
MySQL Connector/J

MySQL Connector/J
Abstract

This manual describes MySQL Connector/J, the JDBC implementation for communicating with MySQL servers.

Document generated on: 2012-04-30 (revision: 30280)

Preface and Legal Notice
This manual describes MySQL Connector/J, the JDBC implementation for communicating with MySQL servers.

Legal Notices
Copyright © 1997, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use,
copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or
by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is pro-
hibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Govern-
ment customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall
be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure
the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affil-
iates, and shall not be used without Oracle's express written authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your
access to and use of this material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which
has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied,
reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided below. This doc-
ument is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long
as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any
media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated togeth-
er with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in
whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its
affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built and produced, please visit
MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products, see Preface and Legal Notice.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with

iv

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com

other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable
versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation Library.

Preface and Legal Notice

v

http://dev.mysql.com/doc

Chapter 1. MySQL Connector/J
This section explains how to configure and develop Java applications with MySQL Connector/J, the JDBC driver integrated with
MySQL.

1

Chapter 2. Connector/J Versions
There are currently four versions of MySQL Connector/J available:

• Connector/J 5.1 is the Type 4 pure Java JDBC driver, which conforms to the JDBC 3.0 and JDBC 4.0 specifications. It provides
compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1, 5.4 and 5.5. Connector/J 5.1 provides ease of develop-
ment features, including auto-registration with the Driver Manager, standardized validity checks, categorized SQLExceptions, sup-
port for the JDBC-4.0 XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release also
includes all bug fixes up to and including Connector/J 5.0.6.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes distributed transaction (XA) sup-
port.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the functionality
in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or MySQL 4.1 servers, although it
will provide basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared statements,
and does not support any of the features in versions of MySQL later than 4.1.

The following table summarizes the Connector/J versions available:

Connector/J version Driver Type JDBC version MySQL Server version Status

5.1 4 3.0, 4.0 4.1, 5.0, 5.1, 5.4, 5.5 Recommended version

5.0 4 3.0 4.1, 5.0 Released version

3.1 4 3.0 4.1, 5.0 Obsolete

3.0 4 3.0 3.x, 4.1 Obsolete

The current recommended version for Connector/J is 5.1. This guide covers all four connector versions, with specific notes given where
a setting applies to a specific option.

2.1. Java Versions Supported
The following table summarizes Connector/J Java dependencies:

Connector/J version Java RTE required JDK required (to build source code)

5.1 1.5.x, 1.6.x 1.6.x and 1.5.x

5.0 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

3.1 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

3.0 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

If you are building Connector/J from source code using the source distribution (see Section 3.4, “Installing from the Development
Source Tree”), you must use JDK 1.4.2 or newer to compile the Connector package. For Connector/J 5.1, you must have both JDK-
1.6.x and JDK-1.5.x installed to be able to build the source code.

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on a Java runtime older than 1.4
unless the class verifier is turned off (by setting the -Xverify:none option to the Java runtime). This is because the class verifier
will try to load the class definition for java.sql.Savepoint even though it is not accessed by the driver unless you actually use
savepoint functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, as it relies on
java.util.LinkedHashMap which was first available in JDK-1.4.0.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

2

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Chapter 3. Connector/J Installation
You can install the Connector/J package using either the binary or source distribution. The binary distribution provides the easiest meth-
od for installation; the source distribution lets you customize your installation further. With either solution, you manually add the Con-
nector/J location to your Java CLASSPATH.

If you are upgrading from a previous version, read the upgrade information in Section 3.3, “Upgrading from an Older Version” before
continuing.

Connector/J is also available as part of the Maven project. For more information, and to download the Connector/J JAR files, see the
Maven repository.

3.1. Installing Connector/J from a Binary Distribution
For the easiest method of installation, use the binary distribution of the Connector/J package. The binary distribution is available either
as a tar/gzip or zip file. Extract it to a suitable location, then optionally make the information about the package available by changing
your CLASSPATH (see Section 3.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and the JAR archive named
mysql-connector-java-version-bin.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of the driver JAR file.

Starting with Connector/J 3.1.8, the archive also includes a debug build of the driver in a file named
mysql-connector-java-version-bin-g.jar. Do not use the debug build of the driver unless instructed to do so when re-
porting a problem or a bug, as it is not designed to be run in production environments, and will have adverse performance impact when
used. The debug binary also depends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that
comes with the Connector/J distribution.

Use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip archive, and tar for
the .tar.gz archive). Because there are potentially long file names in the distribution, we use the GNU tar archive format. Use GNU tar
(or an application that understands the GNU tar archive format) to unpack the .tar.gz variant of the distribution.

3.2. Installing the Driver and Configuring the CLASSPATH
Once you have extracted the distribution archive, you can install the driver by placing mysql-connector-java-version-
bin.jar in your classpath, either by adding the full path to it to your CLASSPATH environment variable, or by directly specifying it
with the command line switch -cp when starting the JVM.

To use the driver with the JDBC DriverManager, use com.mysql.jdbc.Driver as the class that implements
java.sql.Driver.

You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their .profile,
.login or other login file. You can also set it globally by editing the global /etc/profile file.

For example, add the Connector/J driver to your CLASSPATH using one of the following forms, depending on your command shell:

Bourne-compatible shell (sh, ksh, bash, zsh):
shell> export CLASSPATH=/path/mysql-connector-java-ver-bin.jar:$CLASSPATH
C shell (csh, tcsh):
shell> setenv CLASSPATH /path/mysql-connector-java-ver-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you set the environment variable through the System
Control Panel.

To use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, read your vendor's documentation for more
information on how to configure third-party class libraries, as most application servers ignore the CLASSPATH environment variable.
For configuration examples for some J2EE application servers, see Chapter 7, Developing J2EE Applications with Connector/J.
However, the authoritative source for JDBC connection pool configuration information for your particular application server is the doc-
umentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-
INF/lib subdirectory of your webapp, as this is a standard location for third party class libraries in J2EE web applications.

3

http://www.ibiblio.org/maven/

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the
com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or requires them. Starting with Connect-
or/J 5.0.0, the javax.sql.XADataSource interface is implemented using the
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed transactions when used in
combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

3.3. Upgrading from an Older Version
This section has information for users who are upgrading from one version of Connector/J to another, or to a new version of the MySQL
server that supports a more recent level of JDBC. A newer version of Connector/J might include changes to support new features, im-
prove existing functionality, or comply with new standards.

3.3.1. Upgrading to MySQL Connector/J 5.1.x

• In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing the result set metadata using
ResultSetMetaData.getColumnName(). This behavior however is not JDBC compliant, and in Connector/J 5.1 this beha-
vior was changed so that the original table name, rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the metadata within Result-
Set and ResultSetMetaData.

You can get the alias for a column in a result set by calling ResultSetMetaData.getColumnLabel(). To use the old non-
compliant behavior with ResultSetMetaData.getColumnName(), use the useOldAliasMetadataBehavior option
and set the value to true.

In Connector/J 5.0.x, the default value of useOldAliasMetadataBehavior was true, but in Connector/J 5.1 this was
changed to a default value of false.

3.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported by the
server, however the JDBC driver could use it, allowing storage of multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not up-
grade them to use the official Unicode character support in MySQL server version 4.1 or newer, add the following property to your
connection URL:

useOldUTF8Behavior=true

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they are
available (MySQL server version 4.1.0 and newer). If your application encounters issues with server-side prepared statements, you
can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

Connector/J Installation

4

http://dev.mysql.com/doc/refman/5.5/en/select.html

3.3.3. Upgrading from MySQL Connector/J 3.0 to 3.1
Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major changes are isolated to new
functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQLState
codes returned in error messages by the server and various performance enhancements that can be enabled or disabled using configura-
tion properties.

• Unicode Character Sets: See the next section, as well as Character Set Support, for information on this MySQL feature. If you
have something misconfigured, it will usually show up as an error with a message similar to Illegal mix of collations.

• Server-side Prepared Statements: Connector/J 3.1 will automatically detect and use server-side prepared statements when they are
available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing using all variants of Connection.prepareStatement()
to determine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead pre-
pares it as a client-side emulated prepared statement. You can disable this feature by passing emulateUnsupportedPst-
mts=false in your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated prepared
statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServerPrepSt-
mts=false.

• Datetimes with all-zero components (0000-00-00 ...): These values cannot be represented reliably in Java. Connector/J 3.0.x
always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered, as this is the most correct behavior according to
the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property. The
permissible values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior using noDate-
timeStringSync=true (the default value is false) so that you can retrieve the unaltered all-zero value as a String. Note that
this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync
and useTimezone at the same time.

• New SQLState Codes: Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server (if supported), which are
different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to a MySQL server older than MySQL-4.1.0
(the oldest version to return SQLStates as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString(): Calling ResultSet.getString() on a BLOB column will now return the address of the
byte[] array that represents it, instead of a String representation of the BLOB. BLOB values have no character set, so they can-
not be converted to java.lang.Strings without data loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a java.sql.Clob.

• Debug builds: Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-version-bin-g.jar is shipped alongside the normal binary jar file that is named mysql-
connector-java-version-bin.jar.

Starting with Connector/J 3.1.9, we do not ship the .class files unbundled, they are only available in the JAR archives that ship
with the driver.

Do not use the debug build of the driver unless instructed to do so when reporting a problem or bug, as it is not designed to be run in
production environments, and will have adverse performance impact when used. The debug binary also depends on the Aspect/J
runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J distribution.

3.4. Installing from the Development Source Tree

Connector/J Installation

5

http://dev.mysql.com/doc/refman/5.5/en/charset.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Caution

Read this section only if you are interested in helping us test our new code. To just get MySQL Connector/J up and run-
ning on your system, use a standard binary release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:

• A Bazaar client, to check out the sources from our Launchpad repository (available from http://bazaar-vcs.org/).

• Apache Ant version 1.7 or newer (available from http://ant.apache.org/).

• JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, compiling it from source requires at least JDK
1.4.2. To build Connector/J 5.1 requires JDK 1.6.x and an older JDK such as JDK 1.5.x; point your JAVA_HOME environment vari-
able at the older installation.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Check out the latest code from the branch that you want with one of the following commands.

The source code repository for MySQL Connector/J is located on Launchpad at https://code.launchpad.net/connectorj. To check
out the latest development branch, use:

shell> bzr branch lp:connectorji

This creates a connectorj subdirectory in the current directory that contains the latest sources for the requested branch.

To check out the latest 5.1 code, use:

shell> bzr branch lp:connectorj/5.1

This creates a 5.1 subdirectory in the current directory containing the latest 5.1 code.

2. To build Connector/J 5.1, make sure that you have both JDK 1.6.x installed and an older JDK such as JDK 1.5.x. This is because
Connector/J supports both JDBC 3.0 (which was prior to JDK 1.6.x) and JDBC 4.0. Set your JAVA_HOME environment variable to
the path of the older JDK installation.

3. Change your current working directory to either the connectorj or 5.1 directory, depending on which branch you intend to
build.

4. To build Connector/J 5.1, edit the build.xml to reflect the location of your JDK 1.6.x installation. The lines to change are:

<property name="com.mysql.jdbc.java6.javac" value="C:\jvms\jdk1.6.0\bin\javac.exe" />
<property name="com.mysql.jdbc.java6.rtjar" value="C:\jvms\jdk1.6.0\jre\lib\rt.jar" />

Alternatively, you can set the value of these property names through the Ant -D option.

5. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory is created in the build direct-
ory that includes the version number of the sources you are building from. This directory contains the sources, compiled .class
files, and a .jar file suitable for deployment. For other possible targets, including ones that will create a fully packaged distribu-
tion, issue the following command:

shell> ant -projecthelp

6. A newly created .jar file containing the JDBC driver will be placed in the directory
build/mysql-connector-java-version.

Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL, by following the instruc-

Connector/J Installation

6

http://bazaar-vcs.org/
http://ant.apache.org/
https://code.launchpad.net/connectorj

tions in Section 3.2, “Installing the Driver and Configuring the CLASSPATH”.

A package containing both the binary and source code for Connector/J 5.1 can also be found at the following location: Connector/J 5.1
Download

Connector/J Installation

7

http://dev.mysql.com/downloads/connector/j/5.1.html
http://dev.mysql.com/downloads/connector/j/5.1.html

Chapter 4. Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a summary and links to these examples.

• Example 6.1, “Connector/J: Obtaining a connection from the DriverManager”

• Example 6.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 6.3, “Connector/J: Calling Stored Procedures”

• Example 6.4, “Connector/J: Using Connection.prepareCall()”

• Example 6.5, “Connector/J: Registering output parameters”

• Example 6.6, “Connector/J: Setting CallableStatement input parameters”

• Example 6.7, “Connector/J: Retrieving results and output parameter values”

• Example 6.8, “Connector/J: Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()”

• Example 6.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()”

• Example 6.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 7.1, “Connector/J: Using a connection pool with a J2EE application server”

• Example 12.1, “Connector/J: Example of transaction with retry logic”

8

Chapter 5. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J.

5.1. Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is com.mysql.jdbc.Driver. The
org.gjt.mm.mysql.Driver class name is also usable for backward compatibility with MM.MySQL, the predecessor of Connect-
or/J. Use this class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

JDBC URL Format
The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the host name is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for
MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

Here is a sample connection URL:

jdbc:mysql://localhost:3306/sakila?profileSQL=true

IPv6 Connections
For IPv6 connections, use this alternative syntax to specify hosts in the URL, address=(key=value). Supported keys are:

• (protocol=tcp), or (protocol=pipe) for named pipes on Windows.

• (path=path_to_pipe) for named pipes.

• (host=hostname) for TCP connections.

• (port=port_number) for TCP connections.

For example:

jdbc:mysql://address=(protocol=tcp)(host=localhost)(port=3306)(user=test)/db

Any other parameters are treated as host-specific properties that follow the conventions of the JDBC URL properties. This now allows
per-host overrides of any configuration property for multi-host connections (that is, when using failover, load balancing, or replication).
Limit the overrides to user, password, network timeouts and statement and metadata cache sizes; the results of other per-host overrides
are not defined.

Initial Database for Connection
If the database is not specified, the connection is made with no default database. In this case, either call the setCatalog() method
on the Connection instance, or fully specify table names using the database name (that is, SELECT dbname.tablename.colname
FROM dbname.tablename...) in your SQL. Opening a connection without specifying the database to use is generally only useful
when building tools that work with multiple databases, such as GUI database managers.

Note

9

Always use the Connection.setCatalog() method to specify the desired database in JDBC applications, rather
than the USE database statement.

Failover Support
MySQL Connector/J has failover support. This enables the driver to fail over to any number of slave hosts and still perform read-only
queries. Failover only happens when the connection is in an autoCommit(true) state, because failover cannot happen reliably
when a transaction is in progress. Most application servers and connection pools set autoCommit to true at the end of every transac-
tion/connection use.

The failover functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and failback occurs when the
driver determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed
(checked before every query), and falls back to the first host when it determines that the host has become available again (after
queriesBeforeRetryMaster queries have been issued).

In either case, whenever you are connected to a “failed-over” server, the connection is set to read-only state, so queries that attempt to
modify data will throw exceptions (the query will never be processed by the MySQL server).

Setting Configuration Properties
Configuration properties define how Connector/J will make a connection to a MySQL server. Unless otherwise noted, properties can be
set for a DataSource object or for a Connection object.

Configuration properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred method when us-
ing implementations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverManager.getConnection() or
Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource setURL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML character literal & to separate con-
figuration parameters, as the ampersand is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since Ver-
sion

user The user to connect as all versions

password The password to use when connecting all versions

socketFactory The name of the class that the driver should use for creating socket
connections to the server. This class must implement the interface
'com.mysql.jdbc.SocketFactory' and have public no-args construct-
or.

com.mysq
l.jdbc.S
tandard-
Socket-

3.0.3

Connector/J (JDBC) Reference

10

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

Factory

connectTimeout Timeout for socket connect (in milliseconds), with 0 being no
timeout. Only works on JDK-1.4 or newer. Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the default means no
timeout).

0 3.0.1

connectionLifecycleInter-
ceptors

A comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecycleInterceptor" that should no-
tified of connection lifecycle events (creation, destruction, com-
mit, rollback, setCatalog and setAutoCommit) and potentially alter
the execution of these commands. ConnectionLifecycleIntercept-
ors are "stackable", more than one interceptor may be specified via
the configuration property as a comma-delimited list, with the in-
terceptors executed in order from left to right.

5.1.4

useConfigs Load the comma-delimited list of configuration properties before
parsing the URL or applying user-specified properties. These con-
figurations are explained in the 'Configurations' of the documenta-
tion.

3.1.5

authenticationPlugins Comma-delimited list of classes that implement
com.mysql.jdbc.AuthenticationPlugin and which will be used for
authentication unless disabled by "disabledAuthenticationPlugins"
property.

5.1.19

defaultAuthenticationPlu-
gin

Name of a class implementing
com.mysql.jdbc.AuthenticationPlugin which will be used as the
default authentication plugin (see below). It is an error to use a
class which is not listed in "authenticationPlugins" nor it is one of
the built-in plugins. It is an error to set as default a plugin which
was disabled with "disabledAuthenticationPlugins" property. It is
an error to set this value to null or the empty string (i.e. there must
be at least a valid default authentication plugin specified for the
connection, meeting all constraints listed above).

com.mysq
l.jdbc.a
uthentic
ation.My
sqlNat-
ivePass-
wordPlu-
gin

5.1.19

disabledAuthenticationPlu-
gins

Comma-delimited list of classes implementing
com.mysql.jdbc.AuthenticationPlugin or mechanisms, i.e.
"mysql_native_password". The authentication plugins or mechan-
isms listed will not be used for authentication which will fail if it
requires one of them. It is an error to disable the default authentic-
ation plugin (either the one named by "defaultAuthenticationPlu-
gin" property or the hard-coded one if "defaultAuthenticationPlu-
gin" propery is not set).

5.1.19

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells MySQL to
timeout connections based on INTERACTIVE_TIMEOUT instead
of WAIT_TIMEOUT

false 3.1.0

localSocketAddress Hostname or IP address given to explicitly configure the interface
that the driver will bind the client side of the TCP/IP connection to
when connecting.

5.0.5

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform that the driver
will use to modify URL properties passed to the driver before at-
tempting a connection

3.1.4

useCompression Use zlib compression when communicating with the server
(true/false)? Defaults to 'false'.

false 3.0.17

Networking.

Property Name Definition Default
Value

Since Ver-
sion

maxAllowedPacket Maximum allowed packet size to send to server. If not set, the
value of system variable 'max_allowed_packet' will be used to ini-
tialize this upon connecting. This value will not take effect if set

-1 5.1.8

Connector/J (JDBC) Reference

11

larger than the value of 'max_allowed_packet'.

tcpKeepAlive If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true 5.0.7

tcpNoDelay If connecting using TCP/IP, should the driver set
SO_TCP_NODELAY (disabling the Nagle Algorithm)?

true 5.0.7

tcpRcvBuf If connecting using TCP/IP, should the driver set SO_RCV_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpSndBuf If connecting using TCP/IP, should the driver set SO_SND_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpTrafficClass If connecting using TCP/IP, should the driver set traffic class or
type-of-service fields ?See the documentation for
java.net.Socket.setTrafficClass() for more information.

0 5.0.7

High Availability and Clustering.

Property Name Definition Default
Value

Since Ver-
sion

autoReconnect Should the driver try to re-establish stale and/or dead connections?
If enabled the driver will throw an exception for a queries issued
on a stale or dead connection, which belong to the current transac-
tion, but will attempt reconnect before the next query issued on the
connection in a new transaction. The use of this feature is not re-
commended, because it has side effects related to session state and
data consistency when applications don't handle SQLExceptions
properly, and is only designed to be used when you are unable to
configure your application to handle SQLExceptions resulting
from dead and stale connections properly. Alternatively, as a last
option, investigate setting the MySQL server variable
"wait_timeout" to a high value, rather than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for connection pools
(defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should the connection
be set to 'read-only'?

true 3.0.12

maxReconnects Maximum number of reconnects to attempt if autoReconnect is
true, default is '3'.

3 1.1

reconnectAtTxEnd If autoReconnect is set to true, should the driver attempt reconnec-
tions at the end of every transaction?

false 3.0.10

retriesAllDown When using loadbalancing, the number of times the driver should
cycle through available hosts, attempting to connect. Between
cycles, the driver will pause for 250ms if no servers are available.

120 5.1.6

initialTimeout If autoReconnect is enabled, the initial time to wait between re-
connect attempts (in seconds, defaults to '2').

2 1.1

roundRobinLoadBalance When autoReconnect is enabled, and failoverReadonly is false,
should we pick hosts to connect to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to master when
failed over (when using multi-host failover). Whichever condition
is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetry-
Master' will cause an attempt to be made to reconnect to the mas-
ter. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over, before attempt-
ing

30 3.0.2

selfDestructOnPingMaxOper-
ations

=If set to a non-zero value, the driver will report close the connec-
tion and report failure when Connection.ping() or Connec-
tion.isValid(int) is called if the connnection's count of commands

0 5.1.6

Connector/J (JDBC) Reference

12

sent to the server exceeds this value.

selfDestructOnPingSecond-
sLifetime

If set to a non-zero value, the driver will report close the connec-
tion and report failure when Connection.ping() or Connec-
tion.isValid(int) is called if the connnection's lifetime exceeds this
value.

0 5.1.6

resourceId A globally unique name that identifies the resource that this data-
source or connection is connected to, used for XARe-
source.isSameRM() when the driver can't determine this value
based on hostnames used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since Ver-
sion

allowMultiQueries Allow the use of ';' to delimit multiple queries during one state-
ment (true/false), defaults to 'false', and does not affect the ad-
dBatch() and executeBatch() methods, which instead rely on re-
writeBatchStatements.

false 3.1.1

useSSL Use SSL when communicating with the server (true/false), de-
faults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults to 'false'). false 3.1.0

verifyServerCertificate If "useSSL" is set to "true", should the driver verify the server's
certificate? When using this feature, the keystore parameters
should be specified by the "clientCertificateKeyStore*" properties,
rather than system properties.

true 5.1.6

clientCertificateKey-
StoreUrl

URL to the client certificate KeyStore (if not specified, use de-
faults)

5.1.0

clientCertificateKeyStore-
Type

KeyStore type for client certificates (NULL or empty means use
the default, which is "JKS". Standard keystore types supported by
the JVM are "JKS" and "PKCS12", your environment may have
more available depending on what security products are installed
and available to the JVM.

JKS 5.1.0

clientCertificateKeyStore-
Password

Password for the client certificates KeyStore 5.1.0

trustCertificateKey-
StoreUrl

URL to the trusted root certificate KeyStore (if not specified, use
defaults)

5.1.0

trustCertificateKeyStore-
Type

KeyStore type for trusted root certificates (NULL or empty means
use the default, which is "JKS". Standard keystore types supported
by the JVM are "JKS" and "PKCS12", your environment may
have more available depending on what security products are in-
stalled and available to the JVM.

JKS 5.1.0

trustCertificateKeyStore-
Password

Password for the trusted root certificates KeyStore 5.1.0

allowLoadLocalInfile Should the driver allow use of 'LOAD DATA LOCAL INFILE...'
(defaults to 'true').

true 3.0.3

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA LOCAL INFILE'
statements?

false 3.1.4

paranoid Take measures to prevent exposure sensitive information in error
messages and clear data structures holding sensitive data when
possible? (defaults to 'false')

false 3.0.1

passwordCharacterEncoding What character encoding is used for passwords? Leaving this set
to the default value (null), uses the platform character set, which
works for ISO8859_1 (i.e. "latin1") passwords. For passwords in
other character encodings, the encoding will have to be specified
with this property, as it's not possible for the driver to auto-detect
this.

5.1.7

Connector/J (JDBC) Reference

13

Performance Extensions.

Property Name Definition Default
Value

Since Ver-
sion

callableStmtCacheSize If 'cacheCallableStmts' is enabled, how many callable statements
should be cached?

100 3.1.2

metadataCacheSize The number of queries to cache ResultSetMetadata for if
cacheResultSetMetaData is set to 'true' (default 50)

50 3.1.1

useLocalSessionState Should the driver refer to the internal values of autocommit and
transaction isolation that are set by Connection.setAutoCommit()
and Connection.setTransactionIsolation() and transaction state as
maintained by the protocol, rather than querying the database or
blindly sending commands to the database for commit() or roll-
back() method calls?

false 3.1.7

useLocalTransactionState Should the driver use the in-transaction state provided by the
MySQL protocol to determine if a commit() or rollback() should
actually be sent to the database?

false 5.1.7

prepStmtCacheSize If prepared statement caching is enabled, how many prepared
statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's the largest SQL
the driver will cache the parsing for?

256 3.0.10

alwaysSendSetIsolation Should the driver always communicate with the database when
Connection.setTransactionIsolation() is called? If set to false, the
driver will only communicate with the database when the reques-
ted transaction isolation is different than the whichever is newer,
the last value that was set via Connec-
tion.setTransactionIsolation(), or the value that was read from the
server when the connection was established. Note that useLoc-
alSessionState=true will force the same behavior as alwaysSend-
SetIsolation=false, regardless of how alwaysSendSetIsolation is
set.

true 3.1.7

maintainTimeStats Should the driver maintain various internal timers to enable idle
time calculations as well as more verbose error messages when the
connection to the server fails? Setting this property to false re-
moves at least two calls to System.getCurrentTimeMillis() per
query.

true 3.1.9

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize() > 0 on a state-
ment, should that statement use cursor-based fetching to retrieve
rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via ServerPrepared-
Statements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of CallableStatements false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of PreparedStatements of
client-side prepared statements, the "check" for suitability of serv-
er-side prepared and server-side prepared statements themselves?

false 3.0.10

cacheResultSetMetadata Should the driver cache ResultSetMetaData for Statements and
PreparedStatements? (Req. JDK-1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of 'SHOW VARIABLES' and
'SHOW COLLATION' on a per-URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value on all newly-
created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to automatically track
and close resources, however if your application doesn't do a good
job of explicitly calling close() on statements or result sets, this
can cause memory leakage. Setting this property to true relaxes
this constraint, and can be more memory efficient for some applic-
ations.

false 3.1.7

Connector/J (JDBC) Reference

14

dynamicCalendars Should the driver retrieve the default calendar when required, or
cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver only issue 'set
autocommit=n' queries when the server's state doesn't match the
requested state by Connection.setAutoCommit(boolean)?

false 3.1.3

enableQueryTimeouts When enabled, query timeouts set via State-
ment.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is
processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout
would have expired if it hadn't been cancelled by the driver. High-
load environments might want to consider disabling this function-
ality.

true 5.0.6

holdResultsOpenOverState-
mentClose

Should the driver close result sets on Statement.close() as required
by the JDBC specification?

false 3.1.7

largeRowSizeThreshold What size result set row should the JDBC driver consider "large",
and thus use a more memory-efficient way of representing the row
internally?

2048 5.1.1

loadBalanceStrategy If using a load-balanced connection to connect to SQL nodes in a
MySQL Cluster/NDB configuration (by using the URL prefix "jd-
bc:mysql:loadbalance://"), which load balancing algorithm should
the driver use: (1) "random" - the driver will pick a random host
for each request. This tends to work better than round-robin, as the
randomness will somewhat account for spreading loads where re-
quests vary in response time, while round-robin can sometimes
lead to overloaded nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the driver will
route the request to the host that had the best response time for the
previous transaction.

random 5.0.6

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what size buffer should
be used when fetching BLOB data for getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of the setting of
"allowMultiQueries") as well as rewriting of prepared statements
for INSERT into multi-value inserts when executeBatch() is
called? Notice that this has the potential for SQL injection if using
plain java.sql.Statements and your code doesn't sanitize input cor-
rectly. Notice that for prepared statements, server-side prepared
statements can not currently take advantage of this rewrite option,
and that if you don't specify stream lengths when using Prepared-
Statement.set*Stream(), the driver won't be able to determine the
optimum number of parameters per batch and you might receive
an error from the driver that the resultant packet is too large. State-
ment.getGeneratedKeys() for these rewritten statements only
works when the entire batch includes INSERT statements.

false 3.1.13

useDirectRowUnpack Use newer result set row unpacking code that skips a copy from
network buffers to a MySQL packet instance and instead reads dir-
ectly into the result set row data buffers.

true 5.1.1

useDynamicCharsetInfo Should the driver use a per-connection cache of character set in-
formation queried from the server when necessary, or use a built-
in static mapping that is more efficient, but isn't aware of custom
character sets or character sets implemented after the release of the
JDBC driver?

true 5.0.6

useFastDateParsing Use internal String->Date/Time/Timestamp conversion routines to
avoid excessive object creation?

true 5.0.5

useFastIntParsing Use internal String->Integer conversion routines to avoid excess-
ive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built into the JVM,
rather than using lookup tables for single-byte character sets?

false 5.0.1

Connector/J (JDBC) Reference

15

useReadAheadInput Use newer, optimized non-blocking, buffered input stream when
reading from the server?

true 3.1.5

Debugging/Profiling.

Property Name Definition Default
Value

Since Ver-
sion

logger The name of a class that implements "com.mysql.jdbc.log.Log"
that will be used to log messages to. (default is
"com.mysql.jdbc.log.StandardLogger", which logs to STDERR)

com.mysq
l.jdbc.l
og.Stand
ardLog-
ger

3.1.1

gatherPerfMetrics Should the driver gather performance metrics, and report them via
the configured logger every 'reportMetricsIntervalMillis' milli-
seconds?

false 3.1.2

profileSQL Trace queries and their execution/fetch times to the configured
logger (true/false) defaults to 'false'

false 3.1.0

profileSql Deprecated, use 'profileSQL' instead. Trace queries and their exe-
cution/fetch times on STDERR (true/false) defaults to 'false'

2.0.14

reportMetricsIntervalMil-
lis

If 'gatherPerfMetrics' is enabled, how often should they be logged
(in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that will get logged
when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when 'enablePacketDe-
bug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a query (in ms)
before it is logged as 'slow'?

2000 3.1.2

slowQueryThresholdNanos If 'useNanosForElapsedTime' is set to true, and this property is set
to a non-zero value, the driver will use this threshold (in nano-
second units) to determine if a query was slow.

0 5.0.7

useUsageAdvisor Should the driver issue 'usage' warnings advising proper and effi-
cient usage of JDBC and MySQL Connector/J to the log
(true/false, defaults to 'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, including server-
side prepared statements to STDERR?

false 3.1.9

autoSlowLog Instead of using slowQueryThreshold* to determine if a query is
slow enough to be logged, maintain statistics that allow the driver
to determine queries that are outside the 99th percentile?

true 5.1.4

clientInfoProvider The name of a class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientInfo() methods

com.mysq
l.jdbc.J
DBC4Comm
entCli-
entIn-
foPro-
vider

5.1.0

dumpMetadataOnColumnNot-
Found

Should the driver dump the field-level metadata of a result set into
the exception message when ResultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the query sent to the server
in the message for SQLExceptions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBufferSize' packets
will be kept, and dumped when exceptions are thrown in key areas
in the driver's code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver automatically is-
sue an 'EXPLAIN' on the server and send the results to the con-
figured log at a WARN level?

false 3.1.2

Connector/J (JDBC) Reference

16

includeInnodbStatusInDead-
lockExceptions

Include the output of "SHOW ENGINE INNODB STATUS" in
exception messages when deadlock exceptions are detected?

false 5.0.7

includeThreadDumpInDead-
lockExceptions

Include a current Java thread dump in exception messages when
deadlock exceptions are detected?

false 5.1.15

includeThreadNamesAsState-
mentComment

Include the name of the current thread as a comment visible in
"SHOW PROCESSLIST", or in Innodb deadlock dumps, useful in
correlation with "includeInnodbStatusInDeadlockExcep-
tions=true" and "includeThreadDumpInDeadlockExcep-
tions=true".

false 5.1.15

logSlowQueries Should queries that take longer than 'slowQueryThresholdMillis'
be logged?

false 3.1.2

logXaCommands Should the driver log XA commands sent by MysqlXaConnection
to the server, at the DEBUG level of logging?

false 5.0.5

profilerEventHandler Name of a class that implements the interface
com.mysql.jdbc.profiler.ProfilerEventHandler that will be used to
handle profiling/tracing events.

com.mysq
l.jdbc.p
ro-
filer.Lo
gging-
Pro-
filerEve
ntHand-
ler

5.1.6

resultSetSizeThreshold If the usage advisor is enabled, how many rows should a result set
contain before the driver warns that it is suspiciously large?

100 5.0.5

traceProtocol Should trace-level network protocol be logged? false 3.1.2

useNanosForElapsedTime For profiling/debugging functionality that measures elapsed time,
should the driver try to use nanoseconds resolution if available
(JDK >= 1.5)?

false 5.0.7

Miscellaneous.

Property Name Definition Default
Value

Since Ver-
sion

useUnicode Should the driver use Unicode character encodings when handling
strings? Should only be used when the driver can't determine the
character set mapping, or you are trying to 'force' the driver to use
a character set that MySQL either doesn't natively support (such as
UTF-8), true/false, defaults to 'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encoding should the
driver use when dealing with strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set colla-
tion_connection'

3.0.13

useBlobToSt-
oreUTF8OutsideBMP

Tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that
has characters outside the BMP (4-byte encodings), which MySQL
server can't handle natively.

false 5.1.3

utf8OutsideBmpExcludedColu
mnNamePattern

When "useBlobToStoreUTF8OutsideBMP" is set to "true",
column names matching the given regex will still be treated as
BLOBs unless they match the regex specified for
"utf8OutsideBmpIncludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

utf8OutsideBmpIncludedColu
mnNamePattern

Used to specify exclusion rules to
"utf8OutsideBmpExcludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

loadBalanceEnableJMX Enables JMX-based management of load-balanced connection false 5.1.13

Connector/J (JDBC) Reference

17

groups, including live addition/removal of hosts from load-
balancing pool.

sessionVariables A comma-separated list of name/value pairs to be sent as SET
SESSION ... to the server when the driver connects.

3.1.8

useColumnNamesInFindColumn Prior to JDBC-4.0, the JDBC specification had a bug related to
what could be given as a "column name" to ResultSet methods like
findColumn(), or getters that took a String property. JDBC-4.0 cla-
rified "column name" to mean the label, as given in an "AS"
clause and returned by ResultSetMetaData.getColumnLabel(), and
if no AS clause, the column name. Setting this property to "true"
will give behavior that is congruent to JDBC-3.0 and earlier ver-
sions of the JDBC specification, but which because of the specific-
ation bug could give unexpected results. This property is preferred
over "useOldAliasMetadataBehavior" unless you need the specific
behavior that it provides with respect to ResultSetMetadata.

false 5.1.7

allowNanAndInf Should the driver allow NaN or +/- INF values in PreparedState-
ment.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on streams/readers
passed as arguments via set*() methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-serialize objects
stored in BLOB fields?

false 3.1.5

blobsAreStrings Should the driver always treat BLOBs as Strings - specifically to
work around dubious metadata returned by the server for GROUP
BY clauses?

false 5.0.8

capitalizeTypeNames Capitalize type names in DatabaseMetaData? (usually only useful
when using WebObjects, true/false, defaults to 'false')

true 2.0.7

clobCharacterEncoding The character encoding to use for sending and retrieving TEXT,
MEDIUMTEXT and LONGTEXT values instead of the con-
figured connection characterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be automatically closed,
and any outstanding data still streaming from the server to be dis-
carded if another query is executed before all the data has been
read from the server.

false 3.0.9

compensateOnDuplicateKey-
UpdateCounts

Should the driver compensate for the update counts of "ON DU-
PLICATE KEY" INSERT statements (2 = 1, 0 = 1) when using
prepared statements?

false 5.1.7

continueBatchOnError Should the driver continue processing batch commands if one
statement fails. The JDBC spec allows either way (defaults to
'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't yet exist. As-
sumes the configured user has permissions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty string fields to
numeric values of '0'?

true 3.1.8

emulateLocators Should the driver emulate java.sql.Blobs with locators? With this
feature enabled, the driver will delay loading the actual Blob data
until the one of the retrieval methods (getInputStream(), get-
Bytes(), and so forth) on the blob data stream has been accessed.
For this to work, you must use a column alias with the value of the
column to the actual name of the Blob. The feature also has the
following restrictions: The SELECT that created the result set
must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified
as a string, to an alternate name; the SELECT must cover all
columns that make up the primary key.

false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that are not supported
by the server, and replace them with client-side emulated ver-
sions?

true 3.1.7

Connector/J (JDBC) Reference

18

exceptionInterceptors Comma-delimited list of classes that implement
com.mysql.jdbc.ExceptionInterceptor. These classes will be in-
stantiated one per Connection instance, and all SQLExceptions
thrown by the driver will be allowed to be intercepted by these in-
terceptors, in a chained fashion, with the first class listed as the
head of the chain.

5.1.8

functionsNeverReturnBlobs Should the driver always treat data from functions returning
BLOBs as Strings - specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

false 5.0.8

generateSimpleParameter-
Metadata

Should the driver generate simplified parameter metadata for Pre-
paredStatements when no metadata is available either because the
server couldn't support preparing the statement, or server-side pre-
pared statements are disabled?

false 5.0.5

ignoreNonTxTables Ignore non-transactional table warning for rollback? (defaults to
'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation exceptions when
data is truncated as is required by the JDBC specification when
connected to a server that supports warnings (MySQL 4.1.0 and
newer)? This property has no effect if the server sql-mode includes
STRICT_TRANS_TABLES.

true 3.1.2

loadBalanceAutoCommit-
StatementRegex

When load-balancing is enabled for auto-commit statements (via
loadBalanceAutoCommitStatementThreshold), the statement
counter will only increment when the SQL matches the regular ex-
pression. By default, every statement issued matches.

5.1.15

loadBalanceAutoCommit-
StatementThreshold

When auto-commit is enabled, the number of statements which
should be executed before triggering load-balancing to rebalance.
Default value of 0 causes load-balanced connections to only rebal-
ance when exceptions are encountered, or auto-commit is disabled
and transactions are explicitly committed or rolled back.

0 5.1.15

loadBalanceBlacklist-
Timeout

Time in milliseconds between checks of servers which are unavail-
able, by controlling how long a server lives in the global blacklist.

0 5.1.0

loadBalanceConnectionGroup Logical group of load-balanced connections within a classloader,
used to manage different groups independently. If not specified,
live management of load-balanced connections is disabled.

