > 3.0’’

• If data is in a sorted file, do binary search to find first such
student, then scan to find others.

• Cost of binary search can be quite high.

• Simple idea: Create an `index’ file.

 Can do a binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

10

ISAM

• = Indexed Sequential Access Method

• IBM terminology

• “Indexed Sequential” more general term (non-IBM)

• ISAM as described in textbook is very close to B+ tree

• simpler versions exist

• Main idea: maintain sequential ordered file but give it an
index

• Sequentiality for efficient “batch” processing

• Index for random record access

11

ISAM Technique

• Build a dense index of the pages (1st level index)

• Sparse from a record viewpoint

• Then build an index of the 1st level index (2nd level index)

• Continue recursively until top level index fits on 1 page

• Some implementations may stop after a fixed # of levels

12

Updating an ISAM File

• Data set must be kept sequential

• So that it can be processed without the index

• May have to rewrite entire file to add records

• Could use overflow pages

• chained together or in fixed locations (overflow area)

• Index is usually NOT updated as records are added or deleted

• Once in a while the whole thing is “reorganized”

• Data pages recopied to eliminate overflows

• Index recreated

13

ISAM Pros, Cons

• Pro

• Relatively simple

• Great for true sequential access

• Cons

• Not very dynamic

• Inefficient if lots of overflow pages

• Can only be one ISAM index per file

14

ISAM

• Leaf pages contain sorted data records

• Non-leaf part directs searches to the data records; static once built

• Inserts/deletes: use overflow pages, bad for frequent inserts.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

(static!)

Pages
Overflow

page
Primary pages

Leaf

15

Comments on ISAM

• File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

• Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf
pages.

• Search: Start at root; use key comparisons to go
to leaf. Cost log F N ; F = # entries/index pg, N =
leaf pgs

• Insert: Find leaf data entry belongs to, and put it
there.

• Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

 Static tree structure: inserts/deletes affect only leaf pages.

Data

Pages

Index Pages

Overflow pages

Definition of B+ tree

• A B-tree of order n is a height-balanced tree ,
where each node may have up to n children, and
in which:
• All leaves (leaf nodes) are on the same level

• No node can contain more than n children

• All nodes except the root have at least n/2 children

• The root is either a leaf node, or it has at least n/2
children

• Ensures that a fixed maximum number of reads
would be required to access any data requested,
based on the height of the tree 17

Example B+ Tree

• Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

<13
13 <17

17 <24 24 <30
30

18

B+ Trees in Practice

• Typical order: 200. Typical fill-factor: 67%.

• Average fan-out for internal nodes = 133

• Typical capacities:

• Height 4: 1334 = 312,900,700 records

• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes
19

Insertion in B-Tree

• 1. 2.

• a, g, f,b: k:

a b f g

a b g k

f

20

Insertion (cont.)

• 3. 4.

• d, h, m: j:

• 5. 6.

• e, s, i, r: x:

•

f

a b d g h k m

f j

a b d g h k m

f j

a b d e k m r sg h i

f j r

g h i s xk ma b d e 21

Insertion (cont.)

7.

c, l, n, t, u:

8.

p:

c f j r

s t u xk l m n g h ia b d e

j

a b d e k l n p

m rc f

g h i s t u x

22

Summary: B+ trees

• Typically, 67% occupancy on average.

• Usually preferable to ISAM, modulo locking considerations; adjusts
to growth gracefully.

• Key compression increases fan-out, reduces height.

• Most widely used index in database management systems because
of its versatility. One of the most optimized components of a
DBMS.

23

Hashing mechanism

• Your index is a collection of buckets (bucket =
page)

• Define a hash function, h, that maps a key to a
bucket.

• Store the corresponding data in that bucket.

• Collisions
• Multiple keys hash to the same bucket.

• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.

24

Extendible Hashing

• Main Idea: Use a directory of (logical) pointers to
bucket pages

• Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?
• Reading and writing all pages is expensive

• Idea: Use directory of pointers to buckets, double # of buckets
by doubling the directory, splitting just the bucket that
overflowed

• Directory much smaller than file, so doubling it is much cheaper.
Only one page of data entries is split. No overflow page!

• Trick lies in how hash function is adjusted!
25

Example

• Directory is array of size 4.

• To find bucket for r, take last
`global depth’ # bits of h(r);
we denote r by h(r).

• If h(r) = 5 = binary 101, it
is in bucket pointed to by
01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'

of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

27

Points to Note

• 20 = binary 10100. Last 2 bits (00) tell us r belongs
in A or A2. Last 3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.

• Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

• When does bucket split cause directory doubling?
• Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!) 28

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110

000

100

010

110

001

101

011

111

Least Significant Most Significant

29

Comments on Extendible
Hashing
• If directory fits in memory, equality search answered with one

disk access; else two.

• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as
data entries) and 25,000 directory elements; chances are high that
directory will fit in memory.

• Directory grows in spurts, and, if the distribution of hash values is
skewed, directory can grow large.

• Multiple entries with same hash value cause problems

• Need a decent hash function

• Delete: If removal of data entry makes bucket empty, can be
merged with `split image’. If each directory element points to
same bucket as its split image, can halve directory.

30

Prefix Key Compression

• Height of a B+ tree depends on the number of data entries and
the size of index entries

• Size of index entries determines the number of index entries that
will fit on a page – and therefore the fan-out of the tree.

• Key Compression can increase fan-out. (Why?)

• Key values in index entries only `direct traffic’; can often
compress them.

• E.g., adjacent index entries with search key values

[Dave Jones, David Smith and Devarakonda Murthy]

• Can we abbreviate David Smith to Dav?