5.1.13

loadBalanceExceptionCheck-
er

Fully-qualified class name of custom exception checker. The class
must implement com.mysql.jdbc.LoadBalanceExceptionChecker
interface, and is used to inspect SQLExceptions and determine
whether they should trigger fail-over to another host in a load-
balanced deployment.

com.mysq
l.jdbc.S
tandard-
LoadBal-
anceEx-
cep-
tionChec
ker

5.1.13

loadBalancePingTimeout Time in milliseconds to wait for ping response from each of load-
balanced physical connections when using load-balanced Connec-
tion.

0 5.1.13

loadBalanceSQLException-
SubclassFailover

Comma-delimited list of classes/interfaces used by default load-
balanced exception checker to determine whether a given SQLEx-
ception should trigger failover. The comparison is done using
Class.isInstance(SQLException) using the thrown SQLException.

5.1.13

loadBalanceSQLStateFail-
over

Comma-delimited list of SQLState codes used by default load-
balanced exception checker to determine whether a given SQLEx-
ception should trigger failover. The SQLState of a given SQLEx-
ception is evaluated to determine whether it begins with any value
in the comma-delimited list.

5.1.13

loadBalanceValidateConnec-
tionOnSwapServer

Should the load-balanced Connection explicitly check whether the
connection is live when swapping to a new physical connection at
commit/rollback?

false 5.1.13

maxRows The maximum number of rows to return (0, the default means re- -1 all versions

Connector/J (JDBC) Reference

19

turn all rows).

netTimeoutForStreamingRes-
ults

What value should the driver automatically set the server setting
'net_write_timeout' to when the streaming result sets feature is in
use? (value has unit of seconds, the value '0' means the driver will
not try and adjust this value)

600 5.1.0

noAccessToProcedureBodies When determining procedure parameter types for CallableState-
ments, and the connected user can't access procedure bodies
through "SHOW CREATE PROCEDURE" or select on
mysql.proc should the driver instead create basic metadata (all
parameters reported as IN VARCHARs, but allowing registerOut-
Parameter() to be called on them anyway) instead of throwing an
exception?

false 5.0.3

noDatetimeStringSync Don't ensure that Result-
Set.getDatetimeType().toString().equals(ResultSet.getString())

false 3.1.7

noTimezoneConversionForTi-
meType

Don't convert TIME values using the server timezone if 'use-
Timezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'catalog' parameter,
does the value null mean use the current catalog? (this is not JD-
BC-compliant, but follows legacy behavior from earlier versions
of the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept *pattern paramet-
ers treat null the same as '%' (this is not JDBC-compliant, however
older versions of the driver accepted this departure from the spe-
cification)

true 3.1.8

overrideSupportsIntegrity-
EnhancementFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that require
this method to return "true" to signal support of foreign keys, even
though the SQL specification states that this facility contains much
more than just foreign key support (one such application being
OpenOffice)?

false 3.1.12

padCharsWithSpace If a result set column has the CHAR type and the value does not
fill the amount of characters specified in the DDL for the column,
should the driver pad the remaining characters with space (for AN-
SI compliance)?

false 5.0.6

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalCon-
nection

When using XAConnections, should the driver ensure that opera-
tions on a given XID are always routed to the same physical con-
nection? This allows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false 5.0.1

populateInsertRowWithDe-
faultValues

When using ResultSets that are CONCUR_UPDATABLE, should
the driver pre-populate the "insert" row with default values from
the DDL for the table used in the query so those values are imme-
diately available for ResultSet accessors? This functionality re-
quires a call to the database for metadata each time a result set of
this type is created. If disabled (the default), the default values will
be populated by the an internal call to refreshRow() which pulls
back default values and/or values changed by triggers.

false 5.0.5

processEscapeCodesForPrep-
Stmts

Should the driver process escape codes in queries that are pre-
pared?

true 3.1.12

queryTimeoutKillsConnec-
tion

If the timeout given in Statement.setQueryTimeout() expires,
should the driver forcibly abort the Connection instead of attempt-
ing to abort the query?

false 5.1.9

relaxAutoCommit If the version of MySQL the driver connects to does not support
transactions, still allow calls to commit(), rollback() and setAuto-
Commit() (true/false, defaults to 'false')?

false 2.0.13

retainStatementAfterRes-
ultSetClose

Should the driver retain the Statement reference in a ResultSet
after ResultSet.close() has been called. This is not JDBC-com-

false 3.1.11

Connector/J (JDBC) Reference

20

pliant after JDBC-4.0.

rollbackOnPooledClose Should the driver issue a rollback() when the logical connection in
a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC compliance testsuite
version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used when timezone
from server doesn't map to Java timezone

3.0.2

statementInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.StatementInterceptor" that should be placed "in
between" query execution to influence the results. StatementInter-
ceptors are "chainable", the results returned by the "current" inter-
ceptor will be passed on to the next in in the chain, from left-
to-right order, as specified in this property.

5.1.1

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary keys selected) of
updatable result sets (true, false, defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1) as the BIT type
(because the server silently converts BIT -> TINYINT(1) when
creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different type, should it use
BOOLEAN instead of BIT for future compatibility with MySQL-
5.0, as MySQL-5.0 has a BIT type?

false 3.1.9

treatUtilDateAsTimestamp Should the driver treat java.util.Date as a TIMESTAMP for the
purposes of PreparedStatement.setObject()?

true 5.0.5

ultraDevHack Create PreparedStatements for prepareCall() when required, be-
cause UltraDev is broken and issues a prepareCall() for _all_ state-
ments? (true/false, defaults to 'false')

false 2.0.3

useAffectedRows Don't set the CLIENT_FOUND_ROWS flag when connecting to
the server (not JDBC-compliant, will break most applications that
rely on "found" rows vs. "affected rows" for DML statements), but
does cause "correct" update counts from "INSERT ... ON DU-
PLICATE KEY UPDATE" statements to be returned by the serv-
er.

false 5.1.7

useGmtMillisForDatetimes Convert between session timezone and GMT before creating Date
and Timestamp instances (value of "false" is legacy behavior,
"true" leads to more JDBC-compliant behavior.

false 3.1.12

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges() (true/false), defaults to
'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should the driver use
the INFORMATION_SCHEMA to derive information used by
DatabaseMetaData?

false 5.0.0

useJDBCCompliantTimezone-
Shift

Should the driver use JDBC-compliant rules when converting
TIME/TIMESTAMP/DATETIME values' timezone information
for those JDBC arguments which take a java.util.Calendar argu-
ment? (Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useLegacyDatetimeCode Use code for DATE/TIME/DATETIME/TIMESTAMP handling
in result sets and statements that consistently handles timezone
conversions from client to server and back again, or use the legacy
code for these datatypes that has been in the driver for backwards-
compatibility?

true 5.1.6

useOldAliasMetadataBehavi-
or

Should the driver use the legacy behavior for "AS" clauses on
columns and tables, and only return aliases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original column/table
name? In 5.0.x, the default value was true.

false 5.0.4

Connector/J (JDBC) Reference

21

useOldUTF8Behavior Use the UTF-8 behavior the driver did when communicating with
4.0 and older servers

false 3.1.6

useOnlyServerErrorMessages Don't prepend 'standard' SQLState error messages to error mes-
sages returned by the server.

true 3.0.15

useSSPSCompatibleTimezone-
Shift

If migrating from an environment that was using server-side pre-
pared statements, and the configuration property "useJDBCCompli-
antTimeZoneShift" set to "true", use compatible behavior when
not using server-side prepared statements when sending
TIMESTAMP values to the MySQL server.

false 5.0.5

useServerPrepStmts Use server-side prepared statements if the server supports them? false 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy' X/Open/SQL
state codes (true/false), default is 'true'

true 3.1.3

useStreamLengthsInPrepSt-
mts

Honor stream length parameter in PreparedStatement/Result-
Set.setXXXStream() method calls (true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server timezones
(true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data from the server true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type "YEAR" as a
java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters DATETIME val-
ues that are composed entirely of zeros (used by MySQL to repres-
ent invalid dates)? Valid values are "exception", "round" and "con-
vertToNull".

excep-
tion

3.1.4

Connector/J also supports access to MySQL using named pipes on Windows NT, Windows 2000, or Windows XP using the Named-
PipeSocketFactory as a plugin-socket factory using the socketFactory property. If you do not use a namedPipePath
property, the default of '\\.\pipe\MySQL' is used. If you use the NamedPipeSocketFactory, the host name and port number
values in the JDBC url are ignored. To enable this feature, use:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine where the JDBC driver is running. In
simple performance tests, named pipe access is between 30%-50% faster than the standard TCP/IP access. However, this varies per sys-
tem, and named pipes are slower than TCP/IP in many Windows configurations.

To create your own socket factories, follow the example code in com.mysql.jdbc.NamedPipeSocketFactory, or
com.mysql.jdbc.StandardSocketFactory.

5.1.1. Properties Files for the useConfigs Option
The useConfigs connection option is a convenient shorthand for specifying combinations of options for particular scenarios. The ar-
gument values you can use with this option correspond to the names of .properties files within the Connector/J mysql-
connector-java-version-bin.jar JAR file. For example, the Connector/J 5.1.9 driver includes the following configuration
properties files:

$ unzip mysql-connector-java-5.1.19-bin.jar '*/configs/*'
Archive: mysql-connector-java-5.1.19-bin.jar

creating: com/mysql/jdbc/configs/
inflating: com/mysql/jdbc/configs/3-0-Compat.properties
inflating: com/mysql/jdbc/configs/5-0-Compat.properties
inflating: com/mysql/jdbc/configs/clusterBase.properties
inflating: com/mysql/jdbc/configs/coldFusion.properties
inflating: com/mysql/jdbc/configs/fullDebug.properties
inflating: com/mysql/jdbc/configs/maxPerformance.properties
inflating: com/mysql/jdbc/configs/solarisMaxPerformance.properties

To specify one of these combinations of options, specify useConfigs=3-0-Compat, useConfigs=maxPerformance, and so
on. The following sections show the options that are part of each useConfigs setting. For the details of why each one is included, see
the comments in the .properties files.

Connector/J (JDBC) Reference

22

3-0-Compat
emptyStringsConvertToZero=true
jdbcCompliantTruncation=false
noDatetimeStringSync=true
nullCatalogMeansCurrent=true
nullNamePatternMatchesAll=true
transformedBitIsBoolean=false
dontTrackOpenResources=true
zeroDateTimeBehavior=convertToNull
useServerPrepStmts=false
autoClosePStmtStreams=true
processEscapeCodesForPrepStmts=false
useFastDateParsing=false
populateInsertRowWithDefaultValues=false
useDirectRowUnpack=false

5-0-Compat
useDirectRowUnpack=false

clusterBase
autoReconnect=true
failOverReadOnly=false
roundRobinLoadBalance=true

coldFusion
useDynamicCharsetInfo=false
alwaysSendSetIsolation=false
useLocalSessionState=true
autoReconnect=true

fullDebug
profileSQL=true
gatherPerMetrics=true
useUsageAdvisor=true
logSlowQueries=true
explainSlowQueries=true

maxPerformance
cachePrepStmts=true
cacheCallableStmts=true
cacheServerConfiguration=true
useLocalSessionState=true
elideSetAutoCommits=true
alwaysSendSetIsolation=false
enableQueryTimeouts=false

solarisMaxPerformance
useUnbufferedInput=false
useReadAheadInput=false
maintainTimeStats=false

5.2. JDBC API Implementation Notes
MySQL Connector/J passes all of the tests in the publicly available version of Sun's JDBC compliance test suite. This section gives de-
tails on a interface-by-interface level about implementation decisions that might affect how you code applications with MySQL Con-
nector/J. The JDBC specification is vague about how certain functionality should be implemented, or the specification enables leeway
in implementation.

• BLOB

Connector/J (JDBC) Reference

23

Starting with Connector/J version 3.1.0, you can emulate BLOBs with locators by adding the property emulateLocators=true
to your JDBC URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other data and then
use retrieval methods (getInputStream(), getBytes(), and so forth) on the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as blob_data from blobtable

You must also follow these rules:

• The SELECT must reference only one table. The table must have a primary key.

• The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, use the corresponding PreparedState-
ment.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes back to the
database.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer using the
CallableStatement interface. Currently, the getParameterMetaData() method of CallableStatement is not sup-
ported.

• CLOB

The CLOB implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, use the PreparedStatement.setClob() method to
save changes back to the database. The JDBC API does not have a ResultSet.updateClob() method.

• Connection

Unlike the pre-Connector/J JDBC driver (MM.MySQL), the isClosed() method does not ping the server to determine if it is
available. In accordance with the JDBC specification, it only returns true if closed() has been called on the connection. If you
need to determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw an exception if the
connection is no longer valid.

• DatabaseMetaData

Foreign key information (getImportedKeys()/getExportedKeys() and getCrossReference()) is only available
from InnoDB tables. The driver uses SHOW CREATE TABLE to retrieve this information, so if any other storage engines add sup-
port for foreign keys, the driver would transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the
driver does not implement getParameterMetaData() or getMetaData() as it would require the driver to have a complete
SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when the
server supports them.

Take care when using a server-side prepared statement with large parameters that are set using setBinaryStream(), setAs-
ciiStream(), setUnicodeStream(), setBlob(), or setClob(). To re-execute the statement with any large parameter
changed to a nonlarge parameter, call clearParameters() and set all parameters again. The reason for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only when PreparedState-
ment.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec), and cannot be read
from again.

Connector/J (JDBC) Reference

24

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html

• If a parameter changes from large to nonlarge, the driver must reset the server-side state of the prepared statement to allow the
parameter that is being changed to take the place of the prior large value. This removes all of the large data that has already been
sent to the server, thus requiring the data to be re-sent, using the setBinaryStream(), setAsciiStream(), setU-
nicodeStream(), setBlob() or setClob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call clearParameters() and set all parameters of
the prepared statement again before it can be re-executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate, and
due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have a large num-
ber of rows or large values, and cannot allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a signal to the driver
to stream result sets row-by-row. After this, any result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it) before you can issue any other
queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks or row-level locks in some
other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes (which implies that the state-
ment needs to complete first). As with most other databases, statements are not complete until all the results pending on the state-
ment are read or the active result set for the statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain concurrent access to the tables ref-
erenced by the statement producing the result set.

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, the setFetchS-
ize() method has no effect, other than to toggle result set streaming as described above.

Connector/J 5.0.0 and later include support for both Statement.cancel() and Statement.setQueryTimeout(). Both
require MySQL 5.0.0 or newer server, and require a separate connection to issue the KILL QUERY statement. In the case of
setQueryTimeout(), the implementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeException rather
than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to
timeout expiration and have it throw the exception instead.

Note

The MySQL statement KILL QUERY (which is what the driver uses to implement Statement.cancel()) is non-
deterministic; thus, avoid the use of Statement.cancel() if possible. If no query is in process, the next query issued
will be killed by the server. This race condition is guarded against as of Connector/J 5.1.18.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so setCursorName() has no effect.

Connector/J 5.1.3 and later include two additional methods:

Connector/J (JDBC) Reference

25

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/kill.html

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for
a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the
path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically
be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request
data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using setLocalInfileInputStream().

5.3. Java, JDBC and MySQL Types
MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numeric type can be converted to any of the
Java numeric types, although round-off, overflow, or loss of precision may occur.

Note

All TEXT types return Types.LONGVARCHAR with different getPrecision() values (65535, 255, 16777215, and
2147483647 respectively) with getColumnType() returning -1. This behavior is intentional even though TINYTEXT
does not fall, regarding to its size, within the LONGVARCHAR category. This is to avoid different handling inside the same
base type. And getColumnType() returns -1 because the internal server handling is of type TEXT, which is similar to
BLOB.

Also note that getColumnTypeName() will return VARCHAR even though getColumnType() returns
Types.LONGVARCHAR, because VARCHAR is the designated column database-specific name for this type.

Starting with Connector/J 3.1.0, the JDBC driver issues warnings or throws DataTruncation exceptions as is required by the JDBC
specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and setting it to
false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NUMERIC,
DECIMAL, TINYINT, SMALLINT, MEDIUMINT, IN-
TEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or capa-
city than the MySQL data type you are converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and Java types, following the JDBC specifica-
tion where appropriate. The value returned by ResultSetMetaData.GetColumnClassName() is also shown below. For more
information on the java.sql.Types classes see Java 2 Platform Types.

MySQL Types to Java Types for ResultSet.getObject().

Connector/J (JDBC) Reference

26

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

MySQL Type Name Return value of GetColumn-
ClassName

Returned as Java Class

BIT(1) (new in MySQL-5.0) BIT java.lang.Boolean

BIT(> 1) (new in MySQL-
5.0)

BIT byte[]

TINYINT TINYINT java.lang.Boolean if the configuration property tiny-
Int1isBit is set to true (the default) and the storage size is 1,
or java.lang.Integer if not.

BOOL, BOOLEAN TINYINT See TINYINT, above as these are aliases for TINYINT(1), cur-
rently.

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless if UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long
(C/J 3.1 and earlier), or java.lang.Integer for C/J 5.0 and
later

INT,INTEGER[(M)]
[UNSIGNED]

INTEGER [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long

BIGINT[(M)]
[UNSIGNED]

BIGINT [UNSIGNED] java.lang.Long, if UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)] DOUBLE java.lang.Double

DECIMAL[(M[,D])] DECIMAL java.math.BigDecimal

DATE DATE java.sql.Date

DATETIME DATETIME java.sql.Timestamp

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is set to false,
then the returned object type is java.sql.Short. If set to
true (the default), then the returned object is of type
java.sql.Date with the date set to January 1st, at midnight.

CHAR(M) CHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] VARCHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

BINARY(M) BINARY byte[]

VARBINARY(M) VARBINARY byte[]

TINYBLOB TINYBLOB byte[]

TINYTEXT VARCHAR java.lang.String

BLOB BLOB byte[]

TEXT VARCHAR java.lang.String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang.String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang.String

ENUM('value1','value2
',...)

CHAR java.lang.String

SET('value1','value2'
,...)

CHAR java.lang.String

Connector/J (JDBC) Reference

27

5.4. Using Character Sets and Unicode
All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to the client character
encoding, including all queries sent using Statement.execute(), Statement.executeUpdate(), State-
ment.executeQuery() as well as all PreparedStatement and CallableStatement parameters with the exclusion of
parameters set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and setBlob().

Number of Encodings Per Connection
In MySQL Server 4.1 and higher, Connector/J supports a single character encoding between client and server, and any number of char-
acter encodings for data returned by the server to the client in ResultSets.

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically de-
tected from the server configuration, or could be configured by the user through the useUnicode and characterEncoding prop-
erties.

Setting the Character Encoding
The character encoding between client and server is automatically detected upon connection. You specify the encoding on the server us-
ing the character_set_server for server versions 4.1.0 and newer, and character_set system variable for server versions
older than 4.1.0. The driver automatically uses the encoding specified by the server. For more information, see Server Character Set and
Collation.

For example, to use 4-byte UTF-8 character sets with Connector/J, configure the MySQL server with charac-
ter_set_server=utf8mb4, and leave characterEncoding out of the Connector/J connection string. Connector/J will then
autodetect the UTF-8 setting.

To override the automatically detected encoding on the client side, use the characterEncoding property in the URL used to con-
nect to the server.

To allow multiple character sets to be sent from the client, use the UTF-8 encoding, either by configuring utf8 as the default server
character set, or by configuring the JDBC driver to use UTF-8 through the characterEncoding property.

When specifying character encodings on the client side, use Java-style names. The following table lists Java-style names for MySQL
character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server <
4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 Cp1252

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

Connector/J (JDBC) Reference

28

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.5/en/charset-server.html
http://dev.mysql.com/doc/refman/5.5/en/charset-server.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server

MySQL Character Set Name Java-Style Character Encoding Name

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query set names with Connector/J, as the driver will not detect that the character set has changed, and
will continue to use the character set detected during the initial connection setup.

5.5. Connecting Securely Using SSL
SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the server. The perform-
ance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the query, and
the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK that
you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL 4.0.4 or later, see Using SSL
for Secure Connections for more information.

• A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for the server (truststore in the ex-
amples below). The other file contains the certificate for the client (keystore in the examples below). All Java truststore files are
password protected by supplying a suitable password to the keytool when you create the files. You need the file names and associ-
ated passwords to create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA Certificate is located
in the SSL subdirectory of the MySQL source distribution. This is what SSL will use to determine if you are communicating with a se-
cure MySQL server. Alternatively, use the CA Certificate that you have generated or been provided with by your SSL provider.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certificate (cacert.pem), you can
do the following (assuming that keytool is in your path. The keytool is typically located in the bin subdirectory of your JDK or
JRE):

shell> keytool -import -alias mysqlServerCACert \
-file cacert.pem -keystore truststore

Enter the password when prompted for the keystore file. Interaction with keytool looks like this:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:

Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You then have two options: either import the client certificate that matches the CA certificate you just imported, or create a new client
certificate.

Connector/J (JDBC) Reference

29

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html

Importing an existing certificate requires the certificate to be in DER format. You can use openssl to convert an existing certificate
into the new format. For example:

shell> openssl x509 -outform DER -in client-cert.pem -out client.cert

Now import the converted certificate into your keystore using keytool:

shell> keytool -import -file client.cert -keystore keystore -alias mysqlClientCertificate

To generate your own client certificate, use keytool to create a suitable certificate and add it to the keystore file:

shell> keytool -genkey -keyalg rsa \
-alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the current directory.

Respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?
[Unknown]: Matthews

What is the name of your organizational unit?
[Unknown]: Software Development

What is the name of your organization?
[Unknown]: MySQL AB

What is the name of your City or Locality?
[Unknown]: Flossmoor

What is the name of your State or Province?
[Unknown]: IL

What is the two-letter country code for this unit?
[Unknown]: US

Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties when
you start your JVM, replacing path_to_keystore_file with the full path to the keystore file you created,
path_to_truststore_file with the path to the truststore file you created, and using the appropriate password values for each
property. You can do this either on the command line:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password

Or you can set the values directly within the application:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J, either by adding useSSL=true
to your URL, or by setting the property useSSL to true in the java.util.Properties instance you pass to DriverMan-
ager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........

Connector/J (JDBC) Reference

30

0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »

202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

JSSE provides debugging (to stdout) when you set the following system property: -Djavax.net.debug=all This will tell you
what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange. It will be
helpful when trying to determine what is not working when trying to get an SSL connection to happen.

5.6. Using Master/Slave Replication with ReplicationConnection
Connector/J 3.1.7 and higher includes a variant of the driver that will automatically send queries to a read/write master, or a failover or
round-robin loadbalanced set of slaves based on the state of Connection.getReadOnly().

An application signals that it wants a transaction to be read-only by calling Connection.setReadOnly(true), this replication-
aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given connec-
tion is sticky to a slave unless that slave is removed from service). If you have a write transaction, or if you have a read that is time-
sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connec-
tion.setReadOnly(false) and the driver will ensure that further calls are sent to the master MySQL server. The driver takes
care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to accomplish
this load balancing functionality.

To enable this functionality, use the com.mysql.jdbc.ReplicationDriver class when configuring your application server's
connection pool or when creating an instance of a JDBC driver for your standalone application. Because it accepts the same URL
format as the standard MySQL JDBC driver, ReplicationDriver does not currently work with java.sql.DriverManager-
based connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .

Here is a short example of how ReplicationDriver might be used in a standalone application:

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import com.mysql.jdbc.ReplicationDriver;
public class ReplicationDriverDemo {
public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();
Properties props = new Properties();
// We want this for failover on the slaves
props.put("autoReconnect", "true");
// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");
props.put("user", "foo");
props.put("password", "bar");
//
// Looks like a normal MySQL JDBC url, with a
// comma-separated list of hosts, the first
// being the 'master', the rest being any number
// of slaves that the driver will load balance against
//
Connection conn =

driver.connect("jdbc:mysql:replication://master,slave1,slave2,slave3/test",
props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//
conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");

Connector/J (JDBC) Reference

31

conn.commit();
//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//
conn.setReadOnly(true);
ResultSet rs =
conn.createStatement().executeQuery("SELECT a,b FROM alt_table");
.......

}
}

Consider investigating the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the standard JDBC driver and
enables you to use DB connection pools that includes checks for system failures and uneven load distribution. For more information, see
Load Balancing JDBC Pool (lbpool).

5.7. Mapping MySQL Error Numbers to JDBC SQLState Codes
The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.

Table 5.1. Mapping of MySQL Error Numbers to SQLStates

MySQL Error Number MySQL Error Name Legacy (X/Open) SQL-
State

SQL Standard SQL-
State

1022 ER_DUP_KEY S1000 23000

1037 ER_OUTOFMEMORY S1001 HY001

1038 ER_OUT_OF_SORTMEMORY S1001 HY001

1040 ER_CON_COUNT_ERROR 08004 08004

1042 ER_BAD_HOST_ERROR 08004 08S01

1043 ER_HANDSHAKE_ERROR 08004 08S01

1044 ER_DBACCESS_DENIED_ERROR S1000 42000

1045 ER_ACCESS_DENIED_ERROR 28000 28000

1047 ER_UNKNOWN_COM_ERROR 08S01 HY000

1050 ER_TABLE_EXISTS_ERROR S1000 42S01

1051 ER_BAD_TABLE_ERROR 42S02 42S02

1052 ER_NON_UNIQ_ERROR S1000 23000

1053 ER_SERVER_SHUTDOWN S1000 08S01

1054 ER_BAD_FIELD_ERROR S0022 42S22

1055 ER_WRONG_FIELD_WITH_GROUP S1009 42000

1056 ER_WRONG_GROUP_FIELD S1009 42000

1057 ER_WRONG_SUM_SELECT S1009 42000

1058 ER_WRONG_VALUE_COUNT 21S01 21S01

1059 ER_TOO_LONG_IDENT S1009 42000

1060 ER_DUP_FIELDNAME S1009 42S21

1061 ER_DUP_KEYNAME S1009 42000

1062 ER_DUP_ENTRY S1009 23000

1063 ER_WRONG_FIELD_SPEC S1009 42000

1064 ER_PARSE_ERROR 42000 42000

1065 ER_EMPTY_QUERY 42000 42000

1066 ER_NONUNIQ_TABLE S1009 42000

1067 ER_INVALID_DEFAULT S1009 42000

1068 ER_MULTIPLE_PRI_KEY S1009 42000

1069 ER_TOO_MANY_KEYS S1009 42000

Connector/J (JDBC) Reference

32

http://code.tailrank.com/lbpool

MySQL Error Number MySQL Error Name Legacy (X/Open) SQL-
State

SQL Standard SQL-
State

1070 ER_TOO_MANY_KEY_PARTS S1009 42000

1071 ER_TOO_LONG_KEY S1009 42000

1072 ER_KEY_COLUMN_DOES_NOT_EXITS S1009 42000

1073 ER_BLOB_USED_AS_KEY S1009 42000

1074 ER_TOO_BIG_FIELDLENGTH S1009 42000

1075 ER_WRONG_AUTO_KEY S1009 42000

1080 ER_FORCING_CLOSE S1000 08S01

1081 ER_IPSOCK_ERROR 08S01 08S01

1082 ER_NO_SUCH_INDEX S1009 42S12

1083 ER_WRONG_FIELD_TERMINATORS S1009 42000

1084 ER_BLOBS_AND_NO_TERMINATED S1009 42000

1090 ER_CANT_REMOVE_ALL_FIELDS S1000 42000

1091 ER_CANT_DROP_FIELD_OR_KEY S1000 42000

1101 ER_BLOB_CANT_HAVE_DEFAULT S1000 42000

1102 ER_WRONG_DB_NAME S1000 42000

1103 ER_WRONG_TABLE_NAME S1000 42000

1104 ER_TOO_BIG_SELECT S1000 42000

1106 ER_UNKNOWN_PROCEDURE S1000 42000

1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE S1000 42000

1109 ER_UNKNOWN_TABLE S1000 42S02

1110 ER_FIELD_SPECIFIED_TWICE S1000 42000

1112 ER_UNSUPPORTED_EXTENSION S1000 42000

1113 ER_TABLE_MUST_HAVE_COLUMNS S1000 42000

1115 ER_UNKNOWN_CHARACTER_SET S1000 42000

1118 ER_TOO_BIG_ROWSIZE S1000 42000

1120 ER_WRONG_OUTER_JOIN S1000 42000

1121 ER_NULL_COLUMN_IN_INDEX S1000 42000

1129 ER_HOST_IS_BLOCKED 08004 HY000

1130 ER_HOST_NOT_PRIVILEGED 08004 HY000

1131 ER_PASSWORD_ANONYMOUS_USER S1000 42000

1132 ER_PASSWORD_NOT_ALLOWED S1000 42000

1133 ER_PASSWORD_NO_MATCH S1000 42000

1136 ER_WRONG_VALUE_COUNT_ON_ROW S1000 21S01

1138 ER_INVALID_USE_OF_NULL S1000 42000

1139 ER_REGEXP_ERROR S1000 42000

1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS S1000 42000

1141 ER_NONEXISTING_GRANT S1000 42000

1142 ER_TABLEACCESS_DENIED_ERROR S1000 42000

1143 ER_COLUMNACCESS_DENIED_ERROR S1000 42000

1144 ER_ILLEGAL_GRANT_FOR_TABLE S1000 42000

1145 ER_GRANT_WRONG_HOST_OR_USER S1000 42000

1146 ER_NO_SUCH_TABLE S1000 42S02

1147 ER_NONEXISTING_TABLE_GRANT S1000 42000

1148 ER_NOT_ALLOWED_COMMAND S1000 42000

Connector/J (JDBC) Reference

33

MySQL Error Number MySQL Error Name Legacy (X/Open) SQL-
State

SQL Standard SQL-
State

1149 ER_SYNTAX_ERROR S1000 42000

1152 ER_ABORTING_CONNECTION S1000 08S01

1153 ER_NET_PACKET_TOO_LARGE S1000 08S01

1154 ER_NET_READ_ERROR_FROM_PIPE S1000 08S01

1155 ER_NET_FCNTL_ERROR S1000 08S01

1156 ER_NET_PACKETS_OUT_OF_ORDER S1000 08S01

1157 ER_NET_UNCOMPRESS_ERROR S1000 08S01

1158 ER_NET_READ_ERROR S1000 08S01

1159 ER_NET_READ_INTERRUPTED S1000 08S01

1160 ER_NET_ERROR_ON_WRITE S1000 08S01

1161 ER_NET_WRITE_INTERRUPTED S1000 08S01

1162 ER_TOO_LONG_STRING S1000 42000

1163 ER_TABLE_CANT_HANDLE_BLOB S1000 42000

1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT S1000 42000

1166 ER_WRONG_COLUMN_NAME S1000 42000

1167 ER_WRONG_KEY_COLUMN S1000 42000

1169 ER_DUP_UNIQUE S1000 23000

1170 ER_BLOB_KEY_WITHOUT_LENGTH S1000 42000

1171 ER_PRIMARY_CANT_HAVE_NULL S1000 42000

1172 ER_TOO_MANY_ROWS S1000 42000

1173 ER_REQUIRES_PRIMARY_KEY S1000 42000

1177 ER_CHECK_NO_SUCH_TABLE S1000 42000

1178 ER_CHECK_NOT_IMPLEMENTED S1000 42000

1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTI
ON

S1000 25000

1184 ER_NEW_ABORTING_CONNECTION S1000 08S01

1189 ER_MASTER_NET_READ S1000 08S01

1190 ER_MASTER_NET_WRITE S1000 08S01

1203 ER_TOO_MANY_USER_CONNECTIONS S1000 42000

1205 ER_LOCK_WAIT_TIMEOUT 41000 41000

1207 ER_READ_ONLY_TRANSACTION S1000 25000

1211 ER_NO_PERMISSION_TO_CREATE_USER S1000 42000

1213 ER_LOCK_DEADLOCK 41000 40001

1216 ER_NO_REFERENCED_ROW S1000 23000

1217 ER_ROW_IS_REFERENCED S1000 23000

1218 ER_CONNECT_TO_MASTER S1000 08S01

1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELEC
T

S1000 21000

1226 ER_USER_LIMIT_REACHED S1000 42000

1230 ER_NO_DEFAULT S1000 42000

1231 ER_WRONG_VALUE_FOR_VAR S1000 42000

1232 ER_WRONG_TYPE_FOR_VAR S1000 42000

1234 ER_CANT_USE_OPTION_HERE S1000 42000

1235 ER_NOT_SUPPORTED_YET S1000 42000

Connector/J (JDBC) Reference

34

MySQL Error Number MySQL Error Name Legacy (X/Open) SQL-
State

SQL Standard SQL-
State

1239 ER_WRONG_FK_DEF S1000 42000

1241 ER_OPERAND_COLUMNS S1000 21000

1242 ER_SUBQUERY_NO_1_ROW S1000 21000

1247 ER_ILLEGAL_REFERENCE S1000 42S22

1248 ER_DERIVED_MUST_HAVE_ALIAS S1000 42000

1249 ER_SELECT_REDUCED S1000 01000

1250 ER_TABLENAME_NOT_ALLOWED_HERE S1000 42000

1251 ER_NOT_SUPPORTED_AUTH_MODE S1000 08004

1252 ER_SPATIAL_CANT_HAVE_NULL S1000 42000

1253 ER_COLLATION_CHARSET_MISMATCH S1000 42000

1261 ER_WARN_TOO_FEW_RECORDS S1000 01000

1262 ER_WARN_TOO_MANY_RECORDS S1000 01000

1263 ER_WARN_NULL_TO_NOTNULL S1000 01000

1264 ER_WARN_DATA_OUT_OF_RANGE S1000 01000

1265 ER_WARN_DATA_TRUNCATED S1000 01000

1280 ER_WRONG_NAME_FOR_INDEX S1000 42000

1281 ER_WRONG_NAME_FOR_CATALOG S1000 42000

1286 ER_UNKNOWN_STORAGE_ENGINE S1000 42000

Connector/J (JDBC) Reference

35

Chapter 6. JDBC Concepts
This section provides some general JDBC background.

6.1. Connecting to MySQL Using the DriverManager Interface
When you are using JDBC outside of an application server, the DriverManager class manages the establishment of Connections.

Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way to do this is to use
Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connector/J, the name of this
class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply the driver class name
and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main() method of your application.
If testing this code, first read the installation section at Chapter 3, Connector/J Installation, to make sure you have connector installed
correctly and the CLASSPATH set up. Also, ensure that MySQL is configured to accept external TCP/IP connections.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
// Notice, do not import com.mysql.jdbc.*
// or you will have problems!
public class LoadDriver {

public static void main(String[] args) {
try {

// The newInstance() call is a work around for some
// broken Java implementations
Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception ex) {
// handle the error

}
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a particu-
lar database by calling DriverManager.getConnection():

Example 6.1. Connector/J: Obtaining a connection from the DriverManager

If you have not already done so, please review the section Section 6.1, “Connecting to MySQL Using the DriverManager Interface”
before working with these examples.

This example shows how you can obtain a Connection instance from the DriverManager. There are a few different signatures for
the getConnection() method. Consult the API documentation that comes with your JDK for more specific information on how to
use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
Connection conn = null;
...
try {

conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +

"user=monty&password=greatsqldb");
// Do something with the Connection
...

} catch (SQLException ex) {
// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statement and PreparedStatement objects, as well as retrieve
metadata about the database. This is explained in the following sections.

6.2. Using Statement Objects to Execute SQL

36

Statement objects allow you to execute basic SQL queries and retrieve the results through the ResultSet class, which is described
later.

To create a Statement instance, you call the createStatement() method on the Connection object you have retrieved using
one of the DriverManager.getConnection() or DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the executeQuery(String) method with the
SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns the number of rows matched
by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the ex-
ecute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if it was an UPDATE,
INSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the getResultSet()
method. If the statement was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling getUp-
dateCount() on the Statement instance.

Example 6.2. Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;
// assume that conn is an already created JDBC connection (see previous examples)
Statement stmt = null;
ResultSet rs = null;
try {

stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");
// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...
if (stmt.execute("SELECT foo FROM bar")) {

rs = stmt.getResultSet();
}
// Now do something with the ResultSet

}
catch (SQLException ex){

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}
finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed
if (rs != null) {

try {
rs.close();

} catch (SQLException sqlEx) { } // ignore
rs = null;

}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException sqlEx) { } // ignore
stmt = null;

}
}

6.3. Using CallableStatements to Execute Stored Procedures
Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the java.sql.CallableStatement inter-
face is fully implemented with the exception of the getParameterMetaData() method.

For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/stored-routines.html.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note

JDBC Concepts

37

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/mysql/en/stored-routines.html

Current versions of MySQL server do not return enough information for the JDBC driver to provide result set metadata for
callable statements. This means that when using CallableStatement, ResultSetMetaData may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the string passed in us-
ing inputParam as a ResultSet:

Example 6.3. Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
INOUT inOutParam INT)

BEGIN
DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;
SELECT inputParam;
SELECT CONCAT('zyxw', inputParam);

END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placeholders are not optional:

Example 6.4. Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;
...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//
CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");
cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver performs to sup-
port output parameters. For performance reasons, minimize unnecessary calls to Connection.prepareCall() by re-
using CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored procedure), JDBC
requires that they be specified before statement execution using the various registerOutputParameter() methods in the
CallableStatement interface:

Example 6.5. Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//
//

JDBC Concepts

38

// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter(2, Types.INTEGER);
//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also supports set-
ting parameters by name:

Example 6.6. Connector/J: Setting CallableStatement input parameters

...
//
// Set a parameter by index
//
cStmt.setString(1, "abcdefg");
//
// Alternatively, set a parameter using
// the parameter name
//
cStmt.setString("inputParameter", "abcdefg");
//
// Set the 'in/out' parameter using an index
//
cStmt.setInt(2, 1);
//
// Alternatively, set the 'in/out' parameter
// by name
//
cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods (executeUpdate(), ex-
ecuteQuery() or execute()), the most flexible method to call is execute(), as you do not need to know ahead of time if
the stored procedure returns result sets:

Example 6.7. Connector/J: Retrieving results and output parameter values

...
boolean hadResults = cStmt.execute();
//
// Process all returned result sets
//
while (hadResults) {

ResultSet rs = cStmt.getResultSet();
// process result set
...
hadResults = cStmt.getMoreResults();

}
//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//
int outputValue = cStmt.getInt(2); // index-based
outputValue = cStmt.getInt("inOutParam"); // name-based

...