• Not correct! Can only compress David Smith to Davi.

• In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.

31

Prefix Key compression

Alligator Antelope Baboon

32

… Amardillo …… Anteater

AntelKey
Compression

Creating Secondary Indexes

• You can create other indexes on your data

• These secondary indexes do not need to have a UNIQUE values
for each record

• Typically created on foreign keys to speed up JOIN operation

• Add a secondary index after the table has been populated
when the data and the primary index exists within the
database

• (ALTER TABLE … ADD INDEX)

• Process can use the primary index to locate the records to be
indexed by the secondary index

33

Process: Choice of indexes

• One approach:

• Consider the most important queries in turn.

• Consider the best plan using the current indexes, and
see if a better plan is possible with an additional index.
If so, create it.

• Must understand how a DBMS evaluates queries
and creates query evaluation plans.

• Before creating an index, must also consider the
impact on updates in the workload.

• Trade-off: Indexes can make select queries go
faster, updates slower. Require disk space, too.

34

Index selection guideline
• Attributes in WHERE clause are candidates for index keys.

• Exact match condition suggests hash index.

• Range query suggests tree index.

• Clustering is especially useful for range queries; can also help
on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
• Order of attributes is important for range queries.

• Such indexes can sometimes enable index-only strategies for
important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

• Try to choose indexes that benefit many queries.
• Since only one index can be clustered per relation, choose it

based on important queries that would benefit the most from
clustering.

35

Indexes in InnoDB

• Every InnoDB table has a special index called the clustered
index (by default built on the primary key)

• Record locks always lock index records
• Even if a table is defined with no indexes

• InnoDB creates a hidden clustered index and uses this index for
record locking

• Accessing a row through the clustered index is fast because
the index search leads directly to the page with all the row
data.

• All InnoDB indexes are B+ trees where the index records are
stored in the leaf pages of the tree

• You can configure the page size for all InnoDB tablespaces in a
MySQL instance with the variable innodb_page_size
• default size of an index page is 16KB

36

InnoDB Index structure

• Root page is allocated when the INDEX is created and is stored
in the data dictionary

• It can never be relocated or removed

• All pages at each level are double-linked to each other

• All pages have anchors for the beginning and the end of the
linked list of records

• Statically defined: Infimum – lowest key, supremum – highest key

• Within a page, records are singly-linked in ascending order

• Records not stored in ascending order

• Non-leaf pages contain page addresses to a child node

• Leaf pages contain the actual data record (non-key data)
37

Tree Levels in InnoDB

38

http://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/

InnoDB: Secondary Index

• You can create multiple indexes on a table

• These additional indexes that are not on the primary key are
secondary indexes

• Each record in a secondary index contains the primary key
columns for the row, as well as the columns specified for the
secondary index

• InnoDB uses this primary key value to search for the row in
the clustered index

39

Index Optimizations in InnoDB

• The change buffer is a special data structure that caches changes
to secondary index pages when affected pages are not in the buffer
pool

• The buffered changes are merged later when the pages are loaded
into the buffer pool by other read operations.

• secondary indexes are usually non-unique, and inserts into
secondary indexes happen in a relatively random order.

• Merging cached changes at a later time, when affected pages are
read into the buffer pool by other operations, avoids substantial
random access I/O that would be required to read-in secondary
index pages from disk

• Periodically, the purge operation that runs when the system is
mostly idle, writes the updated index pages to disk

• The purge operation can write disk blocks for a series of index values
more efficiently than if each value were written to disk immediately 40

InnoDB locks
• My SQL sets record locks on every index record that is scanned

in the processing of a SQL statement

• Types of object locks

• Record lock: This is a lock on an index record.

• Gap lock: This is a lock on a gap between index records, or a lock
on the gap before the first or after the last index record.

• Next-key lock: This is a combination of a record lock on the index
record and a gap lock on the gap before the index record.

• InnoDB uses next-key locks for searches and index scans

• If one session has a shared or exclusive lock on record R in an
index, another session cannot insert a new index record in the
gap immediately before R in the index order

41

InnoDB hash indexes

• Based on the observed pattern of searches, MySQL builds a
hash index using a prefix of the index key.

• Hash indexes are built on demand for those pages of the index
that are often accessed.

• The prefix of the key can be any length, and it may be that
only some of the values in the B+tree appear in the hash
index.

• If a table fits almost entirely in main memory, a hash index can
speed up queries by enabling direct lookup of any element,
turning the index value into a sort of in memory pointer.

42

Hash index limitations

• They are used only for equality comparisons

• They cannot be used for comparison operators such as < that
find a range of values.

• The optimizer cannot use a hash index to speed up ORDER
BY operations. (This type of index cannot be used to search for
the next entry in order.)

• MySQL cannot determine approximately how many rows
there are between two values (this is used by the range
optimizer to decide which index to use).

• Only whole keys can be used to search for a row. (With a B+-
tree index, any leftmost prefix of the key can be used to find
rows.)

43

Summary: Tree-based Index

• Tree-structured indexes are ideal for range-searches,
also good for equality searches.

• ISAM is a static structure.
• Only leaf pages modified; overflow pages needed.

• Overflow chains can degrade performance unless size of data set and
data distribution stay constant.

• B+ tree is a dynamic structure.
• Inserts/deletes leave tree height-balanced; log F N cost.

• High fanout (F) means depth rarely more than 3 or 4.

• Almost always better than maintaining a sorted file.

• InnoDB provides many optimizations to speed up the access to a
record 44