JDBC Concepts

39

6.4. Retrieving AUTO_INCREMENT Column Values
Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases that supported auto increment
or identity columns. With older JDBC drivers for MySQL, you could always use a MySQL-specific method on the Statement inter-
face, or issue the query SELECT LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Us-
ing the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT key's value requires another
round-trip to the database, which isn't as efficient as possible. The following code snippets demonstrate the three different ways to re-
trieve AUTO_INCREMENT values. First, we demonstrate the use of the new JDBC 3.0 method getGeneratedKeys() which is now
the preferred method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC 3.0. The second example shows
how you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example shows how updatable
result sets can retrieve the AUTO_INCREMENT value when using the insertRow() method.

Example 6.8. Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(

"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//
int autoIncKeyFromApi = -1;
rs = stmt.getGeneratedKeys();
if (rs.next()) {

autoIncKeyFromApi = rs.getInt(1);
} else {

// throw an exception from here
}
rs.close();
rs = null;
System.out.println("Key returned from getGeneratedKeys():"

+ autoIncKeyFromApi);
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

Example 6.9. Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

JDBC Concepts

40

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets.
stmt = conn.createStatement();
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(

"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//
int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");
if (rs.next()) {

autoIncKeyFromFunc = rs.getInt(1);
} else {

// throw an exception from here
}
rs.close();
System.out.println("Key returned from " +

"'SELECT LAST_INSERT_ID()': " +
autoIncKeyFromFunc);

} finally {
if (rs != null) {

try {
rs.close();

} catch (SQLException ex) {
// ignore

}
}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

Example 6.10. Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//
rs = stmt.executeQuery("SELECT priKey, dataField "

+ "FROM autoIncTutorial");
rs.moveToInsertRow();
rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();

JDBC Concepts

41

//
// the driver adds rows at the end
//
rs.last();
//
// We should now be on the row we just inserted
//
int autoIncKeyFromRS = rs.getInt("priKey");
rs.close();
rs = null;
System.out.println("Key returned for inserted row: "

+ autoIncKeyFromRS);
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
// ignore

}
}

}

Running the preceding example code should produce the following output:

Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 2

At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if
some other query happens on the same connection, the value is overwritten. On the other hand, the getGeneratedKeys() method
is scoped by the Statement instance, so it can be used even if other queries happen on the same connection, but not on the same
Statement instance.

JDBC Concepts

42

Chapter 7. Developing J2EE Applications with Connector/J
This section provides general background on J2EE concepts that pertain to use of Connector/J.

7.1. Understanding J2EE Connection Pooling
Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs them.
Connection pooling can greatly increase the performance of your Java application, while reducing overall resource usage.

How Connection Pooling Works
Most applications only need a thread to have access to a JDBC connection when they are actively processing a transaction, which often
takes only milliseconds to complete. When not processing a transaction, the connection sits idle. Connection pooling enables the idle
connection to be used by some other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a connection from the pool.
When the thread is finished using the connection, it returns it to the pool, so that it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it. From a programming point of
view, it is the same as if your thread called DriverManager.getConnection() every time it needed a JDBC connection. With
connection pooling, your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling
The main benefits to connection pooling are:

• Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating new
JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.

• Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you to
use straightforward JDBC programming techniques.

• Controlled resource usage.

If you create a new connection every time a thread needs one, rather than using connection pooling, your application's resource us-
age can be wasteful and lead to unpredictable behavior under load.

Using Connection Pooling with Connector/J
Sun has standardized the concept of connection pooling in JDBC through the JDBC 2.0 Optional interfaces, and all major application
servers have implementations of these APIs that work with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it through the Java Naming and
Directory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a J2EE ap-
plication server:

Example 7.1. Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource

43

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_thread
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/
InitialContext ctx = new InitialContext();
/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds =
(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/
Connection conn = null;
Statement stmt = null;
try {

conn = ds.getConnection();
/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which permits the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");
stmt.close();
stmt = null;
conn.close();
conn = null;

} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore, as we can't do anything about it here
}
stmt = null;

}
if (conn != null) {

try {
conn.close();

} catch (sqlexception sqlex) {
// ignore, as we can't do anything about it here

}
conn = null;

}
}

}
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource, the rest of the code
follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them (such as statements or result sets) are
closed. This rule applies no matter what happens in your code (exceptions, flow-of-control, and so forth). When these objects are
closed, they can be re-used; otherwise, they will be stranded, which means that the MySQL server resources they represent (such as buf-
fers, locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool
Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and server side. Every con-
nection limits how many resources there are available to your application as well as the MySQL server. Many of these resources will be
used whether or not the connection is actually doing any useful work! Connection pools can be tuned to maximize performance, while
keeping resource utilization below the point where your application will start to fail rather than just run slower.

Developing J2EE Applications with Connector/J

44

The optimal size for the connection pool depends on anticipated load and average database transaction time. In practice, the optimal
connection pool size can be smaller than you might expect. If you take Sun's Java Petstore blueprint application for example, a connec-
tion pool of 15-20 connections can serve a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable
response times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache JMeter or The Grinder, and
load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unbounded, run
a load test, and measure the largest amount of concurrently used connections. You can then work backward from there to determine
what values of minimum and maximum pooled connections give the best performance for your particular application.

Validating Connections
MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the case of load-balanced connec-
tions, this is performed against all active pooled internal connections that are retained. This is beneficial to Java applications using con-
nection pools, as the pool can use this feature to validate connections. Depending on your connection pool and configuration, this valid-
ation can be carried out at different times:

1. Before the pool returns a connection to the application.

2. When the application returns a connection to the pool.

3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with /* ping */. Note that the syntax must be ex-
actly as specified. This will cause the driver send a ping to the server and return a dummy lightweight result set. When using a Rep-
licationConnection or LoadBalancedConnection, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as this test is done for every
statement that is executed:

protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization, and placement:

sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into the lightweight ping. Further, for
load-balanced connections, the statement will be executed against one connection in the internal pool, rather than validating each under-
lying physical connection. This results in the non-active physical connections assuming a stale state, and they may die. If Connector/J
then re-balances, it might select a dead connection, resulting in an exception being passed to the application. To help prevent this, you
can use loadBalanceValidateConnectionOnSwapServer to validate the connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take advantage of it, but ensure
that the query starts exactly with /* ping */. This is particularly important if you are using the load-balancing or replication-aware
features of Connector/J, as it will help keep alive connections which otherwise will go stale and die, causing problems later.

7.2. Managing Load-Balanced Connections
Connector/J has long provided an effective means to distribute read/write load across multiple MySQL server instances for Cluster or
master-master replication deployments. Starting with Connector/J 5.1.3, you can now dynamically configure load-balanced connections,
with no service outage. In-process transactions are not lost, and no application exceptions are generated if any application is trying to
use that particular server instance.

Developing J2EE Applications with Connector/J

45

There are two connection string options associated with this functionality:

• loadBalanceConnectionGroup – This provides the ability to group connections from different sources. This allows you to
manage these JDBC sources within a single class loader in any combination you choose. If they use the same configuration, and you
want to manage them as a logical single group, give them the same name. This is the key property for management: if you do not
define a name (string) for loadBalanceConnectionGroup, you cannot manage the connections. All load-balanced connec-
tions sharing the same loadBalanceConnectionGroup value, regardless of how the application creates them, will be man-
aged together.

• loadBalanceEnableJMX – The ability to manage the connections is exposed when you define a loadBalanceConnec-
tionGroup, but if you want to manage this externally, enable JMX by setting this property to true. This enables a JMX imple-
mentation, which exposes the management and monitoring operations of a connection group. Further, start your application with the
-Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform operations using a JMX client
such as jconsole.

Once a connection has been made using the correct connection string options, a number of monitoring properties are available:

• Current active host count.

• Current active physical connection count.

• Current active logical connection count.

• Total logical connections created.

• Total transaction count.

The following management operations can also be performed:

• Add host.

• Remove host.

The JMX interface, com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean, has the following methods:

• int getActiveHostCount(String group);

• int getTotalHostCount(String group);

• long getTotalLogicalConnectionCount(String group);

• long getActiveLogicalConnectionCount(String group);

• long getActivePhysicalConnectionCount(String group);

• long getTotalPhysicalConnectionCount(String group);

• long getTotalTransactionCount(String group);

• void removeHost(String group, String host) throws SQLException;

• void stopNewConnectionsToHost(String group, String host) throws SQLException;

• void addHost(String group, String host, boolean forExisting);

• String getActiveHostsList(String group);

• String getRegisteredConnectionGroups();

Developing J2EE Applications with Connector/J

46

The getRegisteredConnectionGroups() method returns the names of all connection groups defined in that class loader.

You can test this setup with the following code:

public class Test {
private static String URL = "jdbc:mysql:loadbalance://" +

"localhost:3306,localhost:3310/test?" +
"loadBalanceConnectionGroup=first&loadBalanceEnableJMX=true";

public static void main(String[] args) throws Exception {
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();

}
static Connection getNewConnection() throws SQLException, ClassNotFoundException {

Class.forName("com.mysql.jdbc.Driver");
return DriverManager.getConnection(URL, "root", "");

}
static void executeSimpleTransaction(Connection c, int conn, int trans){

try {
c.setAutoCommit(false);
Statement s = c.createStatement();
s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
c.commit();

} catch (SQLException e) {
e.printStackTrace();

}
}
public static class Repeater implements Runnable {

public void run() {
for(int i=0; i < 100; i++){

try {
Connection c = getNewConnection();
for(int j=0; j < 10; j++){

executeSimpleTransaction(c, i, j);
Thread.sleep(Math.round(100 * Math.random()));

}
c.close();
Thread.sleep(100);

} catch (Exception e) {
e.printStackTrace();

}
}

}
}

}

After compiling, the application can be started with the -Dcom.sun.management.jmxremote flag, to enable remote manage-
ment. jconsole can then be started. The Test main class will be listed by jconsole. Select this and click CONNECT. You can then
navigate to the com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can click on vari-
ous operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J starts using it by using the
addHost(), which is exposed in jconsole. Note that these operations can be performed dynamically without having to stop the ap-
plication running.

7.2.1. Load Balancing Failover Policies
Connector/J provides a useful load-balancing implementation for Cluster or multi-master deployments. As of Connector/J 5.1.12, this
same implementation is used for balancing load between read-only slaves with ReplicationDriver. When trying to balance work-
load between multiple servers, the driver has to determine when it is safe to swap servers, doing so in the middle of a transaction, for ex-
ample, could cause problems. It is important not to lose state information. For this reason, Connector/J will only try to pick a new server
when one of the following happens:

1. At transaction boundaries (transactions are explicitly committed or rolled back).

2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLException matches conditions defined by user, using the extension points defined by the loadBalanceSQL-
StateFailover, loadBalanceSQLExceptionSubclassFailover or loadBalanceExceptionChecker proper-
ties.

The third condition revolves around three new properties introduced with Connector/J 5.1.13. It allows you to control which SQLEx-
ceptions trigger failover.

Developing J2EE Applications with Connector/J

47

• loadBalanceExceptionChecker - The loadBalanceExceptionChecker property is really the key. This takes a fully-
qualified class name which implements the new com.mysql.jdbc.LoadBalanceExceptionChecker interface. This inter-
face is very simple, and you only need to implement the following method:

public boolean shouldExceptionTriggerFailover(SQLException ex)

A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false does not.

You can use this to implement your own custom logic. An example where this might be useful is when dealing with transient errors
when using MySQL Cluster, where certain buffers may become overloaded. The following code snippet illustrates this:

public class NdbLoadBalanceExceptionChecker
extends StandardLoadBalanceExceptionChecker {
public boolean shouldExceptionTriggerFailover(SQLException ex) {
return super.shouldExceptionTriggerFailover(ex)
|| checkNdbException(ex);

}
private boolean checkNdbException(SQLException ex){
// Have to parse the message since most NDB errors
// are mapped to the same DEMC.
return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
(ex.getMessage().startsWith("Got temporary error")
&& ex.getMessage().endsWith("from NDB")));
}
}

The code above extends com.mysql.jdbc.StandardLoadBalanceExceptionChecker, which is the default implement-
ation. There are a few convenient shortcuts built into this, for those who want to have some level of control using properties, without
writing Java code. This default implementation uses the two remaining properties: loadBalanceSQLStateFailover and
loadBalanceSQLExceptionSubclassFailover.

• loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState code prefixes, against which a
SQLException is compared. If the prefix matches, failover is triggered. So, for example, the following would trigger a failover if
a given SQLException starts with "00", or is "12345":

loadBalanceSQLStateFailover=00,12345

• loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with loadBalanceSQLStateFail-
over or on its own. If you want certain subclasses of SQLException to trigger failover, simply provide a comma-delimited list
of fully-qualified class or interface names to check against. For example, if you want all SQLTransientConnectionExcep-
tions to trigger failover, you would specify:

loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException

While the three fail-over conditions enumerated earlier suit most situations, if auto-commit is enabled, Connector/J never re-
balances, and continues using the same physical connection. This can be problematic, particularly when load-balancing is being used to
distribute read-only load across multiple slaves. However, Connector/J can be configured to re-balance after a certain number of state-
ments are executed, when auto-commit is enabled. This functionality is dependent upon the following properties:

• loadBalanceAutoCommitStatementThreshold – defines the number of matching statements which will trigger the driver
to potentially swap physical server connections. The default value, 0, retains the behavior that connections with auto-commit en-
abled are never balanced.

• loadBalanceAutoCommitStatementRegex – the regular expression against which statements must match. The default
value, blank, matches all statements. So, for example, using the following properties will cause Connector/J to re-balance after every
third statement that contains the string “test”:

loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*

loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your application may use tempor-
ary tables, server-side session state variables, or connection state, where letting the driver arbitrarily swap physical connections be-
fore processing is complete could cause data loss or other problems. This allows you to identify a trigger statement that is only ex-
ecuted when it is safe to swap physical connections.

Developing J2EE Applications with Connector/J

48

Chapter 8. Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is available to all applications
installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/server.xml in the context
that defines your web application:

<Context>
...
<Resource name="jdbc/MySQLDB"

auth="Container"
type="javax.sql.DataSource"/>

<ResourceParams name="jdbc/MySQLDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>
<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>
<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>
<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>
<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>
<parameter>
<name>testWhileIdle</name>
<value>true</value>

</parameter>
<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>
<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>
<parameter>
<name>username</name>
<value>someuser</value>
</parameter>
<parameter>
<name>password</name>
<value>somepass</value>
</parameter>
<parameter>

<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>
</ResourceParams>

</Context>

Note that Connector/J 5.1.3 introduced a facility whereby, rather than use a validationQuery value of SELECT 1, it is possible to
use validationQuery with a value set to /* ping */. This sends a ping to the server which then returns a fake result set. This is
a lighter weight solution. It also has the advantage that if using ReplicationConnection or LoadBalancedConnection type
connections, the ping will be sent across all active connections. The following XML snippet illustrates how to select this option:

<parameter>
<name>validationQuery</name>
<value>/* ping */</value>
</parameter>

49

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

Note that /* ping */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you configure datasources in Tomcat
changes from time to time, and if you use the wrong syntax in your XML file, you will most likely end up with an exception similar to
the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver class in JDBC 4.0 causes an improper
undeployment of the Connector/J driver in Tomcat on Windows. Namely, the Connector/J jar remains locked. This is an initialization
problem that is not related to the driver. The possible workarounds, if viable, are as follows: use "antiResourceLocking=true"
as a Tomcat Context attribute, or remove the META-INF/ directory.

Using Connector/J with Tomcat

50

Chapter 9. Using Connector/J with JBoss
These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that comes
with Connector/J to the lib directory for your server configuration (which is usually called default). Then, in the same configura-
tion directory, in the subdirectory named deploy, create a datasource configuration file that ends with -ds.xml, which tells JBoss to
deploy this file as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>
<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<idle-timeout-minutes>5</idle-timeout-minutes>
<exception-sorter-class-name>

com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter
</exception-sorter-class-name>
<valid-connection-checker-class-name>

com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

51

Chapter 10. Using Connector/J with Spring
The Spring Framework is a Java-based application framework designed for assisting in application design by providing a way to config-
ure components. The technique used by Spring is a well known design pattern called Dependency Injection (see Inversion of Control
Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). This is one
of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for integrating
resource management with JDBC and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up a MySQL data source
through Spring. Components within Spring use the “bean” terminology. For example, to configure a connection to a MySQL server sup-
porting the world sample database, you might use:

<util:map id="dbProps">
<entry key="db.driver" value="com.mysql.jdbc.Driver"/>
<entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
<entry key="db.username" value="myuser"/>
<entry key="db.password" value="mypass"/>

</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For the datasource configuration:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>

</bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the config-
uration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to pull this all
together. The last bean is responsible for actually replacing the placeholders with the property values.

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below will
retrieve three random cities and their corresponding country using the data source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context

DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {

// retrieve a list of three random cities
PreparedStatement ps = c.prepareStatement(

"select City.Name as 'City', Country.Name as 'Country' " +
"from City inner join Country on City.CountryCode = Country.Code " +
"order by rand() limit 3");

ResultSet rs = ps.executeQuery();
while(rs.next()) {

String city = rs.getString("City");
String country = rs.getString("Country");
System.out.printf("The city %s is in %s%n", city, country);

}
} catch (SQLException ex) {

// something has failed and we print a stack trace to analyse the error
ex.printStackTrace();
// ignore failure closing connection
try { c.close(); } catch (SQLException e) { }

} finally {
// properly release our connection
DataSourceUtils.releaseConnection(c, ds);

}

52

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

This is very similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of the
DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages this resource in a way similar to
a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed in other
parts of the code if it is synchronized with a transaction. This makes it possible to treat different parts of your application as transaction-
al instead of passing around a database connection.

10.1. Using JdbcTemplate
Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on the
JdbcTemplate and related classes, specifically NamedParameterJdbcTemplate. The template classes handle obtaining and re-
leasing a connection for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access Object) class to retrieve a
random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*/
private DataSource dataSource;
/**
* Our query to find a random city given a country code. Notice
* the ":country" parameter toward the end. This is called a
* named parameter.
*/
private String queryString = "select Name from City " +

"where CountryCode = :country order by rand() limit 1";
/**
* Retrieve a random city using Spring JDBC access classes.
*/
public String getRandomCityByCountryCode(String cntryCode) {

// A template that permits using queries with named parameters
NamedParameterJdbcTemplate template =
new NamedParameterJdbcTemplate(dataSource);
// A java.util.Map is used to provide values for the parameters
Map params = new HashMap();
params.put("country", cntryCode);
// We query for an Object and specify what class we are expecting
return (String)template.queryForObject(queryString, params, String.class);

}
/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @param dataSource
*/
public void setDataSource(DataSource dataSource) {

this.dataSource = dataSource;
}

}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country code and use the Named-
ParameterJdbcTemplate to query for a city. The country code is placed in a Map with the key "country", which is the parameter
is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
<property name="dataSource" ref="dataSource"/>

</bean>

At this point, we can just grab a reference to the DAO from Spring and call getRandomCityByCountryCode().

// Create the application context
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex2appContext.xml");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");
String countryCode = "USA";
// Find a few random cities in the US
for(int i = 0; i < 4; ++i)

System.out.printf("A random city in %s is %s%n", countryCode,
dao.getRandomCityByCountryCode(countryCode));

Using Connector/J with Spring

53

http://en.wikipedia.org/wiki/Template_method_pattern

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including Con-
nection and PreparedStatement.

10.2. Transactional JDBC Access
You might be wondering how we can add transactions into our code if we do not deal directly with the JDBC classes. Spring provides a
transaction management package that not only replaces JDBC transaction management, but also enables declarative transaction manage-
ment (configuration instead of code).

To use transactional database access, we will need to change the storage engine of the tables in the world database. The downloaded
script explicitly creates MyISAM tables which do not support transactional semantics. The InnoDB storage engine does support transac-
tions and this is what we will be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What this means is that we can cre-
ate a Java interface and only use the operations on this interface without any internal knowledge of what the actual implementation is.
We will let Spring manage the implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer population);

}

This interface contains one method that will create a new city record in the database and return the id of the new record. Next you need
to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
protected DataSource dataSource;
protected SqlUpdate updateQuery;
protected SqlFunction idQuery;
public Integer createCity(String name, String countryCode,

String district, Integer population) {
updateQuery.update(new Object[] { name, countryCode,

district, population });
return getLastId();

}
protected Integer getLastId() {

return idQuery.run();
}

}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC API. Also, this is the complete
implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started, we need to
create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
<property name="dataSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</bean>

Now you need to set up the transaction configuration. The first thing you must do is create transaction manager to manage the data
source and a specification of what transaction properties are required for the dao methods.

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>
<tx:advice id="txAdvice" transaction-manager="transactionManager">

<tx:attributes>
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

Using Connector/J with Spring

54

The preceding code creates a transaction manager that handles transactions for the data source provided to it. The txAdvice uses this
transaction manager and the attributes specify to create a transaction for all methods. Finally you need to apply this advice with an AOP
pointcut.

<aop:config>
<aop:pointcut id="daoMethods"

expression="execution(* code.Ex3Dao.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>

</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To make use of this, you only
have to retrieve the dao from the application context and call a method on the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all configured with Spring. This is
a very powerful notion and regarded as one of the most beneficial features of Spring.

10.3. Connection Pooling with Spring
In many situations, such as web applications, there will be a large number of small database transactions. When this is the case, it usu-
ally makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not spawn an
extra process when a connection is made, there is still a small amount of overhead to create and set up the connection. Pooling of con-
nections also alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application context.
There are a number of configurations that we can use. The first example is based on the Jakarta Commons DBCP library. The example
below replaces the source configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
<property name="initialSize" value="3"/>

</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections to the database instead of cre-
ating a new connection every time one is requested. We have also set a parameter here called initialSize. This tells DBCP that we
want three connections in the pool when it is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server. Using JBoss as an example,
you can set up the MySQL connection pool by creating a file called mysql-local-ds.xml and placing it in the server/de-
fault/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, this lookup is very simple. The
data source configuration looks like this.

<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>

Using Connector/J with Spring

55

http://jakarta.apache.org/commons/dbcp/

Chapter 11. Using Connector/J with GlassFish
This section explains how to use MySQL Connector/J with Glassfish ™ Server Open Source Edition 3.0.1. Glassfish can be down-
loaded from the Glassfish website.

Once Glassfish is installed you will need to make sure it can access MySQL Connector/J. To do this copy the MySQL Connector/J JAR
file to the directory GLASSFISH_INSTALL/glassfish/lib. For example, copy mysql-connect-
or-java-5.1.12-bin.jar to C:\glassfishv3\glassfish\lib. Restart the Glassfish Application Server.

You are now ready to create JDBC Connection Pools and JDBC Resources.

Creating a Connection Pool

1. In the Glassfish Administration Console, using the navigation tree navigate to RESOURCES, JDBC, CONNECTION POOLS.

2. In the JDBC CONNECTION POOLS frame click NEW. You will enter a two step wizard.

3. In the NAME field under GENERAL SETTINGS enter the name for the connection pool, for example enter MySQLConnPool.

4. In the RESOURCE TYPE field, select javax.sql.DataSource from the drop-down listbox.

5. In the DATABASE VENDOR field, select MySQL from the drop-down listbox. Click NEXT to go to the next page of the wizard.

6. You can accept the default settings for General Settings, Pool Settings and Transactions for this example. Scroll down to Addition-
al Properties.

7. In Additional Properties you will need to ensure the following properties are set:

• ServerName - The server to connect to. For local testing this will be localhost.

• User - The user name with which to connect to MySQL.

• Password - The corresponding password for the user.

• DatabaseName - The database to connect to, for example the sample MySQL database World.

8. Click FINISH to exit the wizard. You will be taken to the JDBC CONNECTION POOLS page where all current connection pools, in-
cluding the one you just created, will be displayed.

9. In the JDBC CONNECTION POOLS frame click on the connection pool you just created. Here you can review and edit information
about the connection pool.

10. To test your connection pool click the PING button at the top of the frame. A message will be displayed confirming correct opera-
tion or otherwise. If an error message is received recheck the previous steps, and ensure that MySQL Connector/J has been cor-
rectly copied into the previously specified location.

Now that you have created a connection pool you will also need to create a JDBC Resource (data source) for use by your application.

Creating a JDBC Resource

Your Java application will usually reference a data source object to establish a connection with the database. This needs to be created
first using the following procedure.

• Using the navigation tree in the Glassfish Administration Console, navigate to RESOURCES, JDBC, JDBC RESOURCES. A list of
resources will be displayed in the JDBC RESOURCES frame.

• Click NEW. The NEW JDBC RESOURCE frame will be displayed.

• In the JNDI NAME field, enter the JNDI name that will be used to access this resource, for example enter jdbc/
MySQLDataSource.

• In the POOL NAME field, select a connection pool you want this resource to use from the drop-down listbox.

56

https://glassfish.dev.java.net/public/downloadsindex.html#top

• Optionally, you can enter a description into the DESCRIPTION field.

• Additional properties can be added if required.

• Click OK to create the new JDBC resource. The JDBC RESOURCES frame will list all available JDBC Resources.

11.1. A Simple JSP Application with Glassfish, Connector/J and
MySQL

This section shows how to deploy a simple JSP application on Glassfish, that connects to a MySQL database.

This example assumes you have already set up a suitable Connection Pool and JDBC Resource, as explained in the preceding sections.
It is also assumed you have a sample database installed, such as world.

The main application code, index.jsp is presented here:

<%@ page import="java.sql.*, javax.sql.*, java.io.*, javax.naming.*" %>
<html>
<head><title>Hello world from JSP</title></head>
<body>
<%
InitialContext ctx;
DataSource ds;
Connection conn;
Statement stmt;
ResultSet rs;
try {
ctx = new InitialContext();
ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
//ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");
conn = ds.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT * FROM Country");
while(rs.next()) {

%>
<h3>Name: <%= rs.getString("Name") %></h3>
<h3>Population: <%= rs.getString("Population") %></h3>

<%
}

}
catch (SQLException se) {

%>
<%= se.getMessage() %>

<%
}
catch (NamingException ne) {

%>
<%= ne.getMessage() %>

<%
}

%>
</body>
</html>

In addition two XML files are required: web.xml, and sun-web.xml. There may be other files present, such as classes and images.
These files are organized into the directory structure as follows:

index.jsp
WEB-INF

|
- web.xml
- sun-web.xml

The code for web.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<display-name>HelloWebApp</display-name>
<distributable/>
<resource-ref>
<res-ref-name>jdbc/MySQLDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

Using Connector/J with GlassFish

57

</resource-ref>
</web-app>

The code for sun-web.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 8.1 Servlet 2.4//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>
<context-root>HelloWebApp</context-root>
<resource-ref>
<res-ref-name>jdbc/MySQLDataSource</res-ref-name>
<jndi-name>jdbc/MySQLDataSource</jndi-name>

</resource-ref>
</sun-web-app>

These XML files illustrate a very important aspect of running JDBC applications on Glassfish. On Glassfish it is important to map the
string specified for a JDBC resource to its JNDI name, as set up in the Glassfish administration console. In this example, the JNDI name
for the JDBC resource, as specified in the Glassfish Administration console when creating the JDBC Resource, was jdbc/
MySQLDataSource. This must be mapped to the name given in the application. In this example the name specified in the application,
jdbc/MySQLDataSource, and the JNDI name, happen to be the same, but this does not necessarily have to be the case. Note that
the XML element <res-ref-name> is used to specify the name as used in the application source code, and this is mapped to the JNDI
name specified using the <jndi-name> element, in the file sun-web.xml. The resource also has to be created in the web.xml file, al-
though the mapping of the resource to a JNDI name takes place in the sun-web.xml file.

If you do not have this mapping set up correctly in the XML files you will not be able to lookup the data source using a JNDI lookup
string such as:

ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");

You will still be able to access the data source directly using:

ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");

With the source files in place, in the correct directory structure, you are ready to deploy the application:

1. In the navigation tree, navigate to APPLICATIONS - the APPLICATIONS frame will be displayed. Click DEPLOY.

2. You can now deploy an application packaged into a single WAR file from a remote client, or you can choose a packaged file or
directory that is locally accessible to the server. If you are simply testing an application locally you can simply point Glassfish at
the directory that contains your application, without needing to package the application into a WAR file.

3. Now select the application type from the TYPE drop-down listbox, which in this example is Web application.

4. Click OK.

Now, when you navigate to the APPLICATIONS frame, you will have the option to LAUNCH, REDEPLOY, or RESTART your application.
You can test your application by clicking LAUNCH. The application will connection to the MySQL database and display the Name and
Population of countries in the Country table.

11.2. A Simple Servlet with Glassfish, Connector/J and MySQL
This section describes a simple servlet that can be used in the Glassfish environment to access a MySQL database. As with the previous
section, this example assumes the sample database world is installed.

The project is set up with the following directory structure:

index.html
WEB-INF

|
- web.xml
- sun-web.xml
- classes

|
- HelloWebServlet.java
- HelloWebServlet.class

Using Connector/J with GlassFish

58

The code for the servlet, located in HelloWebServlet.java, is as follows:

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
public class HelloWebServlet extends HttpServlet {
InitialContext ctx = null;
DataSource ds = null;
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
String sql = "SELECT Name, Population FROM Country WHERE Name=?";
public void init () throws ServletException {
try {
ctx = new InitialContext();
ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
conn = ds.getConnection();
ps = conn.prepareStatement(sql);

}
catch (SQLException se) {
System.out.println("SQLException: "+se.getMessage());

}
catch (NamingException ne) {
System.out.println("NamingException: "+ne.getMessage());

}
}
public void destroy () {
try {
if (rs != null)
rs.close();

if (ps != null)
ps.close();

if (conn != null)
conn.close();

if (ctx != null)
ctx.close();

}
catch (SQLException se) {
System.out.println("SQLException: "+se.getMessage());

}
catch (NamingException ne) {
System.out.println("NamingException: "+ne.getMessage());

}
}
public void doPost(HttpServletRequest req, HttpServletResponse resp){
try {
String country_name = req.getParameter("country_name");
resp.setContentType("text/html");
PrintWriter writer = resp.getWriter();
writer.println("<html><body>");
writer.println("<p>Country: "+country_name+"</p>");
ps.setString(1, country_name);
rs = ps.executeQuery();
if (!rs.next()){
writer.println("<p>Country does not exist!</p>");

}
else {
rs.beforeFirst();
while(rs.next()) {
writer.println("<p>Name: "+rs.getString("Name")+"</p>");
writer.println("<p>Population: "+rs.getString("Population")+"</p>");

}
}
writer.println("</body></html>");
writer.close();

}
catch (Exception e) {
e.printStackTrace();

}
}
public void doGet(HttpServletRequest req, HttpServletResponse resp){
try {
resp.setContentType("text/html");
PrintWriter writer = resp.getWriter();
writer.println("<html><body>");
writer.println("<p>Hello from servlet doGet()</p>");
writer.println("</body></html>");
writer.close();

}
catch (Exception e) {
e.printStackTrace();

}
}

}

Using Connector/J with GlassFish

59

In the preceding code a basic doGet() method is implemented, but is not used in the example. The code to establish the connection
with the database is as shown in the previous example, Section 11.1, “A Simple JSP Application with Glassfish, Connector/J and
MySQL”, and is most conveniently located in the servlet init() method. The corresponding freeing of resources is located in the des-
troy method. The main functionality of the servlet is located in the doPost() method. If the user enters nto the input form a country
name that can be located in the database, the population of the country is returned. The code is invoked using a POST action associated
with the input form. The form is defined in the file index.html:

<html>
<head><title>HelloWebServlet</title></head>

<body>
<h1>HelloWebServlet</h1>

<p>Please enter country name:</p>

<form action="HelloWebServlet" method="POST">
<input type="text" name="country_name" length="50" />
<input type="submit" value="Submit" />

</form>

</body>
</html>

The XML files web.xml and sun-web.xml are as for the example in the preceding section, Section 11.1, “A Simple JSP Applica-
tion with Glassfish, Connector/J and MySQL”, no additional changes are required.

Whe compiling the Java source code, you will need to specify the path to the file javaee.jar. On Windows, this can be done as fol-
lows:

shell> javac -classpath c:\glassfishv3\glassfish\lib\javaee.jar HelloWebServlet.java

Once the code is correctly located within its directory structure, and compiled, the application can be deployed in Glassfish. This is done
in exactly the same way as described in the preceding section, Section 11.1, “A Simple JSP Application with Glassfish, Connector/J and
MySQL”.

Once deployed the application can be launched from within the Glassfish Administration Console. Enter a country name such as
“England”, and the application will return “Country does not exist!”. Enter “France”, and the application will return a population of
59225700.

Using Connector/J with GlassFish

60

Chapter 12. Troubleshooting Connector/J Applications
This section explains the symptoms and resolutions for the most commonly encountered issues with applications using MySQL Con-
nector/J.

Questions

• 12.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 12.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 12.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 12.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 12.5: I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result set is not updatable.

• 12.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters are correct.

• 12.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

• 12.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database. Under
heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

• 12.9: When using gcj an java.io.CharConversionException is raised when working with certain character sequences.

• 12.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to update
the table and raises an exception.

• 12.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert using JDBC is
safely below the max_allowed_packet size.

• 12.12: What should you do if you receive error messages similar to the following: “Communications link failure – Last packet sent
to the server was X ms ago”?

• 12.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication failure, instead of throwing
an Exception, even though I use the autoReconnect connection string option?

• 12.14: How can I use 3-byte UTF8 with Connector/J?

• 12.15: How can I use 4-byte UTF8, utf8mb4 with Connector/J?

• 12.16: Using useServerPrepStmts=false and certain character encodings can lead to corruption when inserting BLOBs.

61

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/error_er_net_packet_too_large.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

How can this be avoided?

Questions and Answers

12.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore, when
MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine whether the con-
nection is permitted.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your MySQL
Server. See <literal>GRANT</literal> Syntax, for more information.

Note

Testing your connectivity with the mysql command-line client will not work unless you add the "host" flag, and use
something other than localhost for the host. The mysql command-line client will use Unix domain sockets if you use
the special host name localhost. If you are testing connectivity to localhost, use 127.0.0.1 as the host name in-
stead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have op-
timal security properties.

12.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Chapter 3, Connector/J Installation.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the location of the Connector/J
driver.

12.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "skip-networking" option set, or your MySQL server
has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the .class files for the applet. This
means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also means
that you will not be able to test applets from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP com-
munication with MySQL might be affected if MySQL was started with the "skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "skip-networking" option set (the Debian Linux package of MySQL server does this for example),
you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist in the data direct-
ory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries created by us always
look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall configured to al-

Troubleshooting Connector/J Applications

62

http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

low TCP/IP connections from the host where your Java code is running to the MySQL server on the port that MySQL is listening to (by
default, 3306).

12.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles stale connections or use the
"autoReconnect" parameter (see Section 5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connect-
or/J”).

Also, catch SQLExceptions in your application and deal with them, rather than propagating them all the way until your application
exits. This is just good programming practice. MySQL Connector/J will set the SQLState (see
java.sql.SQLException.getSQLState() in your API docs) to "08S01" when it encounters network-connectivity issues dur-
ing the processing of a query. Attempt to reconnect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 12.1. Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;
boolean transactionCompleted = false;
do {

try {
conn = getConnection(); // assume getting this from a

// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);
//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transactional storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry
// count to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;
stmt = conn.createStatement();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stmt.executeQuery(query);
while (rs.next()) {
}
rs.close();
rs = null;
stmt.close();
stmt = null;
conn.commit();
conn.close();
conn = null;
transactionCompleted = true;

} catch (SQLException sqlEx) {
//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//
String sqlState = sqlEx.getSQLState();
if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {

retryCount -= 1;
} else {

retryCount = 0;
}

} finally {
if (rs != null) {

Troubleshooting Connector/J Applications

63

try {
rs.close();

} catch (SQLException sqlEx) {
// You'd probably want to log this...

}
}
if (stmt != null) {

try {
stmt.close();

} catch (SQLException sqlEx) {
// You'd probably want to log this as well...

}
}
if (conn != null) {

try {
//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done
try {

conn.rollback();
} finally {

conn.close();
}

} catch (SQLException sqlEx) {
//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it...
throw sqlEx;

}
}

}
} while (!transactionCompleted && (retryCount > 0));

}

Note

Use of the autoReconnect option is not recommended because there is no safe method of reconnecting to the MySQL
server without risking some corruption of the connection state or database state information. Instead, use a connection
pool, which will enable your application to connect to the MySQL server using an available connection from the pool. The
autoReconnect facility is deprecated, and may be removed in a future release.

12.5: I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on tables
that have at least one primary key, the query must select every primary key and the query can only span one table (that is, no joins).
This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it can
identify the correct rows within the result set to be updated without having a unique reference to each row. There is no requirement to
have a unique field on a table if you are using UPDATE or DELETE statements on a table where you can individually specify the criteria
to be matched using a WHERE clause.

12.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters are correct.

Make sure that the skip-networking option has not been enabled on your server. Connector/J must be able to communicate with
your server over TCP/IP, named sockets are not supported. Also ensure that you are not filtering connections through a Firewall or other
network security system. For more information, see <literal>Can't connect to [local] MySQL server</literal>.

12.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

Troubleshooting Connector/J Applications

64

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/can-not-connect-to-server.html

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying to
connect to a MySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as they do
not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes the
older Connector/J package.

12.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database.
Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions to
complete can increase, and the error is caused because you have exceeded the predefined timeout.

You can increase the timeout value by setting the TransactionTimeout attribute to the TransactionManagerService with-
in the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/jta-service.xml for JBoss 4.0.3 or later. See Transaction-
Timeoute within the JBoss wiki for more information.

12.9: When using gcj an java.io.CharConversionException is raised when working with certain character sequences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one it cannot convert. Add use-
JvmCharsetConverters=true to your connection string to force character conversion outside of the gcj libraries, or try a differ-
ent JDK.

12.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to up-
date the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary key. If there is no match
then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database may mean that the values never
match, and hence the update fails. The issue will affect all queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point column in your primary key use
DOUBLE or DECIMAL types in place of FLOAT.

12.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert using JDBC is
safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in com.mysql.jdbc.PreparedStatement.streamToBytes() may al-
most double the size of your data.

12.12: What should you do if you receive error messages similar to the following: “Communications link failure – Last packet
sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several root causes:

• Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not ping).

• The MySQL Server may be closing idle connections which exceed the wait_timeout or interactive_timeout threshold.

To help troubleshoot these issues, the following tips can be used. If a recent (5.1.13+) version of Connector/J is used, you will see an
improved level of information compared to earlier versions. Older versions simply display the last time a packet was sent to the server,
which is frequently 0 ms ago. This is of limited use, as it may be that a packet was just sent, while a packet from the server has not been
received for several hours. Knowing the period of time since Connector/J last received a packet from the server is useful information, so
if this is not displayed in your exception message, it is recommended that you update Connector/J.

Further, if the time a packet was last sent/received exceeds the wait_timeout or interactive_timeout threshold, this is noted
in the exception message.

Although network connections can be volatile, the following can be helpful in avoiding problems:

• Ensure connections are valid when used from the connection pool. Use a query that starts with /* ping */ to execute a light-
weight ping instead of full query. Note, the syntax of the ping needs to be exactly as specified here.

Troubleshooting Connector/J Applications

65

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/error_er_net_packet_too_large.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

• Minimize the duration a connection object is left idle while other application logic is executed.

• Explicitly validate the connection before using it if the connection has been left idle for an extended period of time.

• Ensure that wait_timeout and interactive_timeout are set sufficiently high.

• Ensure that tcpKeepalive is enabled.

• Ensure that any configurable firewall or router timeout settings allow for the maximum expected connection idle time.

Note

Do not expect to be able to reuse a connection without problems, if it has being lying idle for a period. If a connection is to
be reused after being idle for any length of time, ensure that you explicitly test it before reusing it.

12.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication failure, instead of
throwing an Exception, even though I use the autoReconnect connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states that “there is no safe method
of reconnecting to the MySQL server without risking some corruption of the connection state or database state information”. Consider
the following series of statements for example:

conn.createStatement().execute(
"UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");

conn.createStatement().execute(
"UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");

conn.commit();

Consider the case where the connection to the server fails after the UPDATE to checking_account. If no exception is thrown, and
the application never learns about the problem, it will continue executing. However, the server did not commit the first transaction in
this case, so that will get rolled back. But execution continues with the next transaction, and increases the savings_account bal-
ance by 1000. The application did not receive an exception, so it continued regardless, eventually committing the second transaction, as
the commit only applies to the changes made in the new connection. Rather than a transfer taking place, a deposit was made in this ex-
ample.

Note that running with auto-commit enabled does not solve this problem. When Connector/J encounters a communication problem,
there is no means to determine whether the server processed the currently executing statement or not. The following theoretical states
are equally possible:

• The server never received the statement, and therefore no related processing occurred on the server.

• The server received the statement, executed it in full, but the response was not received by the client.

If you are running with auto-commit enabled, it is not possible to guarantee the state of data on the server when a communication
exception is encountered. The statement may have reached the server, or it may not. All you know is that communication failed at some
point, before the client received confirmation (or data) from the server. This does not only affect auto-commit statements though. If
the communication problem occurred during Connection.commit(), the question arises of whether the transaction was committed
on the server before the communication failed, or whether the server received the commit request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be vulnerable, for example:

• Temporary tables.

• User-defined variables.

• Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating an exception, this could be
detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply ignore by silently reconnect-

Troubleshooting Connector/J Applications

66

ing. It is necessary for the application to be notified. It is then for the application developer to decide how to proceed in the event of
connection errors and failures.

12.14: How can I use 3-byte UTF8 with Connector/J?

To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set useUnicode=true in the connection string.

12.15: How can I use 4-byte UTF8, utf8mb4 with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with character_set_server=utf8mb4. Connector/J will
then use that setting as long as characterEncoding has not been set in the connection string. This is equivalent to autodetection of
the character set.

12.16: Using useServerPrepStmts=false and certain character encodings can lead to corruption when inserting BLOBs.
How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data contains characters that can be
interpreted as control characters, for example, backslash, '\'. This can lead to corrupted data when inserting BLOBs into the database.
There are two things that need to be done to avoid this:

1. Set the connection string option useServerPrepStmts to true.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

Troubleshooting Connector/J Applications

67

Chapter 13. Connector/J Support

13.1. Connector/J Community Support
Oracle provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you can get help from
experienced users by using the MySQL and Java mailing list. Archives and subscription information is available online at ht-
tp://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See MySQL Mailing
Lists.

Community support from experienced users is also available through the JDBC Forum. You may also find help from other users in the
other MySQL Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums.

13.2. How to Report Connector/J Bugs or Problems
The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database is public, and can
be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to <security@mysql.com>.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,
containing a full test case for the bug, makes it very likely that we will fix the bug in the next release.

This section will help you write your report correctly so that you do not waste your time doing things that may not help us much or at
all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any bug that we are able to repeat
has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little. People
often omit facts because they think they know the cause of a problem and assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more
lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not fully
describing the platform on which Connector/J is installed (including the JVM version, and the platform type and version number that
MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions like,
“Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug de-
scribed in a report has already been fixed in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own class that in-
herits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, use one of the variants of the getConnection() method to create a JDBC connection to
MySQL:

68

http://lists.mysql.com/java
http://lists.mysql.com/java
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.5/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.5/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.5/en/forums.html
http://bugs.mysql.com/
http://bugs.mysql.com/

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists, that con-
nection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is, there is more than one connec-
tion involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean expres-
sion) methods to create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the behavior
you are observing, which is why you are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug report to
http://bugs.mysql.com/.

13.3. Connector/J Change History
The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See Appendix A, MySQL Connector/J
Change History.

Connector/J Support

69

http://bugs.mysql.com/

Appendix A. MySQL Connector/J Change History

A.1. Changes in MySQL Connector/J 5.1.x

A.1.1. Changes in MySQL Connector/J 5.1.20 (01 May 2012)
Bugs Fixed

• Important Change: This fix corrects an issue introduced in Connector/J 5.1.19 that caused connection errors with MySQL 4.1 and
earlier servers. A java.lang.ClassCastException exception occurred during connection initialization when
com.mysql.jdbc.ConnectionImpl.buildCollationMapping() interpreted the output of the SHOW COLLATION
statement. (Bug #13958793)

• A java.lang.StringIndexOutOfBoundsException exception could occur when manipulating date/time values with
fractional seconds. (Bug #13960556)

• A MySQLSyntaxErrorException could occur when calling certain methods while connected to a MySQL 5.6.5 or higher
server. Affected methods included StatementImpl.execute() and PreparedStatement.execute(). (Bug
#13955027)

• The savepoint identifier generated by the java.sql.Connection#.setSavepoint() function could be misinterpreted as a
floating-point number, for example values such as 123e10 or 123e10foo. Such values could cause replication errors on slave
servers because the values are not quoted in the binary log. The fix ensures that the savepoint identifiers do not begin with digits.
(Bug #11763271, Bug #55962)

• If the string limit was used in a column name, prepared statements incorrectly treated the statement as if it used a LIMIT clause.
For example, a prepared statement with maxrows set to 0 could incorrectly reuse the value from a previous call to set-
MaxRows(). This issue applied to both quoted and unquoted column names, and server-side and client-side prepared statements.
(Bug #11748492, Bug #36478)

A.1.2. Changes in MySQL Connector/J 5.1.19 (April 2012)
Fixes bugs found since release 5.1.18.

Functionality Added or Changed

• For a UTF-8 table using a collation other than the default (utf8_general_ci), the precision of the ResultSetMetaData
could be different from the precision specified in the CREATE TABLE statement. The fix corrects the return value from getMax-
BytesPerChar().

This fix changes the behavior of some connection string parameters. useDynamicCharsetInfo no longer has any effect. With
the setting cacheServerConfiguration=true, the cached settings also include the results of the SHOW CHARACTER SET
statement. (Bug #13495590, Bug #63456)

• Added support for pluggable authentication. via the com.mysql.jdbc.AuthenticationPlugin interface (which extends
the standard “extension” interface). Examples are in com/mysql/jdbc/authentication and in test-
suite.regression.ConnectionRegressionTest. This feature introduces three new connection properties:

• authenticationPlugins defines a comma-delimited list of classes that implement
com.mysql.jdbc.AuthenticationPlugin and are used for authentication unless disabled by the disabledAu-
thenticationPlugins property.

• disabledAuthenticationPlugins defines a comma-delimited list of classes implementing
com.mysql.jdbc.AuthenticationPlugin or mechanisms, i.e. mysql_native_password. The authentication
plugins or mechanisms cannot be used for authentication. Authentication will fail if it requires one of these classes. It is an error
to disable the default authentication plugin, either the one named by defaultAuthenticationPlugin property or the
hardcoded one if defaultAuthenticationPlugin propery is not set.

• defaultAuthenticationPlugin defines the name of a class implementing
com.mysql.jdbc.AuthenticationPlugin, which is used as the default authentication plugin. It is an error to use a

70

http://dev.mysql.com/doc/refman/5.5/en/create-table.html

class that is not listed in authenticationPlugins and is not one of the built-in plugins. It is an error to set as default a
plugin that is disabled by being listed in the disabledAuthenticationPlugins property. It is an error to set this value
to null or the empty string; there must be at least one valid default authentication plugin specified for the connection, meeting all
the constraints listed above.

Bugs Fixed

• Performance: An unnecessary call to bind() during socket operations could limit scalability on some platforms. (Bug
#13875070, Bug #63811)

• setMaxRows was not correctly processed during metadata collection for client-side prepared statements, causing the entire result
set to be fetched and possibly leading to an out-of-memory error. (Bug #13839395, Bug #64621)

• Underprivileged execution of stored procedures fixed. (Bug #13508993, Bug #61203)

• A combination of failover connections, proxied or prepared statements, and database connection pool could cause a memory leak
due to improper implementation of equals(). (Bug #13441718, Bug #63284)

• Reduced the memory overhead for server-side prepared statements. Each prepared statement allocated a 4K buffer for converting
streams. Now this allocation is skipped when no set*Stream() methods have been used.

• The Connection.changeUser() method did not check for closed connections, leading to NullPointerException errors
when this method was called on a closed connection.

A.1.3. Changes in MySQL Connector/J 5.1.18 (04 October 2011)
Fixes bugs found since release 5.1.17.

Functionality Added or Changed

• Added the function MYSQL_INDEX_TO_MYSQL_CHARSET to retrieve the server charset name, using an index instead of parsing
variables to CharsetMapping.java

Bugs Fixed

• The LRUCache implementation removed the eldest entry, rather than the least-recently accessed. (Bug #13036537)

• Changed cacheCallableStatements to cacheCallableStmts in maxPerformance.properties, to allow proper
caching. (Bug #13036309)

• Added a new ant flag, com.mysql.jdbc.junit.fork, which controls whether JUnit will fork new processes.

The value on: The default, and legacy behavior. Or off): Required for Windows, as otherwise process fork failure errors
will result while running the test suite via ant on Windows. (Bug #12784170)

• Not putting a space between VALUES() and ON DUPLICATE KEY UPDATE causes connector/J to both (A) Rewrite the query,
although it includes an ON UPDATE statement and (B) To generate the wrong query with multiple ON DUPLICATE KEY state-
ments. (Bug #12565726)

• The loadBalanceBlacklistTimeout option was not functioning properly. Working connections were not being removed
from the blacklist. (Bug #63135)

• Connector/J now guards against the condition where a call to KILL QUERY will kill the next query issued by the server, if no query
is in process. (Bug #61501)

• The "old" warnings were returned when Statement.getWarnings() was called after Statement.clearWarnings().
(Bug #61866, Bug #12791594)

• Calling Statement.cancel() on a statement that isn't currently executing, will cause a later-executed query on the same con-

MySQL Connector/J Change History

71

http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_values
http://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html
http://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html
http://dev.mysql.com/doc/refman/5.5/en/kill.html

nection to be unexpectedly canceled. The driver now guards against this condition, but it is an underlying server issue. The MySQL
statement KILL QUERY (which is what the driver uses to implement Statement.cancel()) is rather non-deterministic, and
thus the use of Statement.cancel() should be avoided if possible. (Bug #61501)

• A connection could not be established when the URL contained both sessionVariables and characterEncoding. (Bug
#61201, Bug #12649557)

• Reverting changes made to ConnectionImpl.java, the private boolean characterSetNamesMatches function.

A.1.4. Changes in MySQL Connector/J 5.1.17 (07 July 2011)
Fixes bugs found since release 5.1.16.

Bugs Fixed

• LIKE was not optimized in then server when run against INFORMATION_SCHEMA tables and no wildcards were used. Databases/
tables with '_' or '%' in their names (escaped or not) are handled by this code path, although slower, since it is rare to find these
characters in table names in SQL. If there is a '_' or '%' in the string, LIKE takes care of that; otherwise, '=' is now used in-
stead. The only exception is the information_schema database, which is handled separately. The patch covers both get-
Tables() and getColumns(). (Bug #61332)

• The first call to a stored procedure failed with “No Database Selected”. The workaround introduced in Database-
MetaData.getCallStmtParameterTypes to fix the server bug where SHOW CREATE PROCEDURE was not respecting
lowercase table names was misbehaving when the connection was not attached to a database and on case-insensitive operating sys-
tems. (Bug #61150)

• There was a concurrency bottleneck in Java's character set encoding/decoding when converting bytes to/from String values.

Important

No longer use String.getBytes(...), or new String(byte[]...). Use the StringUtils method instead.

(Bug #61105)

A.1.5. Changes in MySQL Connector/J 5.1.16 (Not released)
Fixes bugs found since release 5.1.15.

Functionality Added or Changed

• The Connection.isServerLocal() method can now determine if a connection is against a server on the same host.

Bugs Fixed

• When auto-reconnect was used with cacheServerConfiguration, errors could occur when the host changed (in an HA
setup, for example). (Bug #12325877)

• DBMD.getTables and getColumns fail with table names that contain a dot (like "junk_[Sp:e,c/ C-h+a=.r]"). The
workaround is to use useInformationSchema=True. (Bug #11782297)

• ResultSetRow.getTimestampFast and getTime had invalid offsets. (Bug #60313)

• Fixed a bug where Connector/J would kill the matching ConnectionID, but on the wrong server. (Bug #54135)

• wasNull was not set for a DATE field with the value of 0000-00-00 in getDate(), although zeroDateTimeBehavior is
defined as convertToNull. (Bug #57808)

• A bypassing of the server protocol bug, where the DB should be null-terminated whether it exists or not. This affects
COM_CHANGE_USER. (Bug #54425)

MySQL Connector/J Change History

72

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html

• Fixed a timestamp offset bug in com.mysql.jdbc.ResultSetRow.getTimestampFast(). (Bug #60313, Bug
#11890729)

A.1.6. Changes in MySQL Connector/J 5.1.15 (09 February 2011)
Fixes bugs found since release 5.1.14.

Bugs Fixed

• Optional logging class com.mysql.jdbc.log.Log4JLogger was not included in the source/binary package for 5.1.14.

5.1.15 will ship with an SLF4J logger (which can then be plugged into Log4J). Unfortunately, it is not possible to ship a direct
Log4J integration because the GPL is not compatible with Log4J's license. (Bug #59511, Bug #11766408)

• The hard-coded list of reserved words in Connector/J was not updated to reflect the list of reserved words in MySQL Server 5.5.
(Bug #59224)

• MySqlProcedure accepted null arguments as parameters, however the JDBC meta data did not indicate that. (Bug #38367, Bug
#11749186)

• Using Connector/J to connect from a z/OS machine to a MySQL Server failed when the database name to connect to was included
in the connection URL. This was because the name was sent in z/OS default platform encoding, but the MySQL Server expected
Latin1.

It should be noted that when connecting from systems that do not use Latin1 as the default platform encoding, the following connec-
tion string options can be useful: passwordCharacterEncoding=ASCII and characterEncoding=ASCII. (Bug
#18086, Bug #11745647)

A.1.7. Changes in MySQL Connector/J 5.1.14 (6th December 2010)
Fixes bugs found since release 5.1.13.

Functionality Added or Changed

• Connector/J's load-balancing functionality only allowed the following events to trigger failover:

• Transaction commit/rollback

• CommunicationExceptions

• Matches to user-defined Exceptions using the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or
loadBalanceExceptionChecker property.

This meant that connections where auto-commit was enabled were not balanced, except for Exceptions, and this was problematic in
the case of distribution of read-only work across slaves in a replication deployment.

The ability to load-balance while auto-commit is enabled has now been added to Connector/J. This introduces two new properties:

1. loadBalanceAutoCommitStatementThreshold - defines the number of matching statements which will trigger the driver to
(potentially) swap physical server connections. The default value (0) retains the previously-established behavior that connec-
tions with auto-commit enabled are never balanced.

2. loadBalanceAutoCommitStatementRegex - the regular expression against which statements must match. The default value
(blank) matches all statements.

Load-balancing will be done after the statement is executed, before control is returned to the application. If rebalancing fails, the
driver will silently swallow the resulting Exception (as the statement itself completed successfully). (Bug #55723)

Bugs Fixed

MySQL Connector/J Change History

73

• Added diagnostic information to SQLException messages that are caused by usage of a closed load-balanced connection, to help
clarify the root cause of a connection closure. (Bug #56200)

• Connection failover left slave/secondary in read-only mode. Failover attempts between two read-write masters did not properly set
this.currentConn.setReadOnly(false). (Bug #58706)

• Connector/J mapped both 3-byte and 4-byte UTF8 encodings to the same Java UTF8 encoding.

To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set useUnicode=true in the connection string.

To use 4-byte UTF8 with Connector/J configure the MySQL server with character_set_server=utf8mb4. Connector/J
will then use that setting as long as characterEncoding has not been set in the connection string. This is equivalent to autode-
tection of the character set. (Bug #58232)

• The CallableStatementRegression test suite failed with a Null Pointer Exception because the OUT parameter in the
I__S.PARAMETERS table had no name, that is COLUMN_NAME had the value NULL. (Bug #58232)

• Attempting to use JDBC4 functions on Connection objects resulted in errors being generated:

Exception in thread "main" java.lang.AbstractMethodError:
com.mysql.jdbc.LoadBalancedMySQLConnection.createBlob()Ljava/sql/Blob;

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at

com.mysql.jdbc.LoadBalancingConnectionProxy.invoke(LoadBalancingConnectionProxy.java:476)
at $Proxy0.createBlob(Unknown Source)

(Bug #56099)

• DatabaseMetaData.supportsMultipleResultSets() was hard-coded to return false, even though Connector/J sup-
ports multiple result sets. (Bug #57380)

• Invoking a stored procedure containing output parameters by its full name, where the procedure was located in another database,
generated the following exception:

Parameter index of 1 is out of range (1, 0)

(Bug #57022)

• Using the useOldUTF8Behavior parameter failed to set the connection character set to latin1 as required.

In versions prior to 5.1.3, the handshake was done using latin1, and while there was logic in place to explicitly set the character
set after the handshake was complete, this was bypassed when useOldUTF8Behavior was true. This was not a problem until
5.1.3, when the handshake was modified to use utf8, but the logic continued to allow the character set configured during that
handshake process to be retained for later use. As a result, useOldUTF8Behavior effectively failed. (Bug #57262)

• Leaving Trust/ClientCertStoreType properties unset caused an exception to be thrown when connecting with useSSL=true, as no
default was used. (Bug #56955)

• When a JDBC client disconnected from a remote server using Connection.close(), the TCP connection remained in the
TIME_WAIT state on the server side, rather than on the client side. (Bug #56979)

• When load-balanced connections swap servers, certain session state was copied from the previously active connection to the newly-
selected connection. State synchronized included:

• Auto-commit state

• Transaction isolation state

• Current schema/catalog

However, the read-only state was not synchronized, which caused problems if a write was attempted on a read-only connection.
(Bug #56706)

• When using Connector/J configured for failover (jdbc:mysql://host1,host2,... URLs), the non-primary servers re-balanced when the

MySQL Connector/J Change History

74

transactions on the master were committed or rolled-back. (Bug #56429)

• An unhandled Null Pointer Exception (NPE) was generated in DatabaseMetaData.java when calling an incorrectly cased
function name where no permission to access mysql.proc was available.

In addition to catching potential NPEs, a guard against calling JDBC functions with db_name.proc_name notation was also ad-
ded. (Bug #56305)

A.1.8. Changes in MySQL Connector/J 5.1.13 (24 June 2010)
Fixes bugs found since release 5.1.12.

Functionality Added or Changed

• Connector/J did not support utf8mb4 for servers 5.5.2 and newer.

Connector/J now auto-detects servers configured with character_set_server=utf8mb4 or treats the Java encoding utf-8
passed using characterEncoding=... as utf8mb4 in the SET NAMES= calls it makes when establishing the connection.
(Bug #54175)

Bugs Fixed

• When the allowMultiQueries connection string option was set to true, a call to Statement.executeBatch() scanned
the query for escape codes, even though setEscapeProcessing(false) had been called previously. (Bug #51704)

• The method unSafeStatementInterceptors() contained an erroneous line of code, which resulted in the interceptor being
called, but the result being thrown away. (Bug #53041)

• There was a performance regression of roughly 25% between r906 and r907, which appeared to be caused by pushing the Proxy
down to the I/O layer. (Bug #52534)

• In the file DatabaseMetadata.java, the function private void getCallStmtParameterTypes failed if the para-
meter was defined over more than one line by using the '\n' character. (Bug #52167)

• The catalog parameter, PARAM_CAT, was not correctly processed when calling for metadata with getMetaData() on stored pro-
cedures. This was because PARAM_CAT was hardcoded in the code to NULL. In the case where nullcatalogmeanscurrent
was true, which is its default value, a crash did not occur, but the metadata returned was for the stored procedures from the catalog
currently attached to. If, however, nullcatalogmeanscurrent was set to false then a crash resulted.

Connector/J has been changed so that when NULL is passed as PARAM_CAT it will not crash when nullcatalogmeanscur-
rent is false, but rather iterate all catalogs in search of stored procedures. This means that PARAM_CAT is no longer hardcoded
to NULL (see Bug #51904). (Bug #51912)

• Logic in implementations of LoadBalancingConnectionProxy and LoadBalanceStrategy behaved differently as to
which SQLExceptions trigger failover to a new host. The former looked at the first two characters of the SQLState:

if (sqlState.startsWith("08"))
...

The latter used a different test:

if (sqlEx instanceof CommunicationsException
|| "08S01".equals(sqlEx.getSQLState())) {

...

This meant it was possible for a new Connection object to throw an Exception when the first selected host was unavailable.
This happened because MySqlIO.createNewIO() could throw an SQLException with a SQLState of “08001”, which did
not trigger the “try another host” logic in the LoadBalanceStrategy implementations, so an Exception was thrown after
having only attempted connecting to a single host. (Bug #52231)

• A load balanced Connection object with multiple open underlying physical connections rebalanced on commit(), roll-

MySQL Connector/J Change History

75

back(), or on a communication exception, without validating the existing connection. This caused a problem when there was no
pinging of the physical connections, using queries starting with “/* ping */”, to ensure they remained active. This meant that calls to
Connection.commit() could throw a SQLException. This did not occur when the transaction was actually committed; it
occurred when the new connection was chosen and the driver attempted to set the auto-commit or transaction isolation state on the
newly chosen physical connection. (Bug #51783)

• The rollback() method could fail to rethrow a SQLException if the server became unavailable during a rollback. The errant
code only rethrew when ignoreNonTxTables was true and the exception did not have the error code 1196, SQLEr-
ror.ER_WARNING_NOT_COMPLETE_ROLLBACK. (Bug #51776)

• Objects created by ConnectionImpl, such as prepared statements, hold a reference to the ConnectionImpl that created
them. However, when the load balancer picked a new connection, it did not update the reference contained in, for example, the
PreparedStatement. This resulted in inserts and updates being directed to invalid connections, while commits were directed to
the new connection. This resulted in silent data loss. (Bug #51643)

• When a StatementInterceptor was used and an alternate ResultSet was returned from preProcess(), the original
statement was still executed. (Bug #51666)

• jdbc:mysql:loadbalance:// would connect to the same host, even though loadBalanceStrategy was set to a value
of random, and multiple hosts were specified. (Bug #51266)

• An unexpected exception when trying to register OUT parameters in CallableStatement.

Sometimes Connector/J was not able to register OUT parameters for CallableStatements. (Bug #43576)

A.1.9. Changes in MySQL Connector/J 5.1.12 (18 February 2010)
Fixes bugs found since release 5.1.11.

Bugs Fixed

• The catalog parameter was ignored in the DatabaseMetaData.getProcedure() method. It returned all procedures in all
databases. (Bug #51022)

• A call to DatabaseMetaData.getDriverVersion() returned the revision as mysql-connector-java-5.1.11 (
Revision: ${svn.Revision}). The variable ${svn.Revision} was not replaced by the SVN revision number. (Bug
#50288)

A.1.10. Changes in MySQL Connector/J 5.1.11 (21 January 2010)
Fixes bugs found since release 5.1.10.

Functionality Added or Changed

• Replication connections, those with URLs that start with jdbc:mysql:replication, now use a jdbc:mysql:loadbalance connection for
the slave pool. This means that it is possible to set load balancing properties such as loadBalanceBlacklistTimeout and
loadBalanceStrategy to choose a mechanism for balancing the load, and failover or fault tolerance strategy for the slave
pool. (Bug #49537)

Bugs Fixed

• NullPointerException sometimes occurred in invalidateCurrentConnection() for load-balanced connections.
(Bug #50288)

• For pooled connections, Connector/J did not process the session variable time_zone when set using the URL, resulting in incor-
rect timestamp values being stored. (Bug #49700)

• The deleteRow method caused a full table scan, when using an updatable cursor and a multibyte character set. (Bug #49745)

MySQL Connector/J Change History

76

• The ExceptionInterceptor class did not provide a Connection context. (Bug #49607)

• Ping left closed connections in the liveConnections map, causing subsequent Exceptions when that connection was used. (Bug
#48605)

• Using MysqlConnectionPoolDataSource with a load-balanced URL generated exceptions of type ClassCastExcep-
tion:

ClassCastException in MysqlConnectionPoolDataSource
Caused by: java.lang.ClassCastException: $Proxy0

at
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.getPooledConnection(MysqlConne
ctionPoolDataSource.java:80)

java.lang.ClassCastException: $Proxy2
at com.mysql.jdbc.jdbc2.optional.StatementWrapper.executeQuery(StatementWrapper.java:744)

(Bug #48486)

• The implementation for load-balanced Connection used a proxy, which delegated method calls, including equals() and
hashCode(), to underlying Connection objects. This meant that successive calls to hashCode() on the same object poten-
tially returned different values, if the proxy state had changed such that it was utilizing a different underlying connection. (Bug
#48442)

• The batch rewrite functionality attempted to identify the start of the VALUES list by looking for “VALUES ” (with trailing space).
However, valid MySQL syntax permits VALUES to be followed by whitespace or an opening parenthesis:

INSERT INTO tbl VALUES
(1);

INSERT INTO tbl VALUES(1);

Queries written with the above formats did not therefore gain the performance benefits of the batch rewrite. (Bug #48172)

• A PermGen memory leaked was caused by the Connector/J statement cancellation timer (java.util.Timer). When the applica-
tion was unloaded the cancellation timer did not terminate, preventing the ClassLoader from being garbage collected. (Bug #36565)

• With the connection string option noDatetimeStringSync set to true, and server-side prepared statements enabled, the fol-
lowing exception was generated if an attempt was made to obtain, using ResultSet.getString(), a datetime value contain-
ing all zero components:

java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Date

(Bug #32525)

A.1.11. Changes in MySQL Connector/J 5.1.10 (23 September 2009)
Fixes bugs found since release 5.1.9.

Bugs Fixed

• The DriverManager.getConnection() method ignored a non-standard port if it was specified in the JDBC connection
string. Connector/J always used the standard port 3306 for connection creation. For example, if the string was jd-
bc:mysql://localhost:6777, Connector/J would attempt to connect to port 3306, rather than 6777. (Bug #47494)

A.1.12. Changes in MySQL Connector/J 5.1.9 (21 September 2009)
Bugs Fixed

• When Connector/J encountered an error condition that caused it to create a CommunicationsException, it tried to build a
friendly error message that helped diagnose what was wrong. However, if there had been no network packets received from the

MySQL Connector/J Change History

77

server, the error message contained the following incorrect text:

The last packet successfully received from the server was 1,249,932,468,916 milliseconds
ago. The last packet sent successfully to the server was 0 milliseconds ago.

(Bug #46637)

• In the class com.mysql.jdbc.jdbc2.optional.SuspendableXAConnection, which is used when pinGlobalTx-
ToPhysicalConnection=true, there is a static map (XIDS_TO_PHYSICAL_CONNECTIONS) that tracks the Xid with the
XAConnection, however this map was not populated. The effect was that the SuspendableXAConnection was never pinned to
the real XA connection. Instead it created new connections on calls to start, end, resume, and prepare. (Bug #46925)

• When using the ON DUPLICATE KEY UPDATE functionality together with the rewriteBatchedStatements option set to true, an
exception was generated when trying to execute the prepared statement:

INSERT INTO config_table (modified,id_) VALUES (?,?) ON DUPLICATE KEY UPDATE modified=?

The exception generated was:

java.sql.SQLException: Parameter index out of range (3 > number of parameters, which is
2).
at com.sag.etl.job.processors.JdbcInsertProcessor.flush(JdbcInsertProcessor.java:135)

......
Caused by: java.sql.SQLException: Parameter index out of range (3 > number of parameters,
which is 2).
at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1055)
at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)
at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:926)
at com.mysql.jdbc.PreparedStatement.checkBounds(PreparedStatement.java:3657)
at com.mysql.jdbc.PreparedStatement.setInternal(PreparedStatement.java:3641)
at

com.mysql.jdbc.PreparedStatement.setBytesNoEscapeNoQuotes(PreparedStatement.java:3391)
at

com.mysql.jdbc.PreparedStatement.setOneBatchedParameterSet(PreparedStatement.java:4203)
at com.mysql.jdbc.PreparedStatement.executeBatchedInserts(PreparedStatement.java:1759)
at com.mysql.jdbc.PreparedStatement.executeBatch(PreparedStatement.java:1441)
at com.sag.etl.job.processors.JdbcInsertProcessor.flush(JdbcInsertProcessor.java:131)
... 16 more

(Bug #46788)

• Accessing result set columns by name after the result set had been closed resulted in a NullPointerException instead of a SQLEx-
ception. (Bug #41484)

• The getSuperTypes method returned a result set with incorrect names for the first two columns. The name of the first column in
the result set was expected to be TYPE_CAT and that of the second column TYPE_SCHEM. The method however returned the
names as TABLE_CAT and TABLE_SCHEM for first and second column respectively. (Bug #44508)

• Calling ResultSet.deleteRow() on a table with a primary key of type BINARY(8) silently failed to delete the row, but only
in some repeatable cases. The generated DELETE statement generated corrupted part of the primary key data. Specifically, one of
the bytes was changed from 0x90 to 0x9D, although the corruption appeared to be different depending on whether the application
was run on Windows or Linux. (Bug #43759)

• SQLException for data truncation error gave the error code as 0 instead of 1265. (Bug #44324)

• QueryTimeout did not work for batch statements waiting on a locked table.

When a batch statement was issued to the server and was forced to wait because of a locked table, Connector/J only terminated the
first statement in the batch when the timeout was exceeded, leaving the rest hanging. (Bug #34555)

• The parseURL method in class com.mysql.jdbc.Driver did not work as expected. When given a URL such as
“jdbc:mysql://www.mysql.com:12345/my_database” to parse, the property PORT_PROPERTY_KEY was found to be null and the
HOST_PROPERTY_KEY property was found to be “www.mysql.com:12345”.

Note

Connector/J has been fixed so that it will now always fill in the PORT property (using 3306 if not specified), and the HOST
property (using localhost if not specified) when parseURL() is called. The driver also parses a list of hosts into
HOST.n and PORT.n properties as well as adding a property NUM_HOSTS for the number of hosts it has found. If a list

MySQL Connector/J Change History

78

of hosts is passed to the driver, HOST and PORT will be set to the values given by HOST.1 and PORT.1 respectively.
This change has centralized and cleaned up a large section of code used to generate lists of hosts, both for load-balanced
and fault tolerant connections and their tests.

(Bug #32216)

• Attempting to delete rows using ResultSet.deleteRow() did not delete rows correctly. (Bug #27431)

• The setDate method silently ignored the Calendar parameter. The code was implemented as follows:

public void setDate(int parameterIndex, java.sql.Date x, Calendar cal) throws SQLException {
setDate(parameterIndex, x);

}

From reviewing the code it was apparent that the Calendar parameter cal was ignored. (Bug #23584)

A.1.13. Changes in MySQL Connector/J 5.1.8 (16 July 2009)
Bugs Fixed

• Calling Connection.serverPreparedStatement() variants that do not take result set type or concurrency arguments re-
turned statements that produced result sets with incorrect defaults, namely TYPE_SCROLL_SENSITIVE. (Bug #45171)

• The reported milliseconds since the last server packets were received/sent was incorrect by a factor of 1000. For example, the fol-
lowing method call:

SQLError.createLinkFailureMessageBasedOnHeuristics(
(ConnectionImpl) this.conn,
System.currentTimeMillis() - 1000,
System.currentTimeMillis() - 2000,
e,
false);

returned the following string:

The last packet successfully received from the server
was 2 milliseconds ago. The last packet sent successfully to the
server was 1 milliseconds ago.

(Bug #45419)

• The method Statement.getGeneratedKeys() did not return values for UNSIGNED BIGINTS with values greater than
Long.MAX_VALUE.

Unfortunately, because the server does not tell clients what TYPE the auto increment value is, the driver cannot consistently return
BigIntegers for the result set returned from getGeneratedKeys(), it will only return them if the value is greater than
Long.MAX_VALUE. If your application needs this consistency, it will need to check the class of the return value from
.getObject() on the ResultSet returned by Statement.getGeneratedKeys() and if it is not a BigInteger, create one
based on the java.lang.Long that is returned. (Bug #43196)

• A statement interceptor received the incorrect parameters when used with a batched statement. (Bug #39426)

• When using Connector/J 5.1.7 to connect to MySQL Server 4.1.18 the following error message was generated:

Thu Dec 11 17:38:21 PST 2008 WARN: Invalid value {1} for server variable named {0},
falling back to sane default of {2}

This occurred with MySQL Server version that did not support auto_increment_increment. The error message should not
have been generated. (Bug #41416)

• The RETURN_GENERATED_KEYS flag was being ignored. For example, in the following code the RETURN_GENERATED_KEYS
flag was ignored:

PreparedStatement ps = connection.prepareStatement("INSERT INTO table

MySQL Connector/J Change History

79

values(?,?)",PreparedStatement.RETURN_GENERATED_KEYS);

(Bug #41448)

• Using Connector/J 5.1.6 the method ResultSet.getObject returned a BYTE[] for following:

SELECT TRIM(rowid) FROM tbl

Where rowid had a type of INT(11) PRIMARY KEY AUTO_INCREMENT.

The expected return type was one of CHAR, VARCHAR, CLOB, however, a BYTE[] was returned.

Further, adding functionsNeverReturnBlobs=true to the connection string did not have any effect on the return type.
(Bug #38387)

• Connector/J generated an unhandled StringIndexOutOfBoundsException:

java.lang.StringIndexOutOfBoundsException: String index out of range: -1
at java.lang.String.substring(String.java:1938)
at com.mysql.jdbc.EscapeProcessor.processTimeToken(EscapeProcessor.java:353)
at com.mysql.jdbc.EscapeProcessor.escapeSQL(EscapeProcessor.java:257)
at com.mysql.jdbc.StatementImpl.executeUpdate(StatementImpl.java:1546)
at com.mysql.jdbc.StatementImpl.executeUpdate(StatementImpl.java:1524)

(Bug #42253)

• When using rewriteBatchedStatements=true with:

INSERT INTO table_name_values (...) VALUES (...)

Query rewriting failed because “values” at the end of the table name was mistaken for the reserved keyword. The error generated
was as follows:

testBug40439(testsuite.simple.TestBug40439)java.sql.BatchUpdateException: You have an
error in your SQL syntax; check the manual that corresponds to your MySQL server version
for the right syntax to use near 'values (2,'toto',2),(id,data, ordr) values
(3,'toto',3),(id,data, ordr) values (' at line 1
at com.mysql.jdbc.PreparedStatement.executeBatchedInserts(PreparedStatement.java:1495)
at com.mysql.jdbc.PreparedStatement.executeBatch(PreparedStatement.java:1097)
at testsuite.simple.TestBug40439.testBug40439(TestBug40439.java:42)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at testsuite.simple.TestBug40439.main(TestBug40439.java:57)

(Bug #40439)

• Error message strings contained variable values that were not expanded. For example:

Mon Nov 17 11:43:18 JST 2008 WARN: Invalid value {1} for server variable named {0},
falling back to sane default of {2}

(Bug #40772)

• When accessing a result set column by name using ResultSetImpl.findColumn() an exception was generated:

java.lang.NullPointerException
at com.mysql.jdbc.ResultSetImpl.findColumn(ResultSetImpl.java:1103)
at com.mysql.jdbc.ResultSetImpl.getShort(ResultSetImpl.java:5415)
at org.apache.commons.dbcp.DelegatingResultSet.getShort(DelegatingResultSet.java:219)
at com.zimbra.cs.db.DbVolume.constructVolume(DbVolume.java:297)
at com.zimbra.cs.db.DbVolume.get(DbVolume.java:197)
at com.zimbra.cs.db.DbVolume.create(DbVolume.java:95)
at com.zimbra.cs.store.Volume.create(Volume.java:227)
at com.zimbra.cs.store.Volume.create(Volume.java:189)
at com.zimbra.cs.service.admin.CreateVolume.handle(CreateVolume.java:48)
at com.zimbra.soap.SoapEngine.dispatchRequest(SoapEngine.java:428)
at com.zimbra.soap.SoapEngine.dispatch(SoapEngine.java:285)

MySQL Connector/J Change History

80

(Bug #41484)

• If there was an apostrophe in a comment in a statement that was being sent through Connector/J, the apostrophe was still recognized
as a quote and put the state machine in EscapeTokenizer into the inQuotes state. This led to further parse errors.

For example, consider the following statement:

String sql = "-- Customer's zip code will be fixed\n" +
"update address set zip_code = 99999\n" +
"where not regexp '^[0-9]{5}([[.-.]])?([0-9]{4})?$'";

When passed through Connector/J, the EscapeTokenizer did not recognize that the first apostrophe was in a comment and thus
set inQuotes to true. When that happened, the quote count was incorrect and thus the regular expression did not appear to be in
quotation marks. With the parser not detecting that the regular expression was in quotation marks, the curly braces were recognized
as escape sequences and were removed from the regular expression, breaking it. The server thus received SQL such as:

-- Customer's zip code will be fixed
update address set zip_code = '99999'
where not regexp '^[0-9]([[.-.]])?([0-9])?$'

(Bug #41566)

• Using useInformationSchema with DatabaseMetaData.getExportedKeys() generated the following exception:

com.mysql.jdbc.exceptions.MySQLIntegrityConstraintViolationException: Column
'REFERENCED_TABLE_NAME' in where clause is ambiguous
...
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1772)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:1923)
at
com.mysql.jdbc.DatabaseMetaDataUsingInfoSchema.executeMetadataQuery(
DatabaseMetaDataUsingInfoSchema.java:50)
at
com.mysql.jdbc.DatabaseMetaDataUsingInfoSchema.getExportedKeys(
DatabaseMetaDataUsingInfoSchema.java:603)

(Bug #43714)

• The SQLError.createLinkFailureMessageBasedOnHeuristics() method created a message text for communica-
tion link failures. When certain conditions were met, this message included both “last packet sent” and “last packet received” in-
formation, but when those conditions were not met, only “last packet sent” information was provided.

Information about when the last packet was successfully received should be provided in all cases. (Bug #44587)

• When DatabaseMetaData.getProcedureColumns() was called, the value for LENGTH was always returned as 65535, re-
gardless of the column type (fixed or variable) or the actual length of the column.

However, if you obtained the PRECISION value, this was correct for both fixed and variable length columns. (Bug #41269)

• The DEFERRABILITY column in database metadata result sets was expected to be of type SHORT. However, Connector/J returned
it as INTEGER.

This affected the following methods: getImportedKeys(), getExportedKeys(), getCrossReference(). (Bug
#44867)

• The result set returned by getIndexInfo() did not have the format defined in the JDBC API specifications. The fourth column,
DATA_TYPE, of the result set should be of type BOOLEAN. Connector/J however returns CHAR. (Bug #44869)

• The result set returned by getTypeInfo() did not have the format defined in the JDBC API specifications. The second column,
DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug #44868)

• The result set returned by getColumns() did not have the format defined in the JDBC API specifications. The fifth column,
DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug #44865)

• The result set returned by getVersionColumns() did not have the format defined in the JDBC API specifications. The third
column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug #44863)

MySQL Connector/J Change History

81

• The result set returned by getBestRowIdentifier() did not have the format defined in the JDBC API specifications. The
third column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J however returns SMALLINT. (Bug #44862)

• Connector/J contains logic to generate a message text specifically for streaming result sets when there are CommunicationsEx-
ception exceptions generated. However, this code was never reached.

In the CommunicationsException code:

private boolean streamingResultSetInPlay = false;

public CommunicationsException(ConnectionImpl conn, long lastPacketSentTimeMs,
long lastPacketReceivedTimeMs, Exception underlyingException) {

this.exceptionMessage = SQLError.createLinkFailureMessageBasedOnHeuristics(conn,
lastPacketSentTimeMs, lastPacketReceivedTimeMs, underlyingException,
this.streamingResultSetInPlay);

streamingResultSetInPlay was always false, which in the following code in SQLEr-
ror.createLinkFailureMessageBasedOnHeuristics() never being executed:

if (streamingResultSetInPlay) {
exceptionMessageBuf.append(
Messages.getString("CommunicationsException.ClientWasStreaming")); //$NON-NLS-1$

} else {
...

(Bug #44588)

• SQL injection was possible when using a string containing U+00A5 in a client-side prepared statement, and the character set being
used was SJIS/Windows-31J. (Bug #41730)

• Statement.getGeneratedKeys() retained result set instances until the statement was closed. This caused memory leaks for
long-lived statements, or statements used in tight loops. (Bug #44056)

• MySQL Connector/J 5.1.7 was slower than previous versions when the rewriteBatchedStatements option was set to true.

Note

The performance regression in indexOfIgnoreCaseRespectMarker()has been fixed. It has also been made pos-
sible for the driver to rewrite INSERT statements with ON DUPLICATE KEY UPDATE clauses in them, as long as the
UPDATE clause contains no reference to LAST_INSERT_ID(), as that would cause the driver to return bogus values for
getGeneratedKeys() invocations. This has resulted in improved performance over version 5.1.7.

(Bug #41532)

• LoadBalancingConnectionProxy.doPing() did not have blacklist awareness.

LoadBalancingConnectionProxy implemented doPing() to ping all underlying connections, but it threw any exceptions
it encountered during this process.

With the global blacklist enabled, it catches these exceptions, adds the host to the global blacklist, and only throws an exception if
all hosts are down. (Bug #43421)

• When connecting with traceProtocol=true, no trace data was generated for the server greeting or login request. (Bug
#43070)

• When the MySQL Server was upgraded from 4.0 to 5.0, the Connector/J application then failed to connect to the server. This was
because authentication failed when the application ran from EBCDIC platforms such as z/OS. (Bug #43071)

• A ConcurrentModificationException was generated in LoadBalancingConnectionProxy:

java.util.ConcurrentModificationException
at java.util.HashMap$HashIterator.nextEntry(Unknown Source)
at java.util.HashMap$KeyIterator.next(Unknown Source)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.getGlobalBlacklist(LoadBalancingConnectionProxy.java:520)
at com.mysql.jdbc.RandomBalanceStrategy.pickConnection(RandomBalanceStrategy.java:55)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.pickNewConnection(LoadBalancingConnectionProxy.java:414)
at
com.mysql.jdbc.LoadBalancingConnectionProxy.invoke(LoadBalancingConnectionProxy.java:390)

MySQL Connector/J Change History

82

(Bug #42055)

• PreparedStatement.addBatch() did not check for all parameters being set, which led to inconsistent behavior in ex-
ecuteBatch(), especially when rewriting batched statements into multi-value INSERTs. (Bug #41161)

A.1.14. Changes in MySQL Connector/J 5.1.7 (21 October 2008)
Functionality Added or Changed

• When statements include ON DUPLICATE UPDATE, and rewriteBatchedStatements is set to true, batched statements are
not rewritten into the form INSERT INTO table VALUES (), (), (), instead the statements are executed sequentially.

Bugs Fixed

• When using trustCertificateKeyStoreUrl or clientCertificateKeyStoreUrl, an IllegalStateExcep-
tion was caused by an uninitialized TrustManagerFactoryImpl object. (Bug #11748637, Bug #36948, Bug #38192)

• Statement.getGeneratedKeys() returned two keys when using ON DUPLICATE KEY UPDATE and the row was up-
dated, not inserted. (Bug #42309)

• When configuring the Java Replication Driver the last slave specified was never used. (Bug #39611)

• When using the replication driver with autoReconnect=true, Connector/J checks in PreparedStatement.execute
(also called by CallableStatement.execute) to determine if the first character of the statement is an “S”, in an attempt to
block all statements that are not read-only-safe, for example non-SELECT statements. However, this also blocked CALLs to stored
procedures, even if the stored procedures were defined as SQL READ DATA or NO SQL. (Bug #40031)

• When the LoadBalancingConnectionProxy handles a SQLException with SQL state starting with “08”, it calls inval-
idateCurrentConnection, which in turn removes that Connection from liveConnections and the connection-
sToHostsMap, but it did not add the host to the new global blacklist, if the global blacklist was enabled.

There was also the possibility of a NullPointerException when trying to update stats, where connectionsToHost-
sMap.get(this.currentConn) was called:

int hostIndex = ((Integer) this.hostsToListIndexMap.get(this.connectionsToHostsMap.get(this.currentConn))).intValue();

This could happen if a client tried to issue a rollback after catching a SQLException caused by a connection failure. (Bug
#39784)

• When using the random load balancing strategy and starting with two servers that were both unavailable, an IndexOutOfBound-
sException was generated when removing a server from the whiteList. (Bug #38782)

• With large result sets ResultSet.findColumn became a performance bottleneck. (Bug #39962)

• Connector/J ignored the value of the MySQL Server variable auto_increment_increment. (Bug #39956)

• When an INSERT ON DUPLICATE KEY UPDATE was performed, and the key already existed, the affected-rows value
was returned as 1 instead of 0. (Bug #39352)

• Connector/J failed to parse TIMESTAMP strings for nanos correctly. (Bug #39911)

• Connector/J threw the following exception when using a read-only connection:

java.sql.SQLException: Connection is read-only. Queries leading to data
modification are not allowed.

(Bug #38747)

• Connector/J was unable to connect when using a non-latin1 password. (Bug #37570)

MySQL Connector/J Change History

83

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/call.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-master.html#sysvar_auto_increment_increment
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

• The useOldAliasMetadataBehavior connection property was ignored. (Bug #35753)

• When getGeneratedKeys() was called on a statement that had not been created with RETURN_GENERATED_KEYS, no ex-
ception was thrown, and batched executions then returned erroneous values. (Bug #34185)

• The loadBalance bestResponseTime blacklists did not have a global state. (Bug #33861)

• Incorrect result is returned from isAfterLast() in streaming ResultSet when using setFetchS-
ize(Integer.MIN_VALUE). (Bug #35170)

A.1.15. Changes in MySQL Connector/J 5.1.6 (07 March 2008)
Functionality Added or Changed

• Multiple result sets were not supported when using streaming mode to return data. Both normal statements and the result sets from
stored procedures now return multiple results sets, with the exception of result sets using registered OUTPUT parameters. (Bug
#33678)

• Add the verifyServerCertificate property. If set to "false" the driver will not verify the server's certificate when useSSL
is set to "true"

When using this feature, the keystore parameters should be specified by the clientCertificateKeyStore* properties, rather
than system properties, as the JSSE doesn't it straightforward to have a nonverifying trust store and the "default" key store.

• The profiler event handling has been made extensible using the profilerEventHandler connection property.

• XAConnections and datasources have been updated to the JDBC-4.0 standard.

Bugs Fixed

• Prepared statements from pooled connections caused a NullPointerException when closed() under JDBC-4.0. (Bug
#35489)

• When useServerPrepStmts=true and slow query logging is enabled, the connector throws a NullPointerException
when it encounters a slow query. (Bug #35666)

• The JDBC driver uses a different method for evaluating column names in resultsetmetadata.getColumnName() and
when looking for a column in resultset.getObject(columnName). This causes Hibernate to fail in queries where the two
methods yield different results, for example in queries that use alias names:

SELECT column AS aliasName from table

(Bug #35150)

• DatabaseMetaData.getColumns() returns incorrect COLUMN_SIZE value for SET column. (Bug #36830)

• When trying to read Time values like “00:00:00” with ResultSet.getTime(int) an exception is thrown. (Bug #36051)

• When using the keyword “loadbalance” in the connection string and trying to perform load balancing between two databases, the
driver appears to hang. (Bug #35660)

• JDBC data type getter method was changed to accept only column name, whereas previously it accepted column label. (Bug
#35610)

• In calling a stored function returning a bigint, an exception is encountered beginning:

java.sql.SQLException: java.lang.NumberFormatException: For input string:

followed by the text of the stored function starting after the argument list. (Bug #35199)

• JDBC connection URL parameters is ignored when using MysqlConnectionPoolDataSource. (Bug #35810)

MySQL Connector/J Change History

84

• Retrieving the server version information for an active connection could return invalid information if the default character encoding
on the host was not ASCII compatible. (Bug #31192)

• MysqlConnectionPoolDataSource does not support ReplicationConnection. Notice that we implemented
com.mysql.jdbc.Connection for ReplicationConnection, however, only accessors from ConnectionProperties are
implemented (not the mutators), and they return values from the currently active connection. All other methods from
com.mysql.jdbc.Connection are implemented, and operate on the currently active connection, with the exception of re-
setServerState() and changeUser(). (Bug #34937)

• When calling isValid() on an active connection, if the timeout is nonzero then the Connection is invalidated even if the
Connection is valid. (Bug #34703)

• When retrieving the column type name of a geometry field, the driver would return UNKNOWN instead of GEOMETRY. (Bug #34194)

• The internal class ResultSetInternalMethods referenced the nonpublic class
com.mysql.jdbc.CachedResultSetMetaData. (Bug #33823)

• ResultSet.getTimestamp() would throw a NullPointerException instead of a SQLException when called on an
empty ResultSet. (Bug #33162)

• ResultSet.getTimestamp() returns incorrect values for month/day of TIMESTAMPs when using server-side prepared state-
ments (not enabled by default). (Bug #34913)

• RowDataStatic doesn't always set the metadata in ResultSetRow, which can lead to failures when unpacking DATE, TIME,
DATETIME and TIMESTAMP types when using absolute, relative, and previous result set navigation methods. (Bug #34762)

• It was not possible to truncate a BLOB using Blog.truncate() when using 0 as an argument. (Bug #34677)

• Statements with batched values do not return correct values for getGeneratedKeys() when rewriteBatchedState-
ments is set to true, and the statement has an ON DUPLICATE KEY UPDATE clause. (Bug #34093)

• A NullPointerException could be raised when using client-side prepared statements and enabled the prepared statement
cache using the cachePrepStmts. (Bug #33734)

• When using a cursor fetch for a statement, the internal prepared statement could cause a memory leak until the connection was
closed. The internal prepared statement is now deleted when the corresponding result set is closed. (Bug #34518)

• Using server side cursors and cursor fetch, the table metadata information would return the data type name instead of the column
name. (Bug #33594)

• ResultSet returned by Statement.getGeneratedKeys() is not closed automatically when statement that created it is
closed. (Bug #30508)

• Load balancing connection using best response time would incorrectly "stick" to hosts that were down when the connection was first
created.

We solve this problem with a black list that is used during the picking of new hosts. If the black list ends up including all configured
hosts, the driver will retry for a configurable number of times (the retriesAllDown configuration property, with a default of 120
times), sleeping 250ms between attempts to pick a new connection.

We've also went ahead and made the balancing strategy extensible. To create a new strategy, implement the interface
com.mysql.jdbc.BalanceStrategy (which also includes our standard "extension" interface), and tell the driver to use it by
passing in the class name using the loadBalanceStrategy configuration property. (Bug #32877)

• Using CallableStatement.setNull() on a stored function would throw an ArrayIndexOutOfBounds exception when
setting the last parameter to null. (Bug #31823)

• When using a connection from ConnectionPoolDataSource, some Connection.prepareStatement() methods
would return null instead of the prepared statement. (Bug #32101)

• MysqlValidConnectionChecker doesn't properly handle connections created using ReplicationConnection. (Bug
#31790)

• During a Daylight Savings Time (DST) switchover, there was no way to store two timestamp/datetime values , as the hours end up
being the same when sent as the literal that MySQL requires.

MySQL Connector/J Change History

85

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Note that to get this scenario to work with MySQL (since it doesn't support per-value timezones), you need to configure your server
(or session) to be in UTC, and tell the driver not to use the legacy date/time code by setting useLegacyDatetimeCode to
"false". This will cause the driver to always convert to/from the server and client timezone consistently.

This bug fix also fixes Bug #15604, by adding entirely new date/time handling code that can be switched on by useLegacyDat-
etimeCode being set to "false" as a JDBC configuration property. For Connector/J 5.1.x, the default is "true", in trunk and beyond
it will be "false" (that is, the old date/time handling code will be deprecated) (Bug #32577, Bug #15604)

• When unpacking rows directly, we don't hand off error message packets to the internal method which decodes them correctly, so no
exception is raised, and the driver than hangs trying to read rows that aren't there. This tends to happen when calling stored proced-
ures, as normal SELECTs won't have an error in this spot in the protocol unless an I/O error occurs. (Bug #32246)

• Further fixes have been made to this bug in the event that a node is nonresponsive. Connector/J will now try a different random node
instead of waiting for the node to recover before continuing. (Bug #31053)

• DatabaseMetadata.getColumns() doesn't return the correct column names if the connection character isn't UTF-8. A bug
in MySQL server compounded the issue, but was fixed within the MySQL 5.0 release cycle. The fix includes changes to all the sec-
tions of the code that access the server metadata. (Bug #20491)

• Fixed ResultSetMetadata.getColumnName() for result sets returned from Statement.getGeneratedKeys() - it
was returning null instead of "GENERATED_KEY" as in 5.0.x.

A.1.16. Changes in MySQL Connector/J 5.1.5 (09 October 2007)
New Features, Compared to the 5.0 Series of Connector/J

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

• Support for JDBC-4.0 XML processing using JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query using
SHOW PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information using a public in-
terface).

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

Functionality Added or Changed

• Added autoSlowLog configuration property, overrides slowQueryThreshold* properties, driver determines slow queries by
those that are slower than 5 * stddev of the mean query time (outside the 96% percentile).

Bugs Fixed

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements. (Bug
#28256)

• When calling setTimestamp on a prepared statement, the timezone information stored in the calendar object was ignored. This
resulted in the incorrect DATETIME information being stored. The following example illustrates this:

Timestamp t = new Timestamp(cal.getTimeInMillis());
ps.setTimestamp(N, t, cal);

(Bug #15604)

A.1.17. Changes in MySQL Connector/J 5.1.4 (Not Released)
Only released internally.

MySQL Connector/J Change History

86

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Version 5.1.4 has no changelog entries.

A.1.18. Changes in MySQL Connector/J 5.1.3 (10 September 2007)
New Features, Compared to the 5.0 Series of Connector/J

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

• Support for JDBC-4.0 XML processing using JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query using
SHOW PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information using a public in-
terface).

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

Functionality Added or Changed

• Connector/J now connects using an initial character set of utf-8 solely for the purpose of authentication to permit user names or
database names in any character set to be used in the JDBC connection URL. (Bug #29853)

• Setting useBlobToStoreUTF8OutsideBMP to true tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that has characters outside the BMP (4-byte encodings), which MySQL
server can't handle natively.

Set utf8OutsideBmpExcludedColumnNamePattern to a regex so that column names matching the given regex will still
be treated as BLOBs The regex must follow the patterns used for the java.util.regexpackage. The default is to exclude no
columns, and include all columns.

Set utf8OutsideBmpIncludedColumnNamePattern to specify exclusion rules to
utf8OutsideBmpExcludedColumnNamePattern". The regex must follow the patterns used for the java.util.regex package.

• New methods on com.mysql.jdbc.Statement: setLocalInfileInputStream() and getLocalInfileInputStream():

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for
a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the
path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically
be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request
data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using setLocalInfileInputStream().

• Errors encountered during Statement/PreparedStatement/CallableStatement.executeBatch() when re-
writeBatchStatements has been set to true now return BatchUpdateExceptions according to the setting of con-
tinueBatchOnError.

If continueBatchOnError is set to true, the update counts for the "chunk" that were sent as one unit will all be set to EX-
ECUTE_FAILED, but the driver will attempt to process the remainder of the batch. You can determine which "chunk" failed by
looking at the update counts returned in the BatchUpdateException.

If continueBatchOnError is set to "false", the update counts returned will contain all updates up-to and including the failed
"chunk", with all counts for the failed "chunk" set to EXECUTE_FAILED.

Since MySQL doesn't return multiple error codes for multiple-statements, or for multi-value INSERT/REPLACE, it is the applica-
tion's responsibility to handle determining which item(s) in the "chunk" actually failed.

MySQL Connector/J Change History

87

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

• Statement.setQueryTimeout()s now affect the entire batch for batched statements, rather than the individual statements
that make up the batch.

• JDBC-4.0 ease-of-development features including auto-registration with the DriverManager through the service provider mech-
anism, standardized Connection validity checks and categorized SQLExceptions based on recoverability/retry-ability and class
of the underlying error.

• The driver will automatically adjust the server session variable net_write_timeout when it determines its been asked for a
"streaming" result, and resets it to the previous value when the result set has been consumed. (The configuration property is named
netTimeoutForStreamingResults, with a unit of seconds, the value '0' means the driver will not try and adjust this value).

• Added experimental support for statement "interceptors" through the com.mysql.jdbc.StatementInterceptor interface,
examples are in com/mysql/jdbc/interceptors. Implement this interface to be placed "in between" query execution, so
that it can be influenced (currently experimental).

• The data (and how it is stored) for ResultSet rows are now behind an interface which enables us (in some cases) to allocate less
memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is ever act-
ive.

• The driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column value)
depending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The threshold for row
size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration property lar-
geRowSizeThreshold, which has a default value of 2KB.

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-written in the
form "CALL (...); CALL (...); ..." to send the batch in as few client/server round trips as possible.

• Added two configuration parameters:

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata
returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs as Strings. Added
specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

Bugs Fixed

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies has
been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all parameters as
IN parameters but permit callers to call registerOutParameter() on them without throwing an exception. (Bug #28689)

• NPE with null column values when padCharsWithSpace is set to true. (Bug #30851)

• setObject(int, Object, int, int) delegate in PreparedStatementWrapper delegates to wrong method. (Bug #30892)

• Closing a load-balanced connection would cause a ClassCastException. (Bug #29852)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server ver-
sions older than 5.0.3, 64 for versions 5.0.3 to 5.0.5 and 65 for versions newer than 5.0.5. (Bug #28972)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immediately
after clearBatch(). (Bug #30550)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL server
versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results from sub-
queries and functions were indistinguishable from each other, leading to type-related bugs. (Bug #30664)

• Connection checker for JBoss didn't use same method parameters using reflection, causing connections to always seem "bad". (Bug
#29106)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata. (Bug

MySQL Connector/J Change History

88

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

#27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug #27182)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug #27915)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the ver-
sion information during the build. (Bug #21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead send a
ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a LoadBalanced-
Connection, will send the ping across all active connections.

A.1.19. Changes in MySQL Connector/J 5.1.2 (29 June 2007)
This is a new Beta development release, fixing recently discovered bugs.

Functionality Added or Changed

• Setting the configuration property rewriteBatchedStatements to true will now cause the driver to rewrite batched pre-
pared statements with more than 3 parameter sets in a batch into multi-statements (separated by ";") if they are not plain (that is,
without SELECT or ON DUPLICATE KEY UPDATE clauses) INSERT or REPLACE statements.

A.1.20. Changes in MySQL Connector/J 5.1.1 (22 June 2007)
This is a new Alpha development release, adding new features and fixing recently discovered bugs.

Functionality Added or Changed

• Incompatible Change: Pulled vendor-extension methods of Connection implementation out into an interface to support
java.sql.Wrapper functionality from ConnectionPoolDataSource. The vendor extensions are javadoc'd in the
com.mysql.jdbc.Connection interface.

For those looking further into the driver implementation, it is not an API that is used for pluggability of implementations inside our
driver (which is why there are still references to ConnectionImpl throughout the code).

We've also added server and client prepareStatement() methods that cover all of the variants in the JDBC API.

Connection.serverPrepare(String) has been re-named to Connection.serverPrepareStatement() for con-
sistency with Connection.clientPrepareStatement().

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-
written in the form CALL (...); CALL (...); ... to send the batch in as few client/server round trips as possible.

• See the sources (fully javadoc'd) for com.mysql.jdbc.StatementInterceptor for more details until we iron out the API
and get it documented in the manual.

• Added experimental support for statement "interceptors" through the com.mysql.jdbc.StatementInterceptor interface,
examples are in com/mysql/jdbc/interceptors.

Implement this interface to be placed "in between" query execution, so that you can influence it. (currently experimental).

StatementInterceptors are "chainable" when configured by the user, the results returned by the "current" interceptor will be
passed on to the next on in the chain, from left-to-right order, as specified by the user in the JDBC configuration property state-
mentInterceptors.

• Driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column value) de-
pending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The threshold for row
size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration property lar-
geRowSizeThreshold, which has a default value of 2KB.

MySQL Connector/J Change History

89

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• Similar to Connection, we pulled out vendor extensions to Statement into an interface named com.mysql.Statement,
and moved the Statement class into com.mysql.StatementImpl. The two methods (javadoc'd in
com.mysql.Statement are enableStreamingResults(), which already existed, and disableStreamingRes-
ults() which sets the statement instance back to the fetch size and result set type it had before enableStreamingRes-
ults() was called.

• The data (and how it is stored) for ResultSet rows are now behind an interface which enables us (in some cases) to allocate less
memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is ever act-
ive.

• Externalized the descriptions of connection properties.

• Made it possible to retrieve prepared statement parameter bindings (to be used in StatementInterceptors, primarily).

• Row navigation now causes any streams/readers open on the result set to be closed, as in some cases we're reading directly from a
shared network packet and it will be overwritten by the "next" row.

A.1.21. Changes in MySQL Connector/J 5.1.0 (11 April 2007)
This is the first public alpha release of the current Connector/J 5.1 development branch, providing an insight to upcoming features. Al-
though some of these are still under development, this release includes the following new features and changes (in comparison to the
current Connector/J 5.0 production release):

Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their use
by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Note

The disabling of server-side prepared statements does not affect the operation of the connector. However, if you use the
useTimezone=true connection option and use client-side prepared statements (instead of server-side prepared state-
ments) you should also set useSSPSCompatibleTimezoneShift=true.

Functionality Added or Changed

• Added support for JDBC-4.0's Wrapper interface.

• com.mysql.jdbc.java6.rtjar: Full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's client information. The backend storage of information provided using Connec-
tion.setClientInfo() and retrieved by Connection.getClientInfo() is pluggable by any class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface and has a no-args constructor.

The implementation used by the driver is configured using the clientInfoProvider configuration property (with a default of
value of com.mysql.jdbc.JDBC4CommentClientInfoProvider, an implementation which lists the client information as
a comment prepended to every query sent to the server).

This functionality is only available when using Java-6 or newer.

• New feature—driver will automatically adjust session variable net_write_timeout when it determines it has been asked for a
"streaming" result, and resets it to the previous value when the result set has been consumed. (configuration property is named
netTimeoutForStreamingResults value and has a unit of seconds, the value 0 means the driver will not try and adjust this
value).

• Re-worked Ant buildfile to build JDBC-4.0 classes separately, as well as support building under Eclipse (since Eclipse can't mix/
match JDKs).

To build, you must set JAVA_HOME to J2SDK-1.4.2 or Java-5, and set the following properties on your Ant command line:

MySQL Connector/J Change History

90

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout

• com.mysql.jdbc.java6.javac: Full path to your Java-6 javac executable

• com.mysql.jdbc.java6.rtjar: Full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's SQLXML interfaces.

• com.mysql.jdbc.java6.javac: Full path to your Java-6 javac executable

• Added support for JDBC-4.0's NCLOB, and NCHAR/NVARCHAR types.

• Added support for JDBC-4.0 categorized SQLExceptions.

• Refactored CommunicationsException into a JDBC-3.0 version, and a JDBC-4.0 version (which extends SQLRecover-
ableException, now that it exists).

Note

This change means that if you were catching com.mysql.jdbc.CommunicationsException in your applications
instead of looking at the SQLState class of 08, and are moving to Java 6 (or newer), you need to change your imports to
that exception to be com.mysql.jdbc.exceptions.jdbc4.CommunicationsException, as the old class
will not be instantiated for communications link-related errors under Java 6.

A.2. Changes in MySQL Connector/J 5.0.x

A.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)
Functionality Added or Changed

• Driver will now fall back to sane defaults for max_allowed_packet and net_buffer_length if the server reports them in-
correctly (and will log this situation at WARN level, since it is actually an error condition).

• XAConnections now start in auto-commit mode (as per JDBC-4.0 specification clarification).

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs as Strings. Added spe-
cifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• Added two configuration parameters:

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata
returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs as Strings. Added
specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata re-
turned by the server for GROUP BY clauses. Defaults to false.

Bugs Fixed

• Connections established using URLs of the form jdbc:mysql:loadbalance:// weren't doing failover if they tried to connect
to a MySQL server that was down. The driver now attempts connections to the next "best" (depending on the load balance strategy
in use) server, and continues to attempt connecting to the next "best" server every 250 milliseconds until one is found that is up and
running or 5 minutes has passed.

If the driver gives up, it will throw the last-received SQLException. (Bug #31053)

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies has
been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all parameters as

MySQL Connector/J Change History

91

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_buffer_length

IN parameters but permit callers to call registerOutParameter() on them without throwing an exception. (Bug #28689)

• NPE with null column values when padCharsWithSpace is set to true. (Bug #30851)

• setObject(int, Object, int, int) delegate in PreparedStatementWrapper delegates to wrong method. (Bug #30892)

• Closing a load-balanced connection would cause a ClassCastException. (Bug #29852)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server ver-
sions older than 5.0.3, 64 for versions 5.0.3 to 5.0.5 and 65 for versions newer than 5.0.5. (Bug #28972)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immediately
after clearBatch(). (Bug #30550)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL server
versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results from sub-
queries and functions were indistinguishable from each other, leading to type-related bugs. (Bug #30664)

• Connection checker for JBoss didn't use same method parameters using reflection, causing connections to always seem "bad". (Bug
#29106)

• Cached metadata with PreparedStatement.execute() throws NullPointerException. (Bug #27412)

• UNSIGNED types not reported using DBMD.getTypeInfo(), and capitalization of type names is not consistent between DB-
MD.getColumns(), RSMD.getColumnTypeName() and DBMD.getTypeInfo().

This fix also ensures that the precision of UNSIGNED MEDIUMINT and UNSIGNED BIGINT is reported correctly using DB-
MD.getColumns(). (Bug #27916)

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements. (Bug
#28256)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata. (Bug
#27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug #27182)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug #27915)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the ver-
sion information during the build. (Bug #21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead send a
ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a LoadBalanced-
Connection, will send the ping across all active connections.

A.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)
Functionality Added or Changed

• Added configuration property useNanosForElapsedTime - for profiling/debugging functionality that measures elapsed time,
should the driver try to use nanoseconds resolution if available (requires JDK >= 1.5)?

Note

If useNanosForElapsedTime is set to true, and this property is set to "0" (or left default), then elapsed times will
still be measured in nanoseconds (if possible), but the slow query threshold will be converted from milliseconds to nano-
seconds, and thus have an upper bound of approximately 2000 milliseconds (as that threshold is represented as an integer,
not a long).

• Added new debugging functionality - Setting configuration property includeInnodbStatusInDeadlockExceptions to
true will cause the driver to append the output of SHOW ENGINE INNODB STATUS to deadlock-related exceptions, which will

MySQL Connector/J Change History

92

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/show-engine.html

enumerate the current locks held inside InnoDB.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• Setting the configuration parameter useCursorFetch to true for MySQL-5.0+ enables the use of cursors that enable Connect-
or/J to save memory by fetching result set rows in chunks (where the chunk size is set by calling setFetchSize() on a Statement or
ResultSet) by using fully-materialized cursors on the server.

• Added configuration properties to enable tuning of TCP/IP socket parameters:

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• Setting useDynamicCharsetInfo to false now causes driver to use static lookups for collations as well (makes ResultSet-
Metadata.isCaseSensitive() much more efficient, which leads to performance increase for ColdFusion, which calls this method for
every column on every table it sees, it appears).

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• Added configuration property slowQueryThresholdNanos - if useNanosForElapsedTime is set to true, and this prop-
erty is set to a nonzero value the driver will use this threshold (in nanosecond units) to determine if a query was slow, instead of us-
ing millisecond units.

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• Driver detects when it is running in a ColdFusion MX server (tested with version 7), and uses the configuration bundle coldFu-
sion, which sets useDynamicCharsetInfo to false (see previous entry), and sets useLocalSessionState and
autoReconnect to true.

• Give more information in EOFExceptions thrown out of MysqlIO (how many bytes the driver expected to read, how many it actu-
ally read, say that communications with the server were unexpectedly lost).

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• The driver will now automatically set useServerPrepStmts to true when useCursorFetch has been set to true, since
the feature requires server-side prepared statements to function.

Bugs Fixed

• Parser in client-side prepared statements eats character following '/' if it is not a multi-line comment. (Bug #28851)

• Parser in client-side prepared statements runs to end of statement, rather than end-of-line for '#' comments. Also added support for '-
-' single-line comments. (Bug #28956)

• Don't send any file data in response to LOAD DATA LOCAL INFILE if the feature is disabled at the client side. This is to prevent a
malicious server or man-in-the-middle from asking the client for data that the client is not expecting. Thanks to Jan Kneschke for
discovering the exploit and Andrey "Poohie" Hristov, Konstantin Osipov and Sergei Golubchik for discussions about implications
and possible fixes. (Bug #29605)

MySQL Connector/J Change History

93

• PreparedStatement.getMetaData() for statements containing leading one-line comments is not returned correctly.

As part of this fix, we also overhauled detection of DML for executeQuery() and SELECTs for executeUpdate() in plain
and prepared statements to be aware of the same types of comments. (Bug #28469)

A.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)
Functionality Added or Changed

• More intelligent initial packet sizes for the "shared" packets are used (512 bytes, rather than 16K), and initial packets used during
handshake are now sized appropriately as to not require reallocation.

• Driver will now use INSERT INTO ... VALUES (DEFAULT)form of statement for updatable result sets for Result-
Set.insertRow(), rather than pre-populating the insert row with values from DatabaseMetaData.getColumns()(which
results in a SHOW FULL COLUMNS on the server for every result set). If an application requires access to the default values before
insertRow() has been called, the JDBC URL should be configured with populateInsertRowWithDefaultValues set
to true.

This fix specifically targets performance issues with ColdFusion and the fact that it seems to ask for updatable result sets no matter
what the application does with them.

• Fixed issue where a failed-over connection would let an application call setReadOnly(false), when that call should be ig-
nored until the connection is reconnected to a writable master unless failoverReadOnly had been set to false.

• com.mysql.jdbc.[NonRegistering]Driver now understands URLs of the format jdbc:mysql:replication://
and jdbc:mysql:loadbalance:// which will create a ReplicationConnection (exactly like when using
[NonRegistering]ReplicationDriver) and an experimental load-balanced connection designed for use with SQL nodes
in a MySQL Cluster/NDB environment, respectively.

In an effort to simplify things, we're working on deprecating multiple drivers, and instead specifying different core behavior based
upon JDBC URL prefixes, so watch for [NonRegistering]ReplicationDriver to eventually disappear, to be replaced
with com.mysql.jdbc[NonRegistering]Driver with the new URL prefix.

• random: The driver will pick a random host for each request. This tends to work better than round-robin, as the randomness will
somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to overloaded
nodes if there are variations in response times across the workload.

• Give better error message when "streaming" result sets, and the connection gets clobbered because of exceeding
net_write_timeout on the server.

• New configuration property, enableQueryTimeouts (default true).

When enabled, query timeouts set with Statement.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout would have expired if it hadn't been cancelled by the driver.
High-load environments might want to consider disabling this functionality. (this configuration property is part of the maxPer-
formance configuration bundle).

• Added configuration property useDynamicCharsetInfo. If set to false (the default), the driver will use a per-connection
cache of character set information queried from the server when necessary, or when set to true, use a built-in static mapping that is
more efficient, but isn't aware of custom character sets or character sets implemented after the release of the JDBC driver.

Note

This only affects the padCharsWithSpace configuration property and the ResultSet-
MetaData.getColumnDisplayWidth() method.

• When useLocalSessionState is set to true and connected to a MySQL-5.0 or later server, the JDBC driver will now de-
termine whether an actual commit or rollback statement needs to be sent to the database when Connection.commit() or
Connection.rollback() is called.

This is especially helpful for high-load situations with connection pools that always call Connection.rollback() on connec-
tion check-in/check-out because it avoids a round-trip to the server.

MySQL Connector/J Change History

94

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/show-columns.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout

• Added configuration property padCharsWithSpace (defaults to false). If set to true, and a result set column has the CHAR
type and the value does not fill the amount of characters specified in the DDL for the column, the driver will pad the remaining
characters with space (for ANSI compliance).

• bestResponseTime: The driver will route the request to the host that had the best response time for the previous transaction.

• Added an experimental load-balanced connection designed for use with SQL nodes in a MySQL Cluster/NDB environment (This is
not for master-slave replication. For that, we suggest you look at ReplicationConnection or lbpool).

If the JDBC URL starts with jdbc:mysql:loadbalance://host-1,host-2,...host-n, the driver will create an im-
plementation of java.sql.Connection that load balances requests across a series of MySQL JDBC connections to the given
hosts, where the balancing takes place after transaction commit.

Therefore, for this to work (at all), you must use transactions, even if only reading data.

Physical connections to the given hosts will not be created until needed.

The driver will invalidate connections that it detects have had communication errors when processing a request. A new connection
to the problematic host will be attempted the next time it is selected by the load balancing algorithm.

There are two choices for load balancing algorithms, which may be specified by the loadBalanceStrategy JDBC URL con-
figuration property:

• random: The driver will pick a random host for each request. This tends to work better than round-robin, as the randomness
will somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to over-
loaded nodes if there are variations in response times across the workload.

• bestResponseTime: The driver will route the request to the host that had the best response time for the previous transaction.

Bugs Fixed

• When the configuration property useCursorFetch was set to true, sometimes server would return new, more exact metadata
during the execution of the server-side prepared statement that enables this functionality, which the driver ignored (using the origin-
al metadata returned during prepare()), causing corrupt reading of data due to type mismatch when the actual rows were re-
turned. (Bug #26173)

• Whitespace surrounding storage/size specifiers in stored procedure parameters declaration causes NumberFormatException to
be thrown when calling stored procedure on JDK-1.5 or newer, as the Number classes in JDK-1.5+ are whitespace intolerant. (Bug
#25624)

• Connection.getTransactionIsolation() uses "SHOW VARIABLES LIKE" which is very inefficient on MySQL-5.0+
servers. (Bug #27655)

• ResultSet.get*() with a column index < 1 returns misleading error message. (Bug #27317)

• Fixed issue where calling getGeneratedKeys() on a prepared statement after calling execute() didn't always return the
generated keys (executeUpdate() worked fine however). (Bug #27655)

• BIT(> 1) is returned as java.lang.String from ResultSet.getObject() rather than byte[]. (Bug #25328)

• PreparedStatement is not closed in BlobFromLocator.getBytes(). (Bug #26592)

• Fast date/time parsing doesn't take into account 00:00:00 as a legal value. (Bug #26789)

• Client options not sent correctly when using SSL, leading to stored procedures not being able to return results. Thanks to Don Co-
hen for the bug report, testcase and patch. (Bug #25545)

• More useful error messages are generated when the driver thinks a result set is not updatable. (Thanks to Ashley Martens for the
patch). (Bug #28085)

• CALL /* ... */ some_proc() doesn't work. As a side effect of this fix, you can now use /* */ and # comments when
preparing statements using client-side prepared statement emulation.

If the comments happen to contain parameter markers (?), they will be treated as belonging to the comment (that is, not recognized)

MySQL Connector/J Change History

95

http://dev.mysql.com/doc/refman/5.5/en/char.html

rather than being a parameter of the statement.

Note

The statement when sent to the server will contain the comments as-is, they're not stripped during the process of preparing
the PreparedStatement or CallableStatement.

(Bug #27400)

• Comments in DDL of stored procedures/functions confuse procedure parser, and thus metadata about them can not be created, lead-
ing to inability to retrieve said metadata, or execute procedures that have certain comments in them. (Bug #26959)

• Using ResultSet.get*() with a column index less than 1 returns a misleading error message. (Bug #27317)

• CallableStatements with OUT/INOUT parameters that are "binary" (BLOB, BIT, (VAR)BINARY, JAVA_OBJECT) have
extra 7 bytes. (Bug #25715)

• Statement.setMaxRows() is not effective on result sets materialized from cursors. (Bug #25517)

A.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)
Functionality Added or Changed

• We've added a new configuration option treatUtilDateAsTimestamp, which is false by default, as (1) We already had
specific behavior to treat java.util.Date as a java.sql.Timestamp because it is useful to many folks, and (2) that behavior will very
likely be required for drivers JDBC-post-4.0.

• Added configuration property localSocketAddress, which is the host name or IP address given to explicitly configure the in-
terface that the driver will bind the client side of the TCP/IP connection to when connecting.

• Fixed logging of XA commands sent to server, it is now configurable using logXaCommands property (defaults to false).

• Usage Advisor now detects empty results sets and does not report on columns not referenced in those empty sets.

• Improved speed of datetime parsing for ResultSets that come from plain or nonserver-side prepared statements. You can enable
old implementation with useFastDateParsing=false as a configuration parameter.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their
use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements, add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

• The rewriteBatchedStatements feature can now be used with server-side prepared statements.

• Usage Advisor will now issue warnings for result sets with large numbers of rows. You can configure the trigger value by using the
resultSetSizeThreshold parameter, which has a default value of 100.

Bugs Fixed

• When using a server-side prepared statement the driver would send timestamps to the server using nanoseconds instead of milli-
seconds. (Bug #21438)

• Connection property socketFactory wasn't exposed using correctly named mutator/accessor, causing data source implementa-
tions that use JavaBean naming conventions to set properties to fail to set the property (and in the case of SJAS, fail silently when
trying to set this parameter). (Bug #26326)

• ParameterMetaData throws NullPointerException when prepared SQL has a syntax error. Added generateSim-

MySQL Connector/J Change History

96

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

pleParameterMetadata configuration property, which when set to true will generate metadata reflecting VARCHAR for
every parameter (the default is false, which will cause an exception to be thrown if no parameter metadata for the statement is ac-
tually available). (Bug #21267)

• Connector/J now returns a better error message when server doesn't return enough information to determine stored procedure/func-
tion parameter types. (Bug #24065)

• When using the rewriteBatchedStatements connection option with PreparedState.executeBatch() an internal
memory leak would occur. (Bug #25073)

• EscapeProcessor gets confused by multiple backslashes. We now push the responsibility of syntax errors back on to the server
for most escape sequences. (Bug #25399)

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly. (Bug #24840)

• DatabaseMetaData.getSchemas() doesn't return a TABLE_CATALOG column. (Bug #23303)

• INOUT parameters in CallableStatements get doubly-escaped. (Bug #25379)

• Client-side prepared statement parser gets confused by in-line comments /*...*/ and therefore cannot rewrite batch statements or
reliably detect the type of statements when they are used. (Bug #25025)

• Results sets from UPDATE statements that are part of multi-statement queries would cause an SQLException error, "Result is
from UPDATE". (Bug #25009)

• When using server-side prepared statements and timestamp columns, value would be incorrectly populated (with nanoseconds, not
microseconds). (Bug #21438)

• Some exceptions thrown out of StandardSocketFactory were needlessly wrapped, obscuring their true cause, especially
when using socket timeouts. (Bug #21480)

• StringUtils.indexOfIgnoreCaseRespectQuotes() isn't case-insensitive on the first character of the target. This bug
also affected rewriteBatchedStatements functionality when prepared statements did not use uppercase for the VALUES
clause. (Bug #25047)

• Using DatabaseMetaData.getSQLKeywords() does not return a all of the of the reserved keywords for the current MySQL
version. Current implementation returns the list of reserved words for MySQL 5.1, and does not distinguish between versions. (Bug
#24794)

• A query execution which timed out did not always throw a MySQLTimeoutException. (Bug #25836)

• A connection error would occur when connecting to a MySQL server with certain character sets. Some collations/character sets re-
ported as "unknown" (specifically cias variants of existing character sets), and inability to override the detected server character
set. (Bug #23645)

• Using setFetchSize() breaks prepared SHOW and other commands. (Bug #24360)

• Fixed issue where field-level for metadata from DatabaseMetaData when using INFORMATION_SCHEMA didn't have refer-
ences to current connections, sometimes leading to Null Pointer Exceptions (NPEs) when introspecting them using ResultSet-
MetaData. (Bug #25073)

• Using DATETIME columns would result in time shifts when useServerPrepStmts was true. This occurred due to different be-
havior when using client-side compared to server-side prepared statements and the useJDBCCompliantTimezoneShift op-
tion. This is now fixed if moving from server-side prepared statements to client-side prepared statements by setting useSSPSCom-
patibleTimezoneShift to true, as the driver can't tell if this is a new deployment that never used server-side prepared state-
ments, or if it is an existing deployment that is switching to client-side prepared statements from server-side prepared statements.
(Bug #24344)

• When using a JDBC connection URL that is malformed, the NonRegisteringDriver.getPropertyInfo method will
throw a Null Pointer Exception (NPE). (Bug #22628)

• Storing a java.util.Date object in a BLOB column would not be serialized correctly during setObject. (Bug #25787)

• Inconsistency between getSchemas and INFORMATION_SCHEMA. (Bug #23304)

• Calendars and timezones are now lazily instantiated when required. (Bug #24351)

MySQL Connector/J Change History

97

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/show.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• Timer instance used for Statement.setQueryTimeout() created per-connection, rather than per-VM, causing memory leak.
(Bug #25514)

• Calling Statement.cancel() could result in a Null Pointer Exception (NPE). (Bug #24721)

• Fixed an issue where XADataSources couldn't be bound into JNDI, as the DataSourceFactory didn't know how to create
instances of them.

Other Changes

• When using cached metadata, skip field-level metadata packets coming from the server, rather than reading them and discarding
them without creating com.mysql.jdbc.Field instances.

• Use a java.util.TreeMap to map column names to ordinal indexes for ResultSet.findColumn() instead of a
HashMap. This enables us to have case-insensitive lookups (required by the JDBC specification) without resorting to the many tran-
sient object instances needed to support this requirement with a normal HashMap with either case-adjusted keys, or case-insensitive
keys. (In the worst case scenario for lookups of a 1000 column result set, TreeMaps are about half as fast wall-clock time as a
HashMap, however in normal applications their use gives many orders of magnitude reduction in transient object instance creation
which pays off later for CPU usage in garbage collection).

• Fixed cases where ServerPreparedStatements weren't using cached metadata when cacheResultSet-
Metadata=true was used.

• Take localSocketAddress property into account when creating instances of CommunicationsException when the un-
derlying exception is a java.net.BindException, so that a friendlier error message is given with a little internal diagnostics.

• Fixed some Null Pointer Exceptions (NPEs) when cached metadata was used with UpdatableResultSets.

• When extracting foreign key information from SHOW CREATE TABLE in DatabaseMetaData, ignore exceptions relating to
tables being missing (which could happen for cross-reference or imported-key requests, as the list of tables is generated first, then it-
erated).

• Reverted back to internal character conversion routines for single-byte character sets, as the ones internal to the JVM are using
much more CPU time than our internal implementation.

• Changed cached result set metadata (when using cacheResultSetMetadata=true) to be cached per-connection rather than
per-statement as previously implemented.

• Throw exceptions encountered during timeout to thread calling Statement.execute*(), rather than RuntimeException.

• Re-worked stored procedure parameter parser to be more robust. Driver no longer requires BEGIN in stored procedure definition,
but does have requirement that if a stored function begins with a label directly after the "returns" clause, that the label is not a
quoted identifier.

• Performance enhancement of initial character set configuration, driver will only send commands required to configure connection
character set session variables if the current values on the server do not match what is required.

• Avoid static synchronized code in JVM class libraries for dealing with default timezones.

A.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)
Bugs Fixed

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side pre-
pared statement). (Bug #22290)

• Newlines causing whitespace to span confuse procedure parser when getting parameter metadata for stored procedures. (Bug
#22024)

• Driver was using milliseconds for Statement.setQueryTimeout() when specification says argument is to be in seconds. (Bug #22359)

• Added new _ci collations to CharsetMapping - utf8_unicode_ci not working. (Bug #22456)

MySQL Connector/J Change History

98

http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html

• Workaround for server crash when calling stored procedures using a server-side prepared statement (driver now detects pre-
pare(stored procedure) and substitutes client-side prepared statement). (Bug #22297)

• When using information_schema for metadata, COLUMN_SIZE for getColumns() is not clamped to range of java.lang.Integer as is
the case when not using information_schema, thus leading to a truncation exception that isn't present when not using informa-
tion_schema. (Bug #21544)

• DBMD.getColumns() does not return expected COLUMN_SIZE for the SET type, now returns length of largest possible set disreg-
arding whitespace or the "," delimiters to be consistent with the ODBC driver. (Bug #22613)

• Column names don't match metadata in cases where server doesn't return original column names (column functions) thus breaking
compatibility with applications that expect 1-to-1 mappings between findColumn() and rsmd.getColumnName(), usually
manifests itself as "Can't find column ('')" exceptions. (Bug #21379)

• Driver now supports {call sp} (without "()" if procedure has no arguments).

• DatabaseMetaData correctly reports true for supportsCatalog*() methods.

• Fixed configuration property jdbcCompliantTruncation was not being used for reads of result set values.

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'.

A.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006, beta)
Functionality Added or Changed

• Added configuration option noAccessToProcedureBodies which will cause the driver to create basic parameter metadata for
CallableStatements when the user does not have access to procedure bodies using SHOW CREATE PROCEDURE or select-
ing from mysql.proc instead of throwing an exception. The default value for this option is false

Bugs Fixed

• Fixed Statement.cancel() causes NullPointerException if underlying connection has been closed due to server fail-
ure. (Bug #20650)

• If the connection to the server has been closed due to a server failure, then the cleanup process will call Statement.cancel(),
triggering a NullPointerException, even though there is no active connection. (Bug #20650)

A.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)
Bugs Fixed

• MysqlXaConnection.recover(int flags) now permits combinations of XAResource.TMSTARTRSCAN and
TMENDRSCAN. To simulate the “scanning” nature of the interface, we return all prepared XIDs for TMSTARTRSCAN, and no new
XIDs for calls with TMNOFLAGS, or TMENDRSCAN when not in combination with TMSTARTRSCAN. This change was made for
API compliance, as well as integration with IBM WebSphere's transaction manager. (Bug #20242)

• Fixed MysqlValidConnectionChecker for JBoss doesn't work with MySQLXADataSources. (Bug #20242)

• Added connection/datasource property pinGlobalTxToPhysicalConnection (defaults to false). When set to true,
when using XAConnections, the driver ensures that operations on a given XID are always routed to the same physical connec-
tion. This enables the XAConnection to support XA START ... JOIN after XA END has been called, and is also a work-
around for transaction managers that don't maintain thread affinity for a global transaction (most either always maintain thread affin-
ity, or have it as a configuration option). (Bug #20242)

• Fixed driver fails on non-ASCII platforms. The driver was assuming that the platform character set would be a superset of MySQL's
latin1 when doing the handshake for authentication, and when reading error messages. We now use Cp1252 for all strings sent to
the server during the handshake phase, and a hard-coded mapping of the language system variable to the character set that is used
for error messages. (Bug #18086)

MySQL Connector/J Change History

99

http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/xa-statements.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_language

• Fixed can't use XAConnection for local transactions when no global transaction is in progress. (Bug #17401)

• Better caching of character set converters (per-connection) to remove a bottleneck for multibyte character sets. (Bug #20242)

• Fixed ConnectionProperties (and thus some subclasses) are not serializable, even though some J2EE containers expect them
to be. (Bug #19169)

A.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)
Not released due to a packaging error

Version 5.0.1 has no changelog entries.

A.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)
Bugs Fixed

• Added support for Connector/MXJ integration using url subprotocol jdbc:mysql:mxj://.... (Bug #14729)

• Idle timeouts cause XAConnections to whine about rolling themselves back. (Bug #14729)

• When fix for Bug #14562 was merged from 3.1.12, added functionality for CallableStatement's parameter metadata to return
correct information for .getParameterClassName(). (Bug #14729)

• Added service-provider entry to META-INF/services/java.sql.Driver for JDBC-4.0 support. (Bug #14729)

• Fuller synchronization of Connection to avoid deadlocks when using multithreaded frameworks that multithread a single connec-
tion (usually not recommended, but the JDBC spec permits it anyways), part of fix to Bug #14972). (Bug #14729)

• Moved all SQLException constructor usage to a factory in SQLError (ground-work for JDBC-4.0 SQLState-based exception
classes). (Bug #14729)

• Removed Java5-specific calls to BigDecimal constructor (when result set value is '', (int)0 was being used as an argument
indirectly using method return value. This signature doesn't exist prior to Java5.) (Bug #14729)

• Implementation of Statement.cancel() and Statement.setQueryTimeout(). Both require MySQL-5.0.0 or newer
server, require a separate connection to issue the KILL QUERY statement, and in the case of setQueryTimeout() creates an
additional thread to handle the timeout functionality.

Note: Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeExceptions rather
than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to timeout ex-
piration and have it throw the exception instead. (Bug #14729)

• Return "[VAR]BINARY" for RSMD.getColumnTypeName() when that is actually the type, and it can be distinguished
(MySQL-4.1 and newer). (Bug #14729)

• Add one level of indirection of internal representation of CallableStatement parameter metadata to avoid class not found is-
sues on JDK-1.3 for ParameterMetadata interface (which doesn't exist prior to JDBC-3.0).

• PreparedStatement.setString() didn't work correctly when sql_mode on server contained
NO_BACKSLASH_ESCAPES and no characters that needed escaping were present in the string.

• Setting useJDBCCompliantTimezoneShift=true (it is not the default) causes the driver to use GMT for all
TIMESTAMP/DATETIME time zones, and the current VM time zone for any other type that refers to time zones. This feature can
not be used when useTimezone=true to convert between server and client time zones.

• Return original column name for RSMD.getColumnName() if the column was aliased, alias name for .getColumnLabel()
(if aliased), and original table name for .getTableName(). Note this only works for MySQL-4.1 and newer, as older servers
don't make this information available to clients.

• Moved -bin-g.jar file into separate debug subdirectory to avoid confusion.

• XADataSource implemented (ported from 3.2 branch which won't be released as a product). Use

MySQL Connector/J Change History

100

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_no_backslash_escapes
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource as your datasource class name in your application server to
utilize XA transactions in MySQL-5.0.10 and newer.

• Do not permit .setAutoCommit(true), or .commit() or .rollback() on an XA-managed connection as per the JDBC
specification.

• If the connection useTimezone is set to true, then also respect time zone conversions in escape-processed string literals (for ex-
ample, "{ts ...}" and "{t ...}").

• Added unit tests for XADatasource, as well as friendlier exceptions for XA failures compared to the "stock" XAException
(which has no messages).

• Attempt detection of the MySQL type BINARY (it is an alias, so this isn't always reliable), and use the
java.sql.Types.BINARY type mapping for it.

A.3. Changes in MySQL Connector/J 3.1.x

A.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)
Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their use
by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Bugs Fixed

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly. (Bug #24840)

A.3.2. Changes in MySQL Connector/J 3.1.14 (19 October 2006)
Bugs Fixed

• Check and store value for continueBatchOnError property in constructor of Statements, rather than when executing batches, so that
Connections closed out from underneath statements don't cause NullPointerExceptions when it is required to check this property.
(Bug #22290)

• Fixed Updatable result set that contains a BIT column fails when server-side prepared statements are used. (Bug #20485)

• Escape of quotation marks in client-side prepared statements parsing not respected. Patch covers more than bug report, including
NO_BACKSLASH_ESCAPES being set, and stacked quote characters forms of escaping (that is, '' or ""). (Bug #20888)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'. (Bug #22290)

• Fixed bug where driver would not advance to next host if roundRobinLoadBalance=true and the last host in the list is down. (Bug
#22290)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side pre-
pared statement). (Bug #22290)

• ResultSet.getSomeInteger() doesn't work for BIT(>1). (Bug #21062)

• Fixed bug when calling stored functions, where parameters weren't numbered correctly (first parameter is now the return value, sub-
sequent parameters if specified start at index "2"). (Bug #22290)

• Removed logger autodetection altogether, must now specify logger explicitly if you want to use a logger other than one that logs to
STDERR. (Bug #21207)

MySQL Connector/J Change History

101

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

• Fixed can't pool server-side prepared statements, exception raised when re-using them. (Bug #20687)

• DDriver throws NPE when tracing prepared statements that have been closed (in asSQL()). (Bug #21207)

• Fixed ResultSet.getShort() for UNSIGNED TINYINT returns incorrect values when using server-side prepared statements. (Bug
#20306)

• ReplicationDriver does not always round-robin load balance depending on URL used for slaves list. (Bug #19993)

• DatabaseMetaData.getTables() or getColumns() with a bad catalog parameter threw an exception rather than return
an empty result set (as required by the specification). (Bug #18258)

• Fixed memory leak with profileSQL=true. (Bug #16987)

• Connection fails to localhost when using timeout and IPv6 is configured. (Bug #19726)

• Fixed updatable result set throws ClassCastException when there is row data and moveToInsertRow() is called. (Bug #20479)

• Fixed calling toString() on ResultSetMetaData for driver-generated (that is, from DatabaseMetaData method calls, or from getGen-
eratedKeys()) result sets would raise a NullPointerException. (Bug #19993)

• Fixed NullPointerException in MysqlDataSourceFactory due to Reference containing RefAddrs with null content. (Bug #16791)

• ResultSet.getFloatFromString() can't retrieve values near Float.MIN/MAX_VALUE. (Bug #18880)

A.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
Bugs Fixed

• Added performance feature, re-writing of batched executes for Statement.executeBatch() (for all DML statements) and
PreparedStatement.executeBatch() (for INSERTs with VALUE clauses only). Enable by using "rewriteBatchedState-
ments=true" in your JDBC URL. (Bug #18041)

• DBMD.getColumns() returns wrong type for BIT. (Bug #15854)

• PreparedStatement.setObject() serializes BigInteger as object, rather than sending as numeric value (and is thus not
complementary to .getObject() on an UNSIGNED LONG type). (Bug #15383)

• Fixed aliased column names where length of name > 251 are corrupted. (Bug #18554)

• Exception thrown for new decimal type when using updatable result sets. (Bug #14609)

• Improved performance of retrieving BigDecimal, Time, Timestamp and Date values from server-side prepared statements by
creating fewer short-lived instances of Strings when the native type is not an exact match for the requested type. (Bug #18496)

• Fixed calling clearParameters() on a closed prepared statement causes NPE. (Bug #17587)

• Driver now aware of fix for BIT type metadata that went into MySQL-5.0.21 for server not reporting length consistently . (Bug
#13601)

• No "dos" character set in MySQL > 4.1.0. (Bug #15544)

• Map "latin1" on MySQL server to CP1252 for MySQL > 4.1.0. (Bug #17587)

• Fixed CallableStatement.registerOutParameter() not working when some parameters pre-populated. Still waiting
for feedback from JDBC experts group to determine what correct parameter count from getMetaData() should be, however.
(Bug #17898)

• Fixed ResultSet.wasNull() not always reset correctly for booleans when done using conversion for server-side prepared
statements. (Bug #17450)

• Added support for Apache Commons logging, use "com.mysql.jdbc.log.CommonsLogger" as the value for the "logger" configura-
tion property. (Bug #13469)

MySQL Connector/J Change History

102

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

• Fixed ResultSet.wasNull() returns incorrect value when extracting native string from server-side prepared statement gener-
ated result set. (Bug #19282)

• Fixed updatable result set doesn't return AUTO_INCREMENT values for insertRow() when multiple column primary keys are
used. (the driver was checking for the existence of single-column primary keys and an autoincrement value > 0 instead of a straight-
forward isAutoIncrement() check). (Bug #16841)

• Fixed invalid classname returned for ResultSetMetaData.getColumnClassName() for BIGINT type. (Bug #19282)

• INOUT parameter does not store IN value. (Bug #15464)

• Fixed issue with ReplicationConnection incorrectly copying state, doesn't transfer connection context correctly when trans-
itioning between the same read-only states. (Bug #15570)

• Fixed case where driver wasn't reading server status correctly when fetching server-side prepared statement rows, which in some
cases could cause warning counts to be off, or multiple result sets to not be read off the wire. (Bug #19282)

• Fixed PreparedStatement.setObject(int, Object, int) doesn't respect scale of BigDecimals. (Bug #19615)

• Fixed driver trying to call methods that don't exist on older and newer versions of Log4j. The fix is not trying to auto-detect pres-
ence of log4j, too many different incompatible versions out there in the wild to do this reliably.

If you relied on autodetection before, you will need to add "logger=com.mysql.jdbc.log.Log4JLogger" to your JDBC URL to enable
Log4J usage, or alternatively use the new "CommonsLogger" class to take care of this. (Bug #13469)

• Fixed Statement.getGeneratedKeys() throws NullPointerException when no query has been processed. (Bug
#17099)

• lib-nodist directory missing from package breaks out-of-box build. (Bug #15676)

• Added additional accessor and mutator methods on ConnectionProperties so that DataSource users can use same naming as regular
URL properties. (Bug #17587)

• LogFactory now prepends com.mysql.jdbc.log to the log class name if it cannot be found as specified. This enables you to
use “short names” for the built-in log factories, for example, logger=CommonsLogger instead of log-
ger=com.mysql.jdbc.log.CommonsLogger. (Bug #13469)

• Fixed data truncation and getWarnings() only returns last warning in set. (Bug #18740)

• Fixed issue where server-side prepared statements don't cause truncation exceptions to be thrown when truncation happens. (Bug
#18041)

• Fixed issue where driver was unable to initialize character set mapping tables. Removed reliance on .properties files to hold
this information, as it turns out to be too problematic to code around class loader hierarchies that change depending on how an ap-
plication is deployed. Moved information back into the CharsetMapping class. (Bug #14938)

• ResultSet.getShort() for UNSIGNED TINYINT returned wrong values. (Bug #11874)

A.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
Bugs Fixed

• Driver incorrectly closes streams passed as arguments to PreparedStatements. Reverts to legacy behavior by setting the JD-
BC configuration property autoClosePStmtStreams to true (also included in the 3-0-Compat configuration “bundle”). (Bug
#15024)

• storesMixedCaseIdentifiers() returns false (Bug #14562)

• storesLowerCaseIdentifiers() returns true (Bug #14562)

• Deadlock while closing server-side prepared statements from multiple threads sharing one connection. (Bug #14972)

• OpenOffice expects DBMD.supportsIntegrityEnhancementFacility() to return true if foreign keys are supported
by the datasource, even though this method also covers support for check constraints, which MySQL doesn't have. Setting the con-

MySQL Connector/J Change History

103

figuration property overrideSupportsIntegrityEnhancementFacility to true causes the driver to return true for
this method. (Bug #12975)

• storesMixedCaseQuotedIdentifiers() returns false (Bug #14562)

• storesMixedCaseQuotedIdentifiers() returns true (Bug #14562)

• maxQuerySizeToLog is not respected. Added logging of bound values for execute() phase of server-side prepared state-
ments when profileSQL=true as well. (Bug #13048)

• Process escape tokens in Connection.prepareStatement(...). You can disable this behavior by setting the JDBC URL
configuration property processEscapeCodesForPrepStmts to false. (Bug #15141)

• DatabaseMetaData.getColumns() doesn't return TABLE_NAME correctly. (Bug #14815)

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

• storesUpperCaseIdentifiers() returns false (Bug #14562)

• storesUpperCaseQuotedIdentifiers() returns true (Bug #14562)

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

• Extraneous sleep on autoReconnect. (Bug #13775)

• storesLowerCaseQuotedIdentifiers() returns true (Bug #14562)

• Fixed DatabaseMetaData.stores*Identifiers():

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

MySQL Connector/J Change History

104

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

• Reconnect during middle of executeBatch() should not occur if autoReconnect is enabled. (Bug #13255)

• storesMixedCaseIdentifiers() returns true (Bug #14562)

• Usage advisor complains about unreferenced columns, even though they've been referenced. (Bug #15065)

• storesLowerCaseQuotedIdentifiers() returns false (Bug #14562)

• Java type conversion may be incorrect for MEDIUMINT. (Bug #14562)

• Added com.mysql.jdbc.testsuite.url.default system property to set default JDBC url for testsuite (to speed up bug
resolution when I'm working in Eclipse). (Bug #12975)

• Unable to initialize character set mapping tables (due to J2EE classloader differences). (Bug #14938)

• storesLowerCaseIdentifiers() returns false (Bug #14562)

• Escape processor replaces quote character in quoted string with string delimiter. (Bug #14909)

• Added configuration property useGmtMillisForDatetimes which when set to true causes ResultSet.getDate(),
.getTimestamp() to return correct millis-since GMT when .getTime() is called on the return value (currently default is
false for legacy behavior). (Bug #14562)

• logSlowQueries should give better info. (Bug #12230)

• Don't increase timeout for failover/reconnect. (Bug #6577)

• Fall back to platform-encoding for URLDecoder.decode() when parsing driver URL properties if the platform doesn't have a
two-argument version of this method.

• Do not permit executeBatch() for CallableStatements with registered OUT/INOUT parameters (JDBC compliance).

• Fixed client-side prepared statement bug with embedded ? characters inside quoted identifiers (it was recognized as a placeholder,
when it was not).

A.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)
Bugs Fixed

• getExportedKeys() (Bug #12541)

• Specifying a catalog works as stated in the API docs. (Bug #12541)

MySQL Connector/J Change History

105

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've set
nullCatalogMeansCurrent=true in your JDBC URL properties. (Bug #12541)

• Tokenizer for = in URL properties was causing sessionVariables=.... to be parameterized incorrectly. (Bug #12753)

• getIndexInfo() (Bug #12541)

• getProcedures() (and thus indirectly getProcedureColumns()) (Bug #12541)

• getImportedKeys() (Bug #12541)

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for legacy users. (Bug #12541)

• getCrossReference() (Bug #12541)

• The configuration property sessionVariables now permits you to specify variables that start with the “@” sign. (Bug #13453)

• Added Connection.isMasterConnection() for clients to be able to determine if a multi-host master/slave connection is
connected to the first host in the list. (Bug #12541)

• Workaround for Bug #13374: ResultSet.getStatement() on closed result set returns NULL (as per JDBC 4.0 spec, but not
backward-compatible). Set the connection property retainStatementAfterResultSetClose to true to be able to re-
trieve a ResultSet's statement after the ResultSet has been closed using .getStatement() (the default is false, to be
JDBC-compliant and to reduce the chance that code using JDBC leaks Statement instances). (Bug #13277)

• java.sql.Types.OTHER returned for BINARY and VARBINARY columns when using Database-
MetaData.getColumns(). (Bug #12970)

• URL configuration parameters do not permit “&” or “=” in their values. The JDBC driver now parses configuration parameters as if
they are encoded using the application/x-www-form-urlencoded format as specified by java.net.URLDecoder (ht-
tp://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html).

If the “%” character is present in a configuration property, it must now be represented as %25, which is the encoded form of “%”
when using application/x-www-form-urlencoded encoding. (Bug #13453)

• getColumns() (Bug #12541)

• Handling of catalog argument in DatabaseMetaData.getIndexInfo(), which also means changes to the following meth-
ods in DatabaseMetaData:

• getBestRowIdentifier()

• getColumns()

• getCrossReference()

• getExportedKeys()

• getImportedKeys()

• getIndexInfo()

• getPrimaryKeys()

• getProcedures() (and thus indirectly getProcedureColumns())

• getTables()

The catalog argument in all of these methods now behaves in the following way:

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've set
nullCatalogMeansCurrent=true in your JDBC URL properties.

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for legacy users.

• Specifying a catalog works as stated in the API docs.

MySQL Connector/J Change History

106

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances).

(Bug #12541)

• getBestRowIdentifier() (Bug #12541)

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances). (Bug #12541)

• ServerPreparedStatement.getBinding() now checks if the statement is closed before attempting to reference the list of
parameter bindings, to avoid throwing a NullPointerException. (Bug #12970)

• ResultSetMetaData from Statement.getGeneratedKeys() caused a NullPointerException to be thrown
whenever a method that required a connection reference was called. (Bug #13277)

• cp1251 incorrectly mapped to win1251 for servers newer than 4.0.x. (Bug #12752)

• When gatherPerfMetrics is enabled for servers older than 4.1.0, a NullPointerException is thrown from the con-
structor of ResultSet if the query doesn't use any tables. (Bug #13043)

• Backport of VAR[BINARY|CHAR] [BINARY] types detection from 5.0 branch. (Bug #13277)

• getTables() (Bug #12541)

• Fixed NullPointerException when converting catalog parameter in many DatabaseMetaDataMethods to byte[]s
(for the result set) when the parameter is null. (null is not technically permitted by the JDBC specification, but we have historic-
ally permitted it). (Bug #13277)

• Backport of Field class, ResultSetMetaData.getColumnClassName(), and ResultSet.getObject(int)
changes from 5.0 branch to fix behavior surrounding VARCHAR BINARY/VARBINARY and related types. (Bug #13277)

• Read response in MysqlIO.sendFileToServer(), even if the local file can't be opened, otherwise next query issued will fail,
because it is reading the response to the empty LOAD DATA INFILE packet sent to the server. (Bug #13277)

• Connection.prepareCall() is database name case-sensitive (on Windows systems). (Bug #12417)

• getPrimaryKeys() (Bug #12541)

• Geometry types not handled with server-side prepared statements. (Bug #12104)

• explainSlowQueries hangs with server-side prepared statements. (Bug #12229)

• Pstmt.setObject(...., Types.BOOLEAN) throws exception. (Bug #11798)

• Reworked Field class, *Buffer, and MysqlIO to be aware of field lengths > Integer.MAX_VALUE. (Bug #11498)

• Foreign key information that is quoted is parsed incorrectly when DatabaseMetaData methods use that information. (Bug
#11781)

• Fixed regression caused by fix for Bug #11552 that caused driver to return incorrect values for unsigned integers when those in-
tegers where within the range of the positive signed type. (Bug #11663)

• Escape tokenizer doesn't respect stacked single quotation marks for escapes. (Bug #11797)

• Escape processor didn't honor strings demarcated with double quotation marks. (Bug #11498)

• maxPerformance.properties mis-spells “elideSetAutoCommits”. (Bug #11976)

• Moved source code to Subversion repository. (Bug #11663)

• The sendBlobChunkSize property is now clamped to max_allowed_packet with consideration of stream buffer size and
packet headers to avoid PacketTooBigExceptions when max_allowed_packet is similar in size to the default send-
BlobChunkSize which is 1M. (Bug #11781)

MySQL Connector/J Change History

107

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

• Statement.getWarnings() fails with NPE if statement has been closed. (Bug #10630)

• DBMD.storesLower/Mixed/UpperIdentifiers() reports incorrect values for servers deployed on Windows. (Bug
#11575)

• ResultSet.moveToCurrentRow() fails to work when preceded by a call to ResultSet.moveToInsertRow(). (Bug
#11190)

• VARBINARY data corrupted when using server-side prepared statements and .setBytes(). (Bug #11115)

• Only get char[] from SQL in PreparedStatement.ParseInfo() when needed. (Bug #10630)

• Incorrect generation of testcase scripts for server-side prepared statements. (Bug #11663)

• GEOMETRY type not recognized when using server-side prepared statements. (Bug #11797)

• CallableStatement.clearParameters() now clears resources associated with INOUT/OUTPUT parameters as well as
INPUT parameters. (Bug #11781)

• StringUtils.getBytes() doesn't work when using multi-byte character encodings and a length in characters is specified.
(Bug #11614)

• Fixed statements generated for testcases missing ; for “plain” statements. (Bug #11629)

• ReplicationConnection won't switch to slave, throws “Catalog can't be null” exception. (Bug #11879)

• Spurious ! on console when character encoding is utf8. (Bug #11629)

• Properties shared between master and slave with replication connection. (Bug #12218)

• Updated DBMD.supportsCorrelatedQueries() to return true for versions > 4.1, supportsGroupByUnrelated()
to return true and getResultSetHoldability() to return HOLD_CURSORS_OVER_COMMIT. (Bug #11498)

• Lifted restriction of changing streaming parameters with server-side prepared statements. As long as all streaming parameters
were set before execution, .clearParameters() does not have to be called. (due to limitation of client/server protocol, pre-
pared statements can not reset individual stream data on the server side). (Bug #11498)

A.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)
Bugs Fixed

• Fixed connecting without a database specified raised an exception in MysqlIO.changeDatabaseTo().

• Initial implemention of ParameterMetadata for PreparedStatement.getParameterMetadata(). Only works fully
for CallableStatements, as current server-side prepared statements return every parameter as a VARCHAR type.

A.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)
Bugs Fixed

• Fixed PreparedStatement.setClob() not accepting null as a parameter. (Bug #11360)

• Actually write manifest file to correct place so it ends up in the binary jar file. (Bug #10144)

• Try to handle OutOfMemoryErrors more gracefully. Although not much can be done, they will in most cases close the connec-
tion they happened on so that further operations don't run into a connection in some unknown state. When an OOM has happened,
any further operations on the connection will fail with a “Connection closed” exception that will also list the OOM exception as the
reason for the implicit connection close event. (Bug #10850)

• autoReconnect ping causes exception on connection startup. (Bug #11259)

MySQL Connector/J Change History

108

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

• Reorganized directory layout. Sources now are in src folder. Don't pollute parent directory when building, now output goes to
./build, distribution goes to ./dist. (Bug #10496)

• Connection.setCatalog() is now aware of the useLocalSessionState configuration property, which when set to
true will prevent the driver from sending USE ... to the server if the requested catalog is the same as the current catalog. (Bug
#11115)

• Setting cachePrepStmts=true now causes the Connection to also cache the check the driver performs to determine if a
prepared statement can be server-side or not, as well as caches server-side prepared statements for the lifetime of a connection. As
before, the prepStmtCacheSize parameter controls the size of these caches. (Bug #10850)

• Don't send COM_RESET_STMT for each execution of a server-side prepared statement if it isn't required. (Bug #10850)

• 3-0-Compat: Compatibility with Connector/J 3.0.x functionality (Bug #11115)

• Production package doesn't include JBoss integration classes. (Bug #11411)

• maxPerformance: Maximum performance without being reckless (Bug #11115)

• Unsigned SMALLINT treated as signed for ResultSet.getInt(), fixed all cases for UNSIGNED integer values and server-side
prepared statements, as well as ResultSet.getObject() for UNSIGNED TINYINT. (Bug #10156)

• solarisMaxPerformance: Maximum performance for Solaris, avoids syscalls where it can (Bug #11115)

• Added maintainTimeStats configuration property (defaults to true), which tells the driver whether or not to keep track of
the last query time and the last successful packet sent to the server's time. If set to false, removes two syscalls per query. (Bug
#11115)

• 0-length streams not sent to server when using server-side prepared statements. (Bug #10850)

• The data type returned for TINYINT(1) columns when tinyInt1isBit=true (the default) can be switched between
Types.BOOLEAN and Types.BIT using the new configuration property transformedBitIsBoolean, which defaults to
false. If set to false (the default), DatabaseMetaData.getColumns() and ResultSet-
MetaData.getColumnType() will return Types.BOOLEAN for TINYINT(1) columns. If true, Types.BOOLEAN will
be returned instead. Regardless of this configuration property, if tinyInt1isBit is enabled, columns with the type TINY-
INT(1) will be returned as java.lang.Boolean instances from ResultSet.getObject(...), and ResultSet-
MetaData.getColumnClassName() will return java.lang.Boolean. (Bug #10485)

• VARBINARY data corrupted when using server-side prepared statements and ResultSet.getBytes(). (Bug #11115)

• Added createDatabaseIfNotExist property (default is false), which will cause the driver to ask the server to create the
database specified in the URL if it doesn't exist. You must have the appropriate privileges for database creation for this to work.
(Bug #10144)

• SQLException thrown when retrieving YEAR(2) with ResultSet.getString(). The driver will now always treat YEAR
types as java.sql.Dates and return the correct values for getString(). Alternatively, the yearIsDateType connection
property can be set to false and the values will be treated as SHORTs. (Bug #10485)

• Connector/J dumping query into SQLException twice. (Bug #11360)

• Made ServerPreparedStatement.asSql() work correctly so auto-explain functionality would work with server-side pre-
pared statements. (Bug #10155)

• Double quotation marks not recognized when parsing client-side prepared statements. (Bug #10155)

• Removed nonsensical “costly type conversion” warnings when using usage advisor. (Bug #11411)

• com.mysql.jdbc.PreparedStatement.ParseInfo does unnecessary call to toCharArray(). (Bug #9064)

• Driver doesn't support {?=CALL(...)} for calling stored functions. This involved adding support for function retrieval to Data-
baseMetaData.getProcedures() and getProcedureColumns() as well. (Bug #10310)

• Memory leak in ServerPreparedStatement if serverPrepare() fails. (Bug #10144)

• Added support/bug hunting feature that generates .sql test scripts to STDERR when autoGenerateTestcaseScript is set
to true. (Bug #10496)

MySQL Connector/J Change History

109

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/year.html

• Driver detects if you're running MySQL-5.0.7 or later, and does not scan for LIMIT ?[,?] in statements being prepared, as the
server supports those types of queries now. (Bug #10850)

• SQLException is thrown when using property characterSetResults with cp932 or eucjpms. (Bug #10496)

• Made JDBC2-compliant wrappers public to enable access to vendor extensions. (Bug #10155)

• Added the following configuration bundles, use one or many using the useConfigs configuration property:

• maxPerformance: Maximum performance without being reckless

• solarisMaxPerformance: Maximum performance for Solaris, avoids syscalls where it can

• 3-0-Compat: Compatibility with Connector/J 3.0.x functionality

(Bug #11115)

• DatabaseMetaData.supportsMultipleOpenResults() now returns true. The driver has supported this for some
time, DBMD just missed that fact. (Bug #10155)

• Cleaned up logging of profiler events, moved code to dump a profiler event as a string to com.mysql.jdbc.log.LogUtils
so that third parties can use it. (Bug #10155)

• Made enableStreamingResults() visible on com.mysql.jdbc.jdbc2.optional.StatementWrapper. (Bug
#10155)

• Overhaul of character set configuration, everything now lives in a properties file.

• Driver now correctly uses CP932 if available on the server for Windows-31J, CP932 and MS932 java encoding names, otherwise it
resorts to SJIS, which is only a close approximation. Currently only MySQL-5.0.3 and newer (and MySQL-4.1.12 or .13, depending
on when the character set gets backported) can reliably support any variant of CP932.

A.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)
Bugs Fixed

• Added finalizers to ResultSet and Statement implementations to be JDBC spec-compliant, which requires that if not expli-
citly closed, these resources should be closed upon garbage collection. (Bug #9319)

• Should accept null for name patterns in DBMD (meaning “%”), even though it isn't JDBC compliant, for legacy's sake. Disable by
setting connection property nullNamePatternMatchesAll to false (which will be the default value in C/J 3.2.x). (Bug
#9769)

• Check for empty strings ('') when converting CHAR/VARCHAR column data to numbers, throw exception if emptyString-
sConvertToZero configuration property is set to false (for backward-compatibility with 3.0, it is now set to true by default,
but will most likely default to false in 3.2). (Bug #8803)

• The performance metrics feature now gathers information about number of tables referenced in a SELECT. (Bug #9704)

• Fixed driver not returning true for -1 when ResultSet.getBoolean() was called on result sets returned from server-side
prepared statements. (Bug #9778)

• ServerPreparedStatements now correctly “stream” BLOB/CLOB data to the server. You can configure the threshold chunk
size using the JDBC URL property blobSendChunkSize (the default is 1MB). (Bug #8868)

• The logging system is now automatically configured. If the value has been set by the user, using the URL property logger or the
system property com.mysql.jdbc.logger, then use that, otherwise, autodetect it using the following steps:

1. Log4j, if it is available,

2. Then JDK1.4 logging,

3. Then fallback to our STDERR logging.

MySQL Connector/J Change History

110

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

(Bug #9704)

• Added a Manifest.MF file with implementation information to the .jar file. (Bug #9778)

• Should accept null for catalog (meaning use current) in DBMD methods, even though it is not JDBC-compliant for legacy's sake.
Disable by setting connection property nullCatalogMeansCurrent to false (which will be the default value in C/J 3.2.x).
(Bug #9917)

• More tests in Field.isOpaqueBinary() to distinguish opaque binary (that is, fields with type CHAR(n) and CHARACTER
SET BINARY) from output of various scalar and aggregate functions that return strings. (Bug #9778)

• DBMD.getTables() shouldn't return tables if views are asked for, even if the database version doesn't support views. (Bug
#9778)

• Added support for the c3p0 connection pool's (http://c3p0.sf.net/) validation/connection checker interface which uses the light-
weight COM_PING call to the server if available. To use it, configure your c3p0 connection pool's connectionTesterClass-
Name property to use com.mysql.jdbc.integration.c3p0.MysqlConnectionTester. (Bug #9320)

• DATA_TYPE column from DBMD.getBestRowIdentifier() causes ArrayIndexOutOfBoundsException when ac-
cessed (and in fact, didn't return any value). (Bug #8803)

• DATE_FORMAT() queries returned as BLOBs from getObject(). (Bug #8868)

• A continuation of Bug #8868, where functions used in queries that should return nonstring types when resolved by temporary tables
suddenly become opaque binary strings (work-around for server limitation). Also fixed fields with type of CHAR(n) CHARACTER
SET BINARY to return correct/matching classes for RSMD.getColumnClassName() and ResultSet.getObject().
(Bug #9236)

• PreparedStatement.getMetaData() inserts blank row in database under certain conditions when not using server-side
prepared statements. (Bug #9320)

• Better detection of LIMIT inside/outside of quoted strings so that the driver can more correctly determine whether a prepared state-
ment can be prepared on the server or not. (Bug #9320)

• Stored procedures with DECIMAL parameters with storage specifications that contained “,” in them would fail. (Bug #9682)

• Server-side session variables can be preset at connection time by passing them as a comma-delimited list for the connection property
sessionVariables. (Bug #8868)

• Connection.canHandleAsPreparedStatement() now makes “best effort” to distinguish LIMIT clauses with placehold-
ers in them from ones without to have fewer false positives when generating work-arounds for statements the server cannot cur-
rently handle as server-side prepared statements. (Bug #9320)

• BlobFromLocator now uses correct identifier quoting when generating prepared statements. (Bug #8868)

• Statement.getMoreResults() could throw NPE when existing result set was .close()d. (Bug #9704)

• PreparedStatement.addBatch() doesn't work with server-side prepared statements and streaming BINARY data. (Bug
#9040)

• Fixed build.xml to not compile log4j logging if log4j not available. (Bug #9320)

• Cannot use UTF-8 for characterSetResults configuration property. (Bug #9206)

• PreparedStatement.setObject(int, Object, int type, int scale) now uses scale value for BigDecimal
instances. (Bug #9682)

• DBMD.supportsResultSetConcurrency() not returning true for forward-only/read-only result sets (we obviously sup-
port this). (Bug #8792)

• Fixed regression in ping() for users using autoReconnect=true. (Bug #8868)

• Stored procedures with same name in different databases confuse the driver when it tries to determine parameter counts/types. (Bug
#9319)

MySQL Connector/J Change History

111

http://c3p0.sf.net/
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_date-format
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

• DBMD.supportsMixedCase*Identifiers() returns wrong value on servers running on case-sensitive file systems. (Bug
#8800)

• Fixed DatabaseMetaData.getTables() returning views when they were not asked for as one of the requested table types.

• Added support for new precision-math DECIMAL type in MySQL 5.0.3 and up.

• Made Connection.ping() a public method.

• Fixed ResultSet.getTime() on a NULL value for server-side prepared statements throws NPE.

A.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)
Bugs Fixed

• Infinite recursion when “falling back” to master in failover configuration. (Bug #7952)

• Disable multi-statements (if enabled) for MySQL-4.1 versions prior to version 4.1.10 if the query cache is enabled, as the server re-
turns wrong results in this configuration. (Bug #7952)

• Added support for BIT type in MySQL-5.0.3. The driver will treat BIT(1-8) as the JDBC standard BIT type (which maps to
java.lang.Boolean), as the server does not currently send enough information to determine the size of a bitfield when < 9 bits
are declared. BIT(>9) will be treated as VARBINARY, and will return byte[] when getObject() is called. (Bug #8424)

• Added useLocalSessionState configuration property, when set to true the JDBC driver trusts that the application is well-
behaved and only sets autocommit and transaction isolation levels using the methods provided on java.sql.Connection, and
therefore can manipulate these values in many cases without incurring round-trips to the database server. (Bug #8424)

• Fixed synchronization issue with ServerPreparedStatement.serverPrepare() that could cause deadlocks/crashes if
connection was shared between threads. (Bug #8096)

• Added holdResultsOpenOverStatementClose property (default is false), that keeps result sets open over state-
ment.close() or new execution on same statement (suggested by Kevin Burton). (Bug #7715)

• Removed dontUnpackBinaryResults functionality, the driver now always stores results from server-side prepared statements
as is from the server and unpacks them on demand. (Bug #7952)

• Detect new sql_mode variable in string form (it used to be integer) and adjust quoting method for strings appropriately. (Bug
#7715)

• Choose correct “direction” to apply time adjustments when both client and server are in GMT time zone when using Result-
Set.get(..., cal) and PreparedStatement.set(...., cal). (Bug #4718)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working prop-
erly. (Bug #7952)

• Remove _binary introducer from parameters used as in/out parameters in CallableStatement. (Bug #4718)

• Always return byte[]s for output parameters registered as *BINARY. (Bug #4718)

• Timestamps converted incorrectly to strings with server-side prepared statements and updatable result sets. (Bug #7715)

• By default, the driver now scans SQL you are preparing using all variants of Connection.prepareStatement() to determ-
ine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead prepares it as
a client-side emulated prepared statement. You can disable this by passing emulateUnsupportedPstmts=false in your JD-
BC URL. (Bug #4718)

• Emulated locators corrupt binary data when using server-side prepared statements. (Bug #8096)

• Added enableStreamingResults() to Statement for connection pool implementations that check State-
ment.setFetchSize() for specification-compliant values. Call Statement.setFetchSize(>=0) to disable the stream-
ing results for that statement. (Bug #8424)

• Added dontTrackOpenResources option (default is false, to be JDBC compliant), which helps with memory use for non-

MySQL Connector/J Change History

112

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode

well-behaved apps (that is, applications that don't close Statement objects when they should). (Bug #4718)

• Fixed NPE in ResultSet.realClose() when using usage advisor and result set was already closed. (Bug #8428)

• ResultSet.getBigDecimal() throws exception when rounding would need to occur to set scale. The driver now chooses a
rounding mode of “half up” if nonrounding BigDecimal.setScale() fails. (Bug #8424)

• Send correct value for “boolean” true to server for PreparedStatement.setObject(n, "true", Types.BIT). (Bug
#4718)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug #7686)

• PreparedStatements not creating streaming result sets. (Bug #8487)

• ResultSet.getString() doesn't maintain format stored on server, bug fix only enabled when noDatetimeStringSync
property is set to true (the default is false). (Bug #8428)

• Fixed bug with Connection not caching statements from prepareStatement() when the statement wasn't a server-side pre-
pared statement. (Bug #4718)

• Don't pass NULL to String.valueOf() in ResultSet.getNativeConvertToString(), as it stringifies it (that is, re-
turns null), which is not correct for the method in question. (Bug #8487)

A.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)
Bugs Fixed

• DBMD.getProcedures() doesn't respect catalog parameter. (Bug #7026)

• Fixed hang on SocketInputStream.read() with Statement.setMaxRows() and multiple result sets when driver has to
truncate result set directly, rather than tacking a LIMIT n on the end of it.

A.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)
Bugs Fixed

• Removed unwanted new Throwable() in ResultSet constructor due to bad merge (caused a new object instance that was nev-
er used for every result set created). Found while profiling for Bug #6359. (Bug #6225)

• Use 1MB packet for sending file for LOAD DATA LOCAL INFILE if that is < max_allowed_packet on server. (Bug #6537)

• Use our own implementation of buffered input streams to get around blocking behavior of java.io.BufferedInputStream.
Disable this with useReadAheadInput=false. (Bug #6399)

• Added experimental configuration property dontUnpackBinaryResults, which delays unpacking binary result set values until
they're asked for, and only creates object instances for nonnumeric values (it is set to false by default). For some usecase/jvm
combinations, this is friendlier on the garbage collector. (Bug #5706)

• Fixed batched updates with server prepared statements weren't looking if the types had changed for a given batched set of paramet-
ers compared to the previous set, causing the server to return the error “Wrong arguments to mysql_stmt_execute()”. (Bug #5235)

• Make auto-deserialization of java.lang.Objects stored in BLOB columns configurable using autoDeserialize property
(defaults to false). (Bug #6399)

• Don't throw exceptions for Connection.releaseSavepoint(). (Bug #5706)

• ServerSidePreparedStatement allocating short-lived objects unnecessarily. (Bug #6225)

• Inefficient detection of pre-existing string instances in ResultSet.getNativeString(). (Bug #5706)

• UNSIGNED BIGINT unpacked incorrectly from server-side prepared statement result sets. (Bug #5729)

MySQL Connector/J Change History

113

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• Use null-safe-equals for key comparisons in updatable result sets. (Bug #6225)

• Failing to connect to the server when one of the addresses for the given host name is IPV6 (which the server does not yet bind on).
The driver now loops through all IP addresses for a given host, and stops on the first one that accepts() a sock-
et.connect(). (Bug #6348)

• ResultSetMetaData.getColumnDisplaySize() returns incorrect values for multi-byte charsets. (Bug #6399)

• SUM() on DECIMAL with server-side prepared statement ignores scale if zero-padding is needed (this ends up being due to conver-
sion to DOUBLE by server, which when converted to a string to parse into BigDecimal, loses all “padding” zeros). (Bug #6537)

• Use a per-session Calendar instance by default when decoding dates from ServerPreparedStatements (set to old, less
performant behavior by setting property dynamicCalendars=true). (Bug #5706)

• Handle case when string representation of timestamp contains trailing “.” with no numbers following it. (Bug #5235)

• Use DatabaseMetaData.getIdentifierQuoteString() when building DBMD queries. (Bug #6537)

• Re-work Field.isOpaqueBinary() to detect CHAR(n) CHARACTER SET BINARY to support fixed-length binary fields
for ResultSet.getObject(). (Bug #6399)

• Server-side prepared statements did not honor zeroDateTimeBehavior property, and would cause class-cast exceptions when
using ResultSet.getObject(), as the all-zero string was always returned. (Bug #5235)

• Fixed too-early creation of StringBuffer in EscapeProcessor.escapeSQL(), also return String when escaping not
needed (to avoid unnecessary object allocations). Found while profiling for Bug #6359. (Bug #6225)

• Fix comparisons made between string constants and dynamic strings that are converted with either toUpperCase() or to-
LowerCase() to use Locale.ENGLISH, as some locales “override” case rules for English. Also use Strin-
gUtils.indexOfIgnoreCase() instead of .toUpperCase().indexOf(), avoids creating a very short-lived transient
String instance.

A.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)
Bugs Fixed

• Fixed ServerPreparedStatement to read prepared statement metadata off the wire, even though it is currently a placeholder
instead of using MysqlIO.clearInputStream() which didn't work at various times because data wasn't available to read
from the server yet. This fixes sporadic errors users were having with ServerPreparedStatements throwing ArrayIndex-
OutOfBoundExceptions. (Bug #5032)

• Optimized integer number parsing, enable “old” slower integer parsing using JDK classes using useFastIntParsing=false
property. (Bug #4642)

• Track packet sequence numbers if enablePacketDebug=true, and throw an exception if packets received out-of-order. (Bug
#4689)

• ResultSet.wasNull() does not work for primitives if a previous null was returned. (Bug #4689)

• Added three ways to deal with all-zero datetimes when reading them from a ResultSet: exception (the default), which throws
an SQLException with an SQLState of S1009; convertToNull, which returns NULL instead of the date; and round, which
rounds the date to the nearest closest value which is '0001-01-01'. (Bug #5032)

• Added useOnlyServerErrorMessages property, which causes message text in exceptions generated by the server to only
contain the text sent by the server (as opposed to the SQLState's “standard” description, followed by the server's error message).
This property is set to true by default. (Bug #4642)

• The driver is more strict about truncation of numerics on ResultSet.get*(), and will throw an SQLException when trunca-
tion is detected. You can disable this by setting jdbcCompliantTruncation to false (it is enabled by default, as this func-
tionality is required for JDBC compliance). (Bug #5032)

• ResultSet.getObject() returns wrong type for strings when using prepared statements. (Bug #4482)

MySQL Connector/J Change History

114

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

• ServerPreparedStatements dealing with return of DECIMAL type don't work. (Bug #5012)

• Calling MysqlPooledConnection.close() twice (even though an application error), caused NPE. Fixed. (Bug #4482)

• Connector/J 3.1.3 beta does not handle integers correctly (caused by changes to support unsigned reads in Buffer.readInt() -
> Buffer.readShort()). (Bug #4510)

• You can now use URLs in LOAD DATA LOCAL INFILE statements, and the driver will use Java's built-in handlers for retrieving
the data and sending it to the server. This feature is not enabled by default, you must set the allowUrlInLocalInfile connec-
tion property to true. (Bug #5032)

• Added support in DatabaseMetaData.getTables() and getTableTypes() for views, which are now available in
MySQL server 5.0.x. (Bug #4510)

• ServerPreparedStatement.execute*() sometimes threw ArrayIndexOutOfBoundsException when unpacking
field metadata. (Bug #4642)

• ResultSet.getObject() doesn't return type Boolean for pseudo-bit types from prepared statements on 4.1.x (shortcut for
avoiding extra type conversion when using binary-encoded result sets obscured test in getObject() for “pseudo” bit type). (Bug
#5032)

• Use com.mysql.jdbc.Message's classloader when loading resource bundle, should fix sporadic issues when the caller's class-
loader can't locate the resource bundle. (Bug #5032)

A.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)
Bugs Fixed

• Externalized more messages (on-going effort). (Bug #4119)

• Support new time zone variables in MySQL-4.1.3 when useTimezone=true. (Bug #4311)

• Null bitmask sent for server-side prepared statements was incorrect. (Bug #4119)

• Added constants for MySQL error numbers (publicly accessible, see com.mysql.jdbc.MysqlErrorNumbers), and the abil-
ity to generate the mappings of vendor error codes to SQLStates that the driver uses (for documentation purposes). (Bug #4119)

• Added packet debugging code (see the enablePacketDebug property documentation). (Bug #4119)

• Error in retrieval of mediumint column with prepared statements and binary protocol. (Bug #4311)

• Use SQL Standard SQL states by default, unless useSqlStateCodes property is set to false. (Bug #4119)

• Support for unsigned numerics as return types from prepared statements. This also causes a change in Result-
Set.getObject() for the bigint unsigned type, which used to return BigDecimal instances, it now returns instances of
java.lang.BigInteger. (Bug #4311)

• Added support for INOUT parameters in CallableStatements.

• Mangle output parameter names for CallableStatements so they will not clash with user variable names.

A.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)
Bugs Fixed

• Fixed DatabaseMetaData.getProcedures() when run on MySQL-5.0.0 (output of SHOW PROCEDURE STATUS
changed between 5.0.0 and 5.0.1. (Bug #3520)

• Fixed case when no output parameters specified for a stored procedure caused a bogus query to be issued to retrieve out parameters,
leading to a syntax error from the server.

MySQL Connector/J Change History

115

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/show-procedure-status.html

• Correctly map output parameters to position given in prepareCall() versus. order implied during registerOutParamet-
er(). (Bug #3146)

• Added connectionCollation property to cause driver to issue set collation_connection=... query on connection
init if default collation for given charset is not appropriate. (Bug #3520)

• ServerPreparedStatements weren't actually de-allocating server-side resources when .close() was called.

• Don't enable server-side prepared statements for server version 5.0.0 or 5.0.1, as they aren't compatible with the '4.1.2+' style that
the driver uses (the driver expects information to come back that isn't there, so it hangs). (Bug #3804)

• getProcedures() does not return any procedures in result set. (Bug #3539)

• Fixed stored procedure parameter parsing info when size was specified for a parameter (for example, char(), varchar()).

• Removed wrapping of exceptions in MysqlIO.changeUser().

• getWarnings() returns SQLWarning instead of DataTruncation. (Bug #3804)

• Cleaned up detection of server properties. (Bug #3146)

• Correctly detect initial character set for servers >= 4.1.0. (Bug #3146)

• Support placeholder for parameter metadata for server >= 4.1.2. (Bug #3146)

• Added logSlowQueries property, along with slowQueriesThresholdMillis property to control when a query should be
considered “slow.”

• Added .toString() functionality to ServerPreparedStatement, which should help if you're trying to debug a query that
is a prepared statement (it shows SQL as the server would process).

• Fixed sending of split packets for large queries, enabled nio ability to send large packets as well.

• Enabled callable statement caching using cacheCallableStmts property.

• Fixed case when no parameters could cause a NullPointerException in CallableState-
ment.setOutputParameters().

• Added gatherPerformanceMetrics property, along with properties to control when/where this info gets logged (see docs for
more info).

• DBMD.getSQLStateType() returns incorrect value. (Bug #3520)

• getProcedureColumns() doesn't work with wildcards for procedure name. (Bug #3540)

A.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004, alpha)
Bugs Fixed

• Fixed charset conversion issue in getTables(). (Bug #2502)

• Fixed ConnectionProperties that weren't properly exposed through accessors, cleaned up ConnectionProperties
code. (Bug #2623)

• Prepared Statements will be re-prepared on auto-reconnect. Any errors encountered are postponed until first attempt to re-
execute the re-prepared statement.

• Reduced number of methods called in average query to be more efficient.

• Refactored how connection properties are set and exposed as DriverPropertyInfo as well as Connection and Data-
Source properties.

• Fixed stack overflow in Connection.prepareCall() (bad merge).

MySQL Connector/J Change History

116

• Enabled streaming of result sets from server-side prepared statements. (Bug #2606)

• Allow contents of PreparedStatement.setBlob() to be retained between calls to .execute*().

• Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue (for JDK < 1.4).

• Default result set type changed to TYPE_FORWARD_ONLY (JDBC compliance).

• Fixed bug with UpdatableResultSets not using client-side prepared statements.

• Class-cast exception when using scrolling result sets and server-side prepared statements. (Bug #2623)

• Display where/why a connection was implicitly closed (to aid debugging). (Bug #1673)

• DatabaseMetaData.getColumns() is not returning correct column ordinal info for non-'%' column name patterns. (Bug
#1673)

• Centralized setting of result set type and concurrency.

• Implemented Connection.prepareCall(), and DatabaseMetaData. getProcedures() and getProcedure-
Columns(). (Bug #2359)

• Implemented multiple result sets returned from a statement or stored procedure. (Bug #2502)

• Fixed NullPointerException in ServerPreparedStatement.setTimestamp(), as well as year and month discre-
pencies in ServerPreparedStatement.setTimestamp(), setDate(). (Bug #1673)

• Fixed character encoding issues when converting bytes to ASCII when MySQL doesn't provide the character set, and the JVM is set
to a multi-byte encoding (usually affecting retrieval of numeric values).

• Support “old” profileSql capitalization in ConnectionProperties. This property is deprecated, you should use pro-
fileSQL if possible.

• Added ability to have multiple database/JVM targets for compliance and regression/unit tests in build.xml. (Bug #1673)

• Support for transaction savepoints (MySQL >= 4.0.14 or 4.1.1).

• Check for closed connection on delete/update/insert row operations in UpdatableResultSet.

• Support for NIO. Use useNIO=true on platforms that support NIO.

• Fixed sending of queries larger than 16M. (Bug #1673)

• Use DocBook version of docs for shipped versions of drivers. (Bug #2671)

• Merged fix of data type mapping from MySQL type FLOAT to java.sql.Types.REAL from 3.0 branch. (Bug #1673)

• Merged prepared statement caching, and .getMetaData() support from 3.0 branch. (Bug #2359)

• Fixed NPE and year/month bad conversions when accessing some datetime functionality in ServerPreparedStatements and
their resultant result sets. (Bug #1673)

• Removed useFastDates connection property.

• Added named and indexed input/output parameter support to CallableStatement. MySQL-5.0.x or newer. (Bug #1673)

• Fixed off-by-1900 error in some cases for years in TimeUtil.fastDate/TimeCreate() when unpacking results from server-
side prepared statements. (Bug #2359)

• Support for mysql_change_user(). See the changeUser() method in com.mysql.jdbc.Connection.

• DatabaseMetaData now reports supportsStoredProcedures() for MySQL versions >= 5.0.0

• Deal with 0-length tokens in EscapeProcessor (caused by callable statement escape syntax).

• Reset long binary parameters in ServerPreparedStatement when clearParameters() is called, by sending
COM_RESET_STMT to the server. (Bug #2359)

MySQL Connector/J Change History

117

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-change-user.html

• Server-side prepared statements were not returning data type YEAR correctly. (Bug #2606)

• NULL fields were not being encoded correctly in all cases in server-side prepared statements. (Bug #2671)

• Implemented long data (Blobs, Clobs, InputStreams, Readers) for server prepared statements.

• Correctly initialize datasource properties from JNDI Refs, including explicitly specified URLs.

• Ensure that warnings are cleared before executing queries on prepared statements, as-per JDBC spec (now that we support warn-
ings).

• Implemented Statement.getWarnings() for MySQL-4.1 and newer (using SHOW WARNINGS).

• Unpack “unknown” data types from server prepared statements as Strings.

• NULL values for numeric types in binary encoded result sets causing NullPointerExceptions. (Bug #2359)

• CommunicationsException implemented, that tries to determine why communications was lost with a server, and displays
possible reasons when .getMessage() is called. (Bug #1673)

• Fixed rare buffer underflow when writing numbers into buffers for sending prepared statement execution requests. (Bug #2671)

• Fix support for table aliases when checking for all primary keys in UpdatableResultSet.

• Optimized Buffer.readLenByteArray() to return shared empty byte array when length is 0.

• Detect collation of column for RSMD.isCaseSensitive(). (Bug #1673)

• Merged unbuffered input code from 3.0. (Bug #2623)

A.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003, alpha)
Bugs Fixed

• Track open Statements, close all when Connection.close() is called (JDBC compliance).

• Added requireSSL property.

• Added useServerPrepStmts property (default false). The driver will use server-side prepared statements when the server
version supports them (4.1 and newer) when this property is set to true. It is currently set to false by default until all bind/fetch
functionality has been implemented. Currently only DML prepared statements are implemented for 4.1 server-side prepared state-
ments.

A.4. Changes in MySQL Connector/J 3.0.x

A.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)
Bugs Fixed

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server. (Bug
#7061)

• Workaround for server Bug #9098: Default values of CURRENT_* for DATE, TIME, DATETIME, and TIMESTAMP columns can't
be distinguished from string values, so UpdatableResultSet.moveToInsertRow() generates bad SQL for inserting
default values. (Bug #8812)

• Handle streaming result sets with more than 2 billion rows properly by fixing wraparound of row number counter. (Bug #7601)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working prop-
erly. (Bug #7952)

MySQL Connector/J Change History

118

http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/show-warnings.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

• Statements created from a pooled connection were returning physical connection instead of logical connection when getConnec-
tion() was called. (Bug #7316)

• MS932, SHIFT_JIS, and Windows_31J not recognized as aliases for sjis. (Bug #7607)

• EUCKR charset is sent as SET NAMES euc_kr which MySQL-4.1 and newer doesn't understand. (Bug #8629)

• Support new protocol type MYSQL_TYPE_VARCHAR. (Bug #7081)

• Connections starting up failed-over (due to down master) never retry master. (Bug #6966)

• PreparedStatements don't encode Big5 (and other multi-byte) character sets correctly in static SQL strings. (Bug #7033)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server. (Bug
#7601)

• Backported SQLState codes mapping from Connector/J 3.1, enable with useSqlStateCodes=true as a connection property, it
defaults to false in this release, so that we don't break legacy applications (it defaults to true starting with Connector/J 3.1).
(Bug #7686)

• Added useOldUTF8Behavior' configuration property, which causes JDBC driver to act like it did with MySQL-4.0.x and earli-
er when the character encoding is utf-8 when connected to MySQL-4.1 or newer. (Bug #7081)

• Escape sequence {fn convert(..., type)} now supports ODBC-style types that are prepended by SQL_. (Bug #7601)

• Added support for the EUC_JP_Solaris character encoding, which maps to a MySQL encoding of eucjpms (backported from
3.1 branch). This only works on servers that support eucjpms, namely 5.0.3 or later. (Bug #8629)

• NON_UNIQUE column from DBMD.getIndexInfo() returned inverted value. (Bug #8812)

• Use hex escapes for PreparedStatement.setBytes() for double-byte charsets including “aliases” Windows-31J,
CP934, MS932. (Bug #8629)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug #7686)

• DatabaseMetaData.getIndexInfo() ignored unique parameter. (Bug #7081)

• DatabaseMetaData.supportsSelectForUpdate() returns correct value based on server version. (Bug #8629)

• Which requires hex escaping of binary data when using multi-byte charsets with prepared statements. (Bug #8064)

• Timestamp/Time conversion goes in the wrong “direction” when useTimeZone=true and server time zone differs from client
time zone. (Bug #5874)

• Adding CP943 to aliases for sjis. (Bug #6549, Bug #7607)

A.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)
Bugs Fixed

• Made TINYINT(1) -> BIT/Boolean conversion configurable using tinyInt1isBit property (default true to be JDBC
compliant out of the box). (Bug #5664)

• Off-by-one bug in Buffer.readString(string). (Bug #5664)

• ResultSet.updateByte() when on insert row throws ArrayOutOfBoundsException. (Bug #5664)

• Fixed regression where useUnbufferedInput was defaulting to false. (Bug #5664)

• ResultSet.getTimestamp() on a column with TIME in it fails. (Bug #5664)

• Fixed DatabaseMetaData.getTypes() returning incorrect (this is, nonnegative) scale for the NUMERIC type. (Bug #5664)

• Only set character_set_results during connection establishment if server version >= 4.1.1. (Bug #5664)

MySQL Connector/J Change History

119

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_results

• Re-issue character set configuration commands when re-using pooled connections or Connection.changeUser() when con-
nected to MySQL-4.1 or newer.

• Fixed ResultSetMetaData.isReadOnly() to detect nonwritable columns when connected to MySQL-4.1 or newer, based
on existence of “original” table and column names.

A.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)
Bugs Fixed

• Calling .close() twice on a PooledConnection causes NPE. (Bug #4808)

• “Production” is now “GA” (General Availability) in naming scheme of distributions. (Bug #4860, Bug #4138)

• DOUBLE mapped twice in DBMD.getTypeInfo(). (Bug #4742)

• Removed redundant calls to checkRowPos() in ResultSet. (Bug #4334)

• DBMD.getColumns() returns incorrect JDBC type for unsigned columns. This affects type mappings for all numeric types in the
RSMD.getColumnType() and RSMD.getColumnTypeNames() methods as well, to ensure that “like” types from DB-
MD.getColumns() match up with what RSMD.getColumnType() and getColumnTypeNames() return. (Bug #4860,
Bug #4138)

• ResultSet.getMetaData() should not return incorrectly initialized metadata if the result set has been closed, but should in-
stead throw an SQLException. Also fixed for getRow() and getWarnings() and traversal methods by calling check-
Closed() before operating on instance-level fields that are nullified during .close(). (Bug #5069)

• RSMD.getPrecision() returning 0 for nonnumeric types (should return max length in chars for nonbinary types, max length in
bytes for binary types). This fix also fixes mapping of RSMD.getColumnType() and RSMD.getColumnTypeName() for the
BLOB types based on the length sent from the server (the server doesn't distinguish between TINYBLOB, BLOB, MEDIUMBLOB or
LONGBLOB at the network protocol level). (Bug #4880)

• Added FLOSS license exemption. (Bug #4742)

• ResultSet should release Field[] instance in .close(). (Bug #5022)

• Failover for autoReconnect not using port numbers for any hosts, and not retrying all hosts.

Warning

This required a change to the SocketFactory connect() method signature, which is now public Socket
connect(String host, int portNumber, Properties props); therefore, any third-party socket factor-
ies will have to be changed to support this signature.

(Bug #4334)

• Use _binary introducer for PreparedStatement.setBytes() and set*Stream() when connected to MySQL-4.1.x or
newer to avoid misinterpretation during character conversion. (Bug #5069)

• Logical connections created by MysqlConnectionPoolDataSource will now issue a rollback() when they are closed
and sent back to the pool. If your application server/connection pool already does this for you, you can set the rollbackOn-
PooledClose property to false to avoid the overhead of an extra rollback(). (Bug #4334)

• Parse new time zone variables from 4.1.x servers. (Bug #5069)

• StringUtils.escapeEasternUnicodeByteStream was still broken for GBK. (Bug #4010)

A.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)
Bugs Fixed

MySQL Connector/J Change History

120

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• Fixed URL parsing error.

A.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)
Bugs Fixed

• Using a MySQLDatasource without server name fails. (Bug #3848)

• PreparedStatement.getGeneratedKeys() method returns only 1 result for batched insertions. (Bug #3873)

• No Database Selected when using MysqlConnectionPoolDataSource. (Bug #3920)

A.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)
Bugs Fixed

• Backported “change user” and “reset server state” functionality from 3.1 branch, to enable clients of MysqlConnection-
PoolDataSource to reset server state on getConnection() on a pooled connection.

• Made StringRegressionTest 4.1-unicode aware. (Bug #3520)

• Use SET character_set_results during initialization to enable any charset to be returned to the driver for result sets. (Bug
#2670)

• Fixed regression in PreparedStatement.setString() and eastern character encodings. (Bug #3520)

• Don't truncate BLOB or CLOB values when using setBytes() and setBinary/CharacterStream(). (Bug #2670)

• Map duplicate key and foreign key errors to SQLState of 23000.

• Allow java.util.Date to be sent in as parameter to PreparedStatement.setObject(), converting it to a
Timestamp to maintain full precision. . (Bug #103)

• Add unsigned attribute to DatabaseMetaData.getColumns() output in the TYPE_NAME column.

• Not specifying database in URL caused MalformedURL exception. (Bug #3554)

• Added failOverReadOnly property, to enable the user to configure the state of the connection (read-only/writable) when failed
over.

• Dynamically configure character set mappings for field-level character sets on MySQL-4.1.0 and newer using SHOW COLLATION
when connecting. (Bug #2670)

• Map binary character set to US-ASCII to support DATETIME charset recognition for servers >= 4.1.2. (Bug #2670)

• Inconsistent reporting of data type. The server still doesn't return all types for *BLOBs *TEXT correctly, so the driver won't return
those correctly. (Bug #3570)

• Auto-convert MySQL encoding names to Java encoding names if used for characterEncoding property. (Bug #3554)

• Backport documentation tooling from 3.1 branch.

• Use junit.textui.TestRunner for all unit tests (to enable them to be run from the command line outside of Ant or Eclipse).
(Bug #3554)

• Renamed StringUtils.escapeSJISByteStream() to more appropriate escapeEasternUnicodeByteStream().
(Bug #3511)

• Use charsetnr returned during connect to encode queries before issuing SET NAMES on MySQL >= 4.1.0. (Bug #2670)

• StringUtils.escapeSJISByteStream() not covering all eastern double-byte charsets correctly. (Bug #3511)

MySQL Connector/J Change History

121

http://dev.mysql.com/doc/refman/5.5/en/show-collation.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

• DBMD.getSQLStateType() returns incorrect value. (Bug #3520)

• Add helper methods to ResultSetMetaData (getColumnCharacterEncoding() and getColumnCharacterSet())
to permit end users to see what charset the driver thinks it should be using for the column. (Bug #2670)

• Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

• Added encoding names that are recognized on some JVMs to fix case where they were reverse-mapped to MySQL encoding names
incorrectly. (Bug #3554)

• Only set character_set_results for MySQL >= 4.1.0. (Bug #2670)

• Return creating statement for ResultSets created by getGeneratedKeys(). (Bug #2957)

• UpdatableResultSet not picking up default values for moveToInsertRow(). (Bug #3557)

• Allow url parameter for MysqlDataSource and MysqlConnectionPool DataSource so that passing of other properties
is possible from inside appservers.

A.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)
Bugs Fixed

• Return java.lang.Integer for TINYINT and SMALLINT types from ResultSet-
MetaData.getColumnClassName(). (Bug #2852)

• Return java.lang.Double for FLOAT type from ResultSetMetaData.getColumnClassName(). (Bug #2855)

• Added useUnbufferedInput parameter, and now use it by default (due to JVM issue ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4401235.html) (Bug #2578)

• AutoReconnect time was growing faster than exponentially. (Bug #2447)

• Fixed failover always going to last host in list. (Bug #2578)

• Detect on/off or 1, 2, 3 form of lower_case_table_names value on server. (Bug #2578)

• Return [B instead of java.lang.Object for BINARY, VARBINARY and LONGVARBINARY types from ResultSet-
MetaData.getColumnClassName() (JDBC compliance). (Bug #2855)

• Issue connection events on all instances created from a ConnectionPoolDataSource. (Bug #2855)

• Trigger a SET NAMES utf8 when encoding is forced to utf8 or utf-8 using the characterEncoding property. Previ-
ously, only the Java-style encoding name of utf-8 would trigger this.

A.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)
Bugs Fixed

• Fixed regression of Statement.getGeneratedKeys() and REPLACE statements. (Bug #1576)

• Implement ResultSet.updateClob(). (Bug #1913)

• Enable caching of the parsing stage of prepared statements using the cachePrepStmts, prepStmtCacheSize, and prepSt-
mtCacheSqlLimit properties (disabled by default). (Bug #2006)

• Foreign Keys column sequence is not consistent in
DatabaseMetaData.getImported/Exported/CrossReference(). (Bug #1731)

• Subsequent call to ResultSet.updateFoo() causes NPE if result set is not updatable. (Bug #1630)

• Backported fix for aliased tables and UpdatableResultSets in checkUpdatability() method from 3.1 branch. (Bug

MySQL Connector/J Change History

122

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

#1534)

• Fixed security exception when used in Applets (applets can't read the system property file.encoding which is needed for LOAD
DATA LOCAL INFILE). (Bug #2006)

• Speed up parsing of PreparedStatements, try to use one-pass whenever possible. (Bug #2006)

• Support escape sequence {fn convert ... }. (Bug #1914)

• Autoreconnect code didn't set catalog upon reconnect if it had been changed. (Bug #1913)

• Fixed exception Unknown character set 'danish' on connect with JDK-1.4.0 (Bug #2006)

• Fixed mappings in SQLError to report deadlocks with SQLStates of 41000. (Bug #2006)

• ResultSet.getObject() on TINYINT and SMALLINT columns should return Java type Integer. (Bug #1913)

• ArrayIndexOutOfBounds when parameter number == number of parameters + 1. (Bug #1958)

• Added more descriptive error message Server Configuration Denies Access to DataSource, as well as retrieval
of message from server. (Bug #1913)

• “Friendlier” exception message for PacketTooLargeException. (Bug #1534)

• Don't count quoted IDs when inside a 'string' in PreparedStatement parsing. (Bug #1511)

• Removed static synchronization bottleneck from instance factory method of SingleByteCharsetConverter. (Bug #2006)

• Removed static synchronization bottleneck from PreparedStatement.setTimestamp(). (Bug #2006)

• ResultSet.findColumn() should use first matching column name when there are duplicate column names in SELECT query
(JDBC-compliance). (Bug #2006)

• maxRows property would affect internal statements, so check it for all statement creation internal to the driver, and set to 0 when it
is not. (Bug #2006)

• Barge blobs and split packets not being read correctly. (Bug #1576)

• ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR columns. (Bug #1913)

• DatabaseMetaData.getSystemFunction() returning bad function VResultsSion. (Bug #1775)

• Use constants for SQLStates. (Bug #2006)

• Fix for 4.1.1-style authentication with no password. (Bug #1630)

• Cross-database updatable result sets are not checked for updatability correctly. (Bug #1592)

• Statements being created too many times in DBMD.extractForeignKeyFromCreateTable(). (Bug #1925)

• Map charset ko18_ru to ko18r when connected to MySQL-4.1.0 or newer. (Bug #2006)

• Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows(). (Bug #1695)

• Connection property maxRows not honored. (Bug #1933)

• Added alwaysClearStream connection property, which causes the driver to always empty any remaining data on the input
stream before each query. (Bug #1913)

• DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for MySQL LONGTEXT type. (Bug #1592)

• Ensure that Buffer.writeString() saves room for the \0. (Bug #2006)

A.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)

MySQL Connector/J Change History

123

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Bugs Fixed

• Issue exception on ResultSet.getXXX() on empty result set (wasn't caught in some cases). (Bug #848)

• Made databaseName, portNumber, and serverName optional parameters for MysqlDataSourceFactory. (Bug #1246)

• ResultSet.get/setString mashing char 127. (Bug #1247)

• Double-escaping of '\' when charset is SJIS or GBK and '\' appears in nonescaped input. (Bug #879)

• Don't hide messages from exceptions thrown in I/O layers. (Bug #848)

• Support InnoDB constraint names when extracting foreign key information in DatabaseMetaData (implementing ideas from
Parwinder Sekhon). (Bug #664, Bug #517)

• Fixed CLOB.truncate(). (Bug #1130)

• Fixed ResultSet.previous() behavior to move current position to before result set when on first row of result set. (Bug
#496)

• Backported 4.1 protocol changes from 3.1 branch (server-side SQL states, new field information, larger client capability flags, con-
nect-with-database, and so forth). (Bug #664, Bug #517)

• Fixed Statement and PreparedStatement issuing bogus queries when setMaxRows() had been used and a LIMIT clause
was present in the query. (Bug #496)

• Added property to “clobber” streaming results, by setting the clobberStreamingResults property to true (the default is
false). This will cause a “streaming” ResultSet to be automatically closed, and any outstanding data still streaming from the
server to be discarded if another query is executed before all the data has been read from the server. (Bug #1247)

• When emptying input stream of unused rows for “streaming” result sets, have the current thread yield() every 100 rows to not
monopolize CPU time. (Bug #879)

• Fixed deadlock issue with Statement.setMaxRows(). (Bug #1099)

• Don't wrap SQLExceptions in RowDataDynamic. (Bug #688)

• Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases for bug reports. (Bug #1247)

• Clip +/- INF (to smallest and largest representative values for the type in MySQL) and NaN (to 0) for setDouble/setFloat(),
and issue a warning on the statement when the server does not support +/- INF or NaN. (Bug #884)

• Don't try and reset isolation level on reconnect if MySQL doesn't support them. (Bug #688)

• DatabaseMetaData.getColumns() getting confused about the keyword “set” in character columns. (Bug #1099)

• Fixed regression in large split-packet handling. (Bug #848)

• Fixed test for end of buffer in Buffer.readString().

• The insertRow in an UpdatableResultSet is now loaded with the default column values when moveToInsertRow() is
called. (Bug #688)

• Better diagnostic error messages in exceptions for “streaming” result sets. (Bug #848)

• Backported authentication changes for 4.1.1 and newer from 3.1 branch. (Bug #1247)

• DatabaseMetaData.getColumns() wasn't returning NULL for default values that are specified as NULL. (Bug #688)

• Don't change timestamp TZ twice if useTimezone==true. (Bug #774)

• refreshRow didn't work when primary key values contained values that needed to be escaped (they ended up being doubly es-
caped). (Bug #661)

• Fix UpdatableResultSet to return values for getXXX() when on insert row. (Bug #675)

MySQL Connector/J Change History

124

• Don't fire connection closed events when closing pooled connections, or on PooledConnection.getConnection() with
already open connections. (Bug #884)

• Change default statement type/concurrency to TYPE_FORWARD_ONLY and CONCUR_READ_ONLY (spec compliance). (Bug #688)

• Faster date handling code in ResultSet and PreparedStatement (no longer uses Date methods that synchronize on static
calendars).

• Optimized CLOB.setChracterStream(). (Bug #1131)

A.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)
Bugs Fixed

• Fixed SJIS encoding bug, thanks to Naoto Sato. (Bug #378)

• Allow bogus URLs in Driver.getPropertyInfo().

• Fix problem detecting server character set in some cases. (Bug #378)

• Allow multiple calls to Statement.close(). (Bug #378)

• Return correct number of generated keys when using REPLACE statements. (Bug #378)

• Unicode character 0xFFFF in a string would cause the driver to throw an ArrayOutOfBoundsException. . (Bug #378)

• Return list of generated keys when using multi-value INSERTS with Statement.getGeneratedKeys().

• Fixed result set not getting set for Statement.executeUpdate(), which affected getGeneratedKeys() and getUp-
dateCount() in some cases.

• Changed Ant target compile-core to compile-driver, and made testsuite compilation a separate target.

• Fix infinite loop with Connection.cleanup().

• Fix row data decoding error when using very large packets. (Bug #378)

• Optimized row data decoding. (Bug #378)

• Use JVM charset with file names and LOAD DATA [LOCAL] INFILE.

• Issue exception when operating on an already closed prepared statement. (Bug #378)

• Optimized usage of EscapeProcessor. (Bug #378)

A.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)
Bugs Fixed

• Throw SQLExceptions when trying to do operations on a forcefully closed Connection (that is, when a communication link
failure occurs).

• Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

• Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

• Don't reset Connection.isReadOnly() when autoReconnecting.

• Ensure that packet size from alignPacketSize() does not exceed max_allowed_packet (JVM bug)

• Don't pick up indexes that start with pri as primary keys for DBMD.getPrimaryKeys().

MySQL Connector/J Change History

125

http://dev.mysql.com/doc/refman/5.5/en/replace.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

• Fixed LOAD DATA LOCAL INFILE bug when file > max_allowed_packet.

• Updatable ResultSets can now be created for aliased tables/columns when connected to MySQL-4.1 or newer.

• Fixed missing conversion for YEAR type in ResultSetMetaData.getColumnTypeName().

• Remove synchronization from Driver.connect() and Driver.acceptsUrl().

• IOExceptions during a transaction now cause the Connection to be closed.

• Fixed StringIndexOutOfBoundsException in PreparedStatement.setClob().

• Fixed MysqlPooledConnection.close() calling wrong event type.

• 4.1 Column Metadata fixes.

• You can now toggle profiling on/off using Connection.setProfileSql(boolean).

• Fixed charset issues with database metadata (charset was not getting set correctly).

A.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)
Bugs Fixed

• Add “window” of different NULL sorting behavior to DBMD.nullsAreSortedAtStart (4.0.2 to 4.0.10, true; otherwise, no).

• Implemented Blob.setBytes(). You still need to pass the resultant Blob back into an updatable ResultSet or Prepared-
Statement to persist the changes, because MySQL does not support “locators”.

• More checks added in ResultSet traversal method to catch when in closed state.

• Fixed ResultSetMetaData.isWritable() to return correct value.

• Clean up Statement query/method mismatch tests (that is, INSERT not permitted with .executeQuery()).

• Allow ignoring of warning for “non transactional tables” during rollback (compliance/usability) by setting ignoreNonTxTables
property to true.

• Fixed ResultSetMetaData to return "" when catalog not known. Fixes NullPointerExceptions with Sun's Cached-
RowSet.

• Fixed SQLExceptions getting swallowed on initial connect.

• Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning different value for precision in TEXT and BLOB types.

• Fixed Statement.setMaxRows() to stop sending LIMIT type queries when not needed (performance).

• Backported 4.1 charset field info changes from Connector/J 3.1.

A.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)
Bugs Fixed

• Greatly reduce memory required for setBinaryStream() in PreparedStatements.

• Retrieve TX_ISOLATION from database for Connection.getTransactionIsolation() when the MySQL version sup-
ports it, instead of an instance variable.

• Quote table names in DatabaseMetaData.getColumns(), getPrimaryKeys(), getIndexInfo(), getBestRow-
Identifier().

• Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds exceptions with some queries when unpack-

MySQL Connector/J Change History

126

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

ing fields.

• Added update options for foreign key metadata.

• Implemented an empty TypeMap for Connection.getTypeMap() so that some third-party apps work with MySQL (IBM
WebSphere 5.0 Connection pool).

• Added missing LONGTEXT type to DBMD.getColumns().

• Fixed ResultSet.isBeforeFirst() for empty result sets.

A.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)
Bugs Fixed

• Added support for quoted identifiers in PreparedStatement parser.

• Added strictUpdates property to enable control of amount of checking for “correctness” of updatable result sets. Set this to
false if you want faster updatable result sets and you know that you create them from SELECT statements on tables with primary
keys and that you have selected all primary keys in your query.

• Reduce memory footprint of PreparedStatements by sharing outbound packet with MysqlIO.

• Added support for 4.0.8-style large packets.

• Added quoted identifiers to database names for Connection.setCatalog.

• Fixed PreparedStatement.executeBatch() parameter overwriting.

• Streamlined character conversion and byte[] handling in PreparedStatements for setByte().

A.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)
Bugs Fixed

• Changed SingleByteCharConverter to use lazy initialization of each converter.

• Fixed ResultSetMetaData.getPrecision() returning incorrect values for some floating-point types.

• Check for connection closed in more Connection methods (createStatement, prepareStatement, setTransac-
tionIsolation, setAutoCommit).

• Some MySQL-4.1 protocol support (extended field info from selects).

• More robust implementation of updatable result sets. Checks that all primary keys of the table have been selected.

• DBMD.getImported/ExportedKeys() now handles multiple foreign keys per table.

• Honor lower_case_table_names when enabled in the server when doing table name comparisons in DatabaseMetaData
methods.

• Added CLIENT_LONG_FLAG to be able to get more column flags (isAutoIncrement() being the most important).

• Substitute '?' for unknown character conversions in single-byte character sets instead of '\0'.

• Because of above, implemented ResultSetMetaData.isAutoIncrement() to use Field.isAutoIncrement().

• Fixed charset handling in Fields.java.

• Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for TEXT and TEXT for BLOB types.

• Implemented Connection.nativeSQL().

MySQL Connector/J Change History

127

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• LOAD DATA LOCAL INFILE ... now works, if your server is configured to permit it. Can be turned off with the allow-
LoadLocalInfile property (see the README).

• Use nonaliased table/column names and database names to fully qualify tables and columns in UpdatableResultSet (requires
MySQL-4.1 or newer).

• Changed charsToByte in SingleByteCharConverter to be nonstatic.

• NamedPipeSocketFactory now works (only intended for Windows), see README for instructions.

• Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

• More robust escape tokenizer: Recognize -- comments, and permit nested escape sequences (see test-
suite.EscapeProcessingTest).

• Allow user to alter behavior of Statement/ PreparedStatement.executeBatch() using continueBatchOnError
property (defaults to true).

A.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)
Bugs Fixed

• Implemented Clob.truncate().

• Properly restore connection properties when autoReconnecting or failing-over, including autoCommit state, and isolation level.

• Fixed issue when calling Statement.setFetchSize() when using arbitrary values.

• Added queriesBeforeRetryMaster property that specifies how many queries to issue when failed over before attempting to
reconnect to the master (defaults to 50).

• Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN).

• Added driver property useHostsInPrivileges. Defaults to true. Affects whether or not @hostname will be used in DB-
MD.getColumn/TablePrivileges.

• Fixed ResultSet.isLast() for empty result sets (should return false).

• Fixed various non-ASCII character encoding issues.

• Added connectTimeout parameter that enables users of JDK-1.4 and newer to specify a maximum time to wait to establish a
connection.

• Fixed start position off-by-1 error in Clob.getSubString().

• Fixed issue with updatable result sets and PreparedStatements not working.

• PreparedStatement now honors stream lengths in setBinary/Ascii/Character Stream() unless you set the connection property
useStreamLengthsInPrepStmts to false.

• Escape 0x5c character in strings for the SJIS charset.

• Removed some not-needed temporary object creation by smarter use of Strings in EscapeProcessor, Connection and
DatabaseMetaData classes.

• Implemented ResultSet.updateBlob().

• Fixed incorrect conversion in ResultSet.getLong().

• Fixed UnsupportedEncodingException thrown when “forcing” a character encoding using properties.

• Removed duplicate code from UpdatableResultSet (it can be inherited from ResultSet, the extra code for each method to
handle updatability I thought might someday be necessary has not been needed).

MySQL Connector/J Change History

128

• Implemented Clob.setAsciiStream().

• Fixed DBMD.supportsResultSetConcurrency() so that it returns true for Result-
Set.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE.

• Failover and autoReconnect work only when the connection is in an autoCommit(false) state, to stay transaction-safe.

• Implemented Clob.setCharacterStream().

• Use SHOW CREATE TABLE when possible for determining foreign key information for DatabaseMetaData. Also enables cas-
cade options for DELETE information to be returned.

• All DBMD result set columns describing schemas now return NULL to be more compliant with the behavior of other JDBC drivers
for other database systems (MySQL does not support schemas).

• Added SSL support. See README for information on how to use it.

• Added com.mysql.jdbc.MiniAdmin class, which enables you to send shutdown command to MySQL server. This is inten-
ded to be used when “embedding” Java and MySQL server together in an end-user application.

• Implemented Clob.setString().

A.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)
Bugs Fixed

• Added paranoid parameter, which sanitizes error messages by removing “sensitive” information from them (such as host names,
ports, or user names), as well as clearing “sensitive” data structures when possible.

• Added LOCAL TEMPORARY to table types in DatabaseMetaData.getTableTypes().

• Added socketTimeout parameter to URL.

• Connection.close() issues rollback() when getAutoCommit() is false.

• Connection.isClosed() no longer “pings” the server.

• Added limited Clob functionality (ResultSet.getClob(), PreparedStatement.setClob(), PreparedState-
ment.setObject(Clob).

• Implemented ResultSet.getCharacterStream().

• Massive code clean-up to follow Java coding conventions (the time had come).

• Fixed ResultSet.getRow() off-by-one bug.

• Fixed RowDataStatic.getAt() off-by-one bug.

• Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

• Charsets now automatically detected. Optimized code for single-byte character set conversion.

A.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)
Bugs Fixed

• Performance enhancements: Driver is now 50–100% faster in most situations, and creates fewer temporary objects.

• !!! LICENSE CHANGE !!! The driver is now GPL. If you need non-GPL licenses, please contact me <mark@mysql.com>.

• Overall speed improvements using controlling transient object creation in MysqlIO class when reading packets.

MySQL Connector/J Change History

129

http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

• JDBC-3.0 functionality including Statement/PreparedStatement.getGeneratedKeys() and Result-
Set.getURL().

• Performance improvements in string handling and field metadata creation (lazily instantiated) contributed by Alex Twisleton-Wyke-
ham-Fiennes.

• Better checking for closed connections in Statement and PreparedStatement.

• Support for large packets (new addition to MySQL-4.0 protocol), see README for more information.

• Repackaging: New driver name is com.mysql.jdbc.Driver, old name still works, though (the driver is now provided by
MySQL-AB).

• Added multi-host failover support (see README).

• ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid values that have been set to all zeros by
MySQL (SF bug 586058).

• JDBC Compliance: Passes all tests besides stored procedure tests.

• Testsuite now uses Junit (which you can get from http://www.junit.org.

• Support for streaming (row-by-row) result sets (see README) Thanks to Doron.

• Float types now reported as java.sql.Types.FLOAT (SF bug 579573).

• ResultSet.getTimestamp() now works for DATE types (SF bug 559134).

• Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086).

• The driver now only works with JDK-1.2 or newer.

• General source-code cleanup.

A.5. Changes in MySQL Connector/J 2.0.x

A.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
Bugs Fixed

• Quoted identifiers not used if server version does not support them. Also, if server started with --ansi or -
-sql-mode=ANSI_QUOTES, “"” will be used as an identifier quote character, otherwise “'” will be used.

• More code cleanup.

• PreparedStatement now releases resources on .close(). (SF bug 553268)

• Added SQL profiling (to STDERR). Set profileSql=true in your JDBC URL. See README for more information.

• LogicalHandle.isClosed() calls through to physical connection.

• Fixed typo for relaxAutoCommit parameter.

• ResultSet.getDouble() now uses code built into JDK to be more precise (but slower).

A.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
Bugs Fixed

• ResultSetMetaData.getColumnClassName() now implemented.

MySQL Connector/J Change History

130

http://www.junit.org
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_ansi
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sql-mode
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sql-mode

• DBMetaData.getIndexInfo() - bad PAGES fixed. (SF BUG 542201)

• Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0 now implemented (you need to be using JDK-1.4
for this to work, I believe).

• More code cleanup.

• PreparedStatement.toString() fixed. (SF bug 534026)

• Added set/getPortNumber() to DataSource(s). (SF bug 548167)

• Added setURL() to MySQLXADataSource. (SF bug 546019)

• Faster blob escaping for PrepStmt.

• Fixed unicode chars being read incorrectly. (SF bug 541088)

A.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
Bugs Fixed

• General code cleanup.

• Fixed getRow() bug (527165) in ResultSet.

• ResultSet.refreshRow() implemented.

• Added getIdleFor() method to Connection and MysqlLogicalHandle.

• Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

• ResultSet: Fixed updatability (values being set to null if not updated).

• Fixes for ResultSet updatability in PreparedStatement.

• Added support for YEAR type (533556).

• DataSources - fixed setUrl bug (511614, 525565), wrong datasource class name (532816, 528767).

• Relaxed synchronization in all classes, should fix 520615 and 520393.

• ResultSet.insertRow() should now detect auto_increment fields in most cases and use that value in the new row. This de-
tection will not work in multi-valued keys, however, due to the fact that the MySQL protocol does not return this information.

• Added support for BIT types (51870) to PreparedStatement.

• Added identifier quoting to all DatabaseMetaData methods that need them (should fix 518108).

• Fixed time zone off-by-1-hour bug in PreparedStatement (538286, 528785).

• Added new types to getTypeInfo(), fixed existing types thanks to Al Davis and Kid Kalanon.

• Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

A.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
Bugs Fixed

• More changes to fix Unexpected end of input stream errors when reading BLOB values. This should be the last fix.

• Fixed missing DELETE_RULE value in DBMD.getImported/ExportedKeys() and getCrossReference().

MySQL Connector/J Change History

131

http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

• Full synchronization of Statement.java.

A.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
Bugs Fixed

• Fixed spurious Unexpected end of input stream errors in MysqlIO (bug 507456).

• Fixed null-pointer-exceptions when using MysqlConnectionPoolDataSource with Websphere 4 (bug 505839).

A.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
Bugs Fixed

• Full synchronization on methods modifying instance and class-shared references, driver should be entirely thread-safe now (please
let me know if you have problems).

• Fixed off-by-one-hour error in PreparedStatement.setTimestamp() (bug 491577).

• Implementation of DatabaseMetaData.getExported/ImportedKeys() and getCrossReference().

• Report batch update support through DatabaseMetaData (bug 495101).

• Ant build was corrupting included jar files, fixed (bug 487669).

• Removed concatenation support from driver (the || operator), as older versions of VisualAge seem to be the only thing that use it,
and it conflicts with the logical || operator. You will need to start mysqld with the --ansi flag to use the || operator as concat-
enation (bug 491680).

• Fixed quoting error with escape processor (bug 486265).

• DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional package, and (initial) implementations of
PooledConnectionDataSource and XADataSource are in place (thanks to Todd Wolff for the implementation and testing
of PooledConnectionDataSource with IBM WebSphere 4).

• Fixed casting bug in PreparedStatement (bug 488663).

• Added detection of network connection being closed when reading packets (thanks to Todd Lizambri).

• Fixed extra memory allocation in MysqlIO.readPacket() (bug 488663).

A.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
Bugs Fixed

• PreparedStatement.setAnyNumericType() now handles positive exponents correctly (adds + so MySQL can under-
stand it).

• Batch updates now supported (thanks to some inspiration from Daniel Rall).

• DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier() are now more robust in identifying primary
keys (matches regardless of case or abbreviation/full spelling of Primary Key in Key_type column).

• XADataSource/ConnectionPoolDataSource code (experimental)

A.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
Bugs Fixed

MySQL Connector/J Change History

132

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_ansi

• Fixed ResultSet.isAfterLast() always returning false.

• PreparedStatement.setBoolean() will use 1/0 for values if your MySQL version is 3.21.23 or higher.

• Updatable result sets now correctly handle NULL values in fields.

• Fixed DatabaseMetaData.supportsTransactions(), and supportsTransactionIsolationLevel() and
getTypeInfo() SQL_DATETIME_SUB and SQL_DATA_TYPE fields not being readable.

• PreparedStatement.setDouble() now uses full-precision doubles (reverting a fix made earlier to truncate them).

• Fixed time zone issue in PreparedStatement.setTimestamp(). (thanks to Erik Olofsson)

• Fixed dangling socket problem when in high availability (autoReconnect=true) mode, and finalizer for Connection will
close any dangling sockets on GC.

• Fixed ResultSetMetaData.getPrecision() returning one less than actual on newer versions of MySQL.

• ResultSet.getBlob() now returns null if column value was null.

• Capitalize type names when capitalizeTypeNames=true is passed in URL or properties (for WebObjects. (thanks to Anjo
Krank)

• PreparedStatement.setCharacterStream() now implemented

• Fixed PreparedStatement generating SQL that would end up with syntax errors for some queries.

• Initial transaction isolation level read from database (if available). (thanks to Dmitry Vereshchagin)

• Character sets read from database if useUnicode=true and characterEncoding is not set. (thanks to Dmitry
Vereshchagin)

A.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
Bugs Fixed

• Fixed case-sensitive column names in ResultSet.java.

• Fixed PreparedStatement parameter checking.

A.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
Bugs Fixed

• Fixed ResultSet.getBlob() ArrayIndex out-of-bounds.

• Fixed NPE on PreparedStatement.executeUpdate() when all columns have not been set.

• Fixed ArrayIndexOutOfBounds when sending large BLOB queries. (Max size packet was not being set)

• Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB.

• getObject() on ResultSet correctly does TINYINT->Byte and SMALLINT->Short.

• ResultSet has +/-Inf/inf support.

• ResultSet.getBoolean() now recognizes -1 as true.

• DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB.

• Added ISOLATION level support to Connection.setIsolationLevel()

MySQL Connector/J Change History

133

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html

• Fixed data parsing of TIMESTAMP values with 2-digit years.

• Added Byte to PreparedStatement.setObject().

• ResultSet.insertRow() works now, even if not all columns are set (they will be set to NULL).

A.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
Bugs Fixed

• Implemented getBigDecimal() without scale component for JDBC2.

• Added ultraDevHack URL parameter, set to true to enable (broken) Macromedia UltraDev to use the driver.

• Added detection of -/+INF for doubles.

• Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending large blobs should work now.

• Fixed off-by-one error in java.sql.Blob implementation code.

• Faster ASCII string operations.

• Fixed composite key problem with updatable result sets.

A.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
Bugs Fixed

• Fixed some issues with updatability support in ResultSet when using multiple primary keys.

• No escape processing is done on PreparedStatements anymore per JDBC spec.

• Fixed many JDBC-2.0 traversal, positioning bugs, especially with respect to empty result sets. Thanks to Ron Smits, Nick Brook,
Cessar Garcia and Carlos Martinez.

• DatabaseMetaData.getPrimaryKeys() now works correctly with respect to key_seq. Thanks to Brian Slesinsky.

• Fixed RSMD.isWritable() returning wrong value. Thanks to Moritz Maass.

• Cleaned up exception handling when driver connects.

• Columns that are of type TEXT now return as Strings when you use getObject().

A.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)

• Fixed Bad Handshake problem.

A.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)

• Fixes to ResultSet for insertRow() - Thanks to Cesar Garcia

• Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0 class, instead of relying on JDK version numbers. Thanks to John
Baker.

• Fixed ResultSet to return correct row numbers

• Statement.getUpdateCount() now returns rows matched, instead of rows actually updated, which is more SQL-92 like.

MySQL Connector/J Change History

134

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

10-29-99

• Statement/PreparedStatement.getMoreResults() bug fixed. Thanks to Noel J. Bergman.

• Added Short as a type to PreparedStatement.setObject(). Thanks to Jeff Crowder

• Driver now automagically configures maximum/preferred packet sizes by querying server.

• Autoreconnect code uses fast ping command if server supports it.

• Fixed various bugs with respect to packet sizing when reading from the server and when alloc'ing to write to the server.

A.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

• Now compiles under JDK-1.2. The driver supports both JDK-1.1 and JDK-1.2 at the same time through a core set of classes. The
driver will load the appropriate interface classes at runtime by figuring out which JVM version you are using.

• Fixes for result sets with all nulls in the first row. (Pointed out by Tim Endres)

• Fixes to column numbers in SQLExceptions in ResultSet (Thanks to Blas Rodriguez Somoza)

• The database no longer needs to specified to connect. (Thanks to Christian Motschke)

A.6. Changes in MySQL Connector/J 1.2.x and lower

A.6.1. Changes in MySQL Connector/J 1.2b (04 July 1999)

• Better Documentation (in progress), in doc/mm.doc/book1.html

• DBMD now permits null for a column name pattern (not in spec), which it changes to '%'.

• DBMD now has correct types/lengths for getXXX().

• ResultSet.getDate(), getTime(), and getTimestamp() fixes. (contributed by Alan Wilken)

• EscapeProcessor now handles \{ \} and { or } inside quotation marks correctly. (thanks to Alik for some ideas on how to fix it)

• Fixes to properties handling in Connection. (contributed by Juho Tikkala)

• ResultSet.getObject() now returns null for NULL columns in the table, rather than bombing out. (thanks to Ben Grosman)

• ResultSet.getObject() now returns Strings for types from MySQL that it doesn't know about. (Suggested by Chris Perdue)

• Removed DataInput/Output streams, not needed, 1/2 number of method calls per IO operation.

• Use default character encoding if one is not specified. This is a work-around for broken JVMs, because according to spec, EVERY
JVM must support "ISO8859_1", but they do not.

• Fixed Connection to use the platform character encoding instead of "ISO8859_1" if one isn't explicitly set. This fixes problems
people were having loading the character- converter classes that didn't always exist (JVM bug). (thanks to Fritz Elfert for pointing
out this problem)

• Changed MysqlIO to re-use packets where possible to reduce memory usage.

• Fixed escape-processor bugs pertaining to {} inside quotation marks.

A.6.2. Changes in MySQL Connector/J 1.2a (14 April 1999)

MySQL Connector/J Change History

135

• Fixed character-set support for non-Javasoft JVMs (thanks to many people for pointing it out)

• Fixed ResultSet.getBoolean() to recognize 'y' & 'n' as well as '1' & '0' as boolean flags. (thanks to Tim Pizey)

• Fixed ResultSet.getTimestamp() to give better performance. (thanks to Richard Swift)

• Fixed getByte() for numeric types. (thanks to Ray Bellis)

• Fixed DatabaseMetaData.getTypeInfo() for DATE type. (thanks to Paul Johnston)

• Fixed EscapeProcessor for "fn" calls. (thanks to Piyush Shah at locomotive.org)

• Fixed EscapeProcessor to not do extraneous work if there are no escape codes. (thanks to Ryan Gustafson)

• Fixed Driver to parse URLs of the form "jdbc:mysql://host:port" (thanks to Richard Lobb)

A.6.3. Changes in MySQL Connector/J 1.1i (24 March 1999)

• Fixed Timestamps for PreparedStatements

• Fixed null pointer exceptions in RSMD and RS

• Re-compiled with jikes for valid class files (thanks ms!)

A.6.4. Changes in MySQL Connector/J 1.1h (08 March 1999)

• Fixed escape processor to deal with unmatched { and } (thanks to Craig Coles)

• Fixed escape processor to create more portable (between DATETIME and TIMESTAMP types) representations so that it will work
with BETWEEN clauses. (thanks to Craig Longman)

• MysqlIO.quit() now closes the socket connection. Before, after many failed connections some OS's would run out of file descriptors.
(thanks to Michael Brinkman)

• Fixed NullPointerException in Driver.getPropertyInfo. (thanks to Dave Potts)

• Fixes to MysqlDefs to allow all *text fields to be retrieved as Strings. (thanks to Chris at Leverage)

• Fixed setDouble in PreparedStatement for large numbers to avoid sending scientific notation to the database. (thanks to J.S. Fer-
guson)

• Fixed getScale() and getPrecision() in RSMD. (contrib'd by James Klicman)

• Fixed getObject() when field was DECIMAL or NUMERIC (thanks to Bert Hobbs)

• DBMD.getTables() bombed when passed a null table-name pattern. Fixed. (thanks to Richard Lobb)

• Added check for "client not authorized" errors during connect. (thanks to Hannes Wallnoefer)

A.6.5. Changes in MySQL Connector/J 1.1g (19 February 1999)

• Result set rows are now byte arrays. Blobs and Unicode work bidirectonally now. The useUnicode and encoding options are imple-
mented now.

• Fixes to PreparedStatement to send binary set by setXXXStream to be sent untouched to the MySQL server.

• Fixes to getDriverPropertyInfo().

MySQL Connector/J Change History

136

A.6.6. Changes in MySQL Connector/J 1.1f (31 December 1998)

• Changed all ResultSet fields to Strings, this should allow Unicode to work, but your JVM must be able to convert between the char-
acter sets. This should also make reading data from the server be a bit quicker, because there is now no conversion from StringBuf-
fer to String.

• Changed PreparedStatement.streamToString() to be more efficient (code from Uwe Schaefer).

• URL parsing is more robust (throws SQL exceptions on errors rather than NullPointerExceptions)

• PreparedStatement now can convert Strings to Time/Date values using setObject() (code from Robert Currey).

• IO no longer hangs in Buffer.readInt(), that bug was introduced in 1.1d when changing to all byte-arrays for result sets. (Pointed out
by Samo Login)

A.6.7. Changes in MySQL Connector/J 1.1b (03 November 1998)

• Fixes to DatabaseMetaData to allow both IBM VA and J-Builder to work. Let me know how it goes. (thanks to Jac Kersing)

• Fix to ResultSet.getBoolean() for NULL strings (thanks to Barry Lagerweij)

• Beginning of code cleanup, and formatting. Getting ready to branch this off to a parallel JDBC-2.0 source tree.

• Added "final" modifier to critical sections in MysqlIO and Buffer to allow compiler to inline methods for speed.

9-29-98

• If object references passed to setXXX() in PreparedStatement are null, setNull() is automatically called for you. (Thanks for the sug-
gestion goes to Erik Ostrom)

• setObject() in PreparedStatement will now attempt to write a serialized representation of the object to the database for objects of
Types.OTHER and objects of unknown type.

• Util now has a static method readObject() which given a ResultSet and a column index will re-instantiate an object serialized in the
above manner.

A.6.8. Changes in MySQL Connector/J 1.1 (02 September 1998)

• Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than catch an exception, Buffer.isLastDataPacket() was fixed.

• Connection.getCatalog() and Connection.setCatalog() should work now.

• Statement.setMaxRows() works, as well as setting by property maxRows. Statement.setMaxRows() overrides maxRows set using
properties or url parameters.

• Automatic re-connection is available. Because it has to "ping" the database before each query, it is turned off by default. To use it,
pass in "autoReconnect=true" in the connection URL. You may also change the number of reconnect tries, and the initial timeout
value using "maxReconnects=n" (default 3) and "initialTimeout=n" (seconds, default 2) parameters. The timeout is an exponential
backoff type of timeout; for example, if you have initial timeout of 2 seconds, and maxReconnects of 3, then the driver will timeout
2 seconds, 4 seconds, then 16 seconds between each re-connection attempt.

A.6.9. Changes in MySQL Connector/J 1.0 (24 August 1998)

• Fixed handling of blob data in Buffer.java

• Fixed bug with authentication packet being sized too small.

MySQL Connector/J Change History

137

• The JDBC Driver is now under the LGPL

8-14-98

• Fixed Buffer.readLenString() to correctly read data for BLOBS.

• Fixed PreparedStatement.stringToStream to correctly read data for BLOBS.

• Fixed PreparedStatement.setDate() to not add a day. (above fixes thanks to Vincent Partington)

• Added URL parameter parsing (?user=... and so forth).

A.6.10. Changes in MySQL Connector/J 0.9d (04 August 1998)

• Big news! New package name. Tim Endres from ICE Engineering is starting a new source tree for GNU GPL'd Java software. He's
graciously given me the org.gjt.mm package directory to use, so now the driver is in the org.gjt.mm.mysql package scheme. I'm "leg-
al" now. Look for more information on Tim's project soon.

• Now using dynamically sized packets to reduce memory usage when sending commands to the DB.

• Small fixes to getTypeInfo() for parameters, and so forth.

• DatabaseMetaData is now fully implemented. Let me know if these drivers work with the various IDEs out there. I've heard that
they're working with JBuilder right now.

• Added JavaDoc documentation to the package.

• Package now available in .zip or .tar.gz.

A.6.11. Changes in MySQL Connector/J 0.9 (28 July 1998)

• Implemented getTypeInfo(). Connection.rollback() now throws an SQLException per the JDBC spec.

• Added PreparedStatement that supports all JDBC API methods for PreparedStatement including InputStreams. Please check this out
and let me know if anything is broken.

• Fixed a bug in ResultSet that would break some queries that only returned 1 row.

• Fixed bugs in DatabaseMetaData.getTables(), DatabaseMetaData.getColumns() and DatabaseMetaData.getCatalogs().

• Added functionality to Statement that enables executeUpdate() to store values for IDs that are automatically generated for
AUTO_INCREMENT fields. Basically, after an executeUpdate(), look at the SQLWarnings for warnings like
"LAST_INSERTED_ID = 'some number', COMMAND = 'your SQL query'". If you are using AUTO_INCREMENT fields in your
tables and are executing a lot of executeUpdate()s on one Statement, be sure to clearWarnings() every so often to save memory.

A.6.12. Changes in MySQL Connector/J 0.8 (06 July 1998)

• Split MysqlIO and Buffer to separate classes. Some ClassLoaders gave an IllegalAccess error for some fields in those two classes.
Now mm.mysql works in applets and all classloaders. Thanks to Joe Ennis <jce@mail.boone.com> for pointing out the problem and
working on a fix with me.

A.6.13. Changes in MySQL Connector/J 0.7 (01 July 1998)

• Fixed DatabaseMetadata problems in getColumns() and bug in switch statement in the Field constructor. Thanks to Costin Mano-
lache <costin@tdiinc.com> for pointing these out.

MySQL Connector/J Change History

138

A.6.14. Changes in MySQL Connector/J 0.6 (21 May 1998)

• Incorporated efficiency changes from Richard Swift <Richard.Swift@kanatek.ca> in MysqlIO.java and ResultSet.java:

• We're now 15% faster than gwe's driver.

• Started working on DatabaseMetaData.

• The following methods are implemented:

• getTables()

• getTableTypes()

• getColumns()

• getCatalogs()

MySQL Connector/J Change History

139

Appendix B. Licenses for Third-Party Components
MySQL Connector/J

• Section B.1, “Ant-Contrib License”

• Section B.2, “Simple Logging Facade for Java (SLF4J) License”

B.1. Ant-Contrib License
The following software may be included in this product: Ant-Contrib

Ant-Contrib
Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.
Licensed under the Apache 1.1 License Agreement, a copy of which is reproduced below.

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution, if
any, must include the following acknowlegement:

"This product includes software developed by the
Ant-Contrib project (http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowlegement may appear in the software itself,
if and wherever such third-party acknowlegements normally appear.

4. The name Ant-Contrib must not be used to endorse or promote
products derived from this software without prior written
permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

5. Products derived from this software may not be called "Ant-Contrib"
nor may "Ant-Contrib" appear in their names without prior written
permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

B.2. Simple Logging Facade for Java (SLF4J) License
The following software may be included in this product:

Simple Logging Facade for Java (SLF4J)

Copyright (c) 2004-2008 QOS.ch
All rights reserved.

Permission is hereby granted, free of charge,
to any person obtaining a copy of this software
and associated documentation files (the "Software"),
to deal in the Software without restriction, including
without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell

140

copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

Licenses for Third-Party Components

141

	MySQL Connector/J
	Preface and Legal Notice
	Chapter 1. MySQL Connector/J
	Chapter 2. Connector/J Versions
	2.1. Java Versions Supported

	Chapter 3. Connector/J Installation
	3.1. Installing Connector/J from a Binary Distribution
	3.2. Installing the Driver and Configuring the CLASSPATH
	3.3. Upgrading from an Older Version
	3.3.1. Upgrading to MySQL Connector/J 5.1.x
	3.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer
	3.3.3. Upgrading from MySQL Connector/J 3.0 to 3.1

	3.4. Installing from the Development Source Tree

	Chapter 4. Connector/J Examples
	Chapter 5. Connector/J (JDBC) Reference
	5.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	5.1.1. Properties Files for the useConfigs Option

	5.2. JDBC API Implementation Notes
	5.3. Java, JDBC and MySQL Types
	5.4. Using Character Sets and Unicode
	5.5. Connecting Securely Using SSL
	5.6. Using Master/Slave Replication with ReplicationConnection
	5.7. Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 6. JDBC Concepts
	6.1. Connecting to MySQL Using the DriverManager Interface
	6.2. Using Statement Objects to Execute SQL
	6.3. Using CallableStatements to Execute Stored Procedures
	6.4. Retrieving AUTO_INCREMENT Column Values

	Chapter 7. Developing J2EE Applications with Connector/J
	7.1. Understanding J2EE Connection Pooling
	7.2. Managing Load-Balanced Connections
	7.2.1. Load Balancing Failover Policies

	Chapter 8. Using Connector/J with Tomcat
	Chapter 9. Using Connector/J with JBoss
	Chapter 10. Using Connector/J with Spring
	10.1. Using JdbcTemplate
	10.2. Transactional JDBC Access
	10.3. Connection Pooling with Spring

	Chapter 11. Using Connector/J with GlassFish
	11.1. A Simple JSP Application with Glassfish, Connector/J and MySQL
	11.2. A Simple Servlet with Glassfish, Connector/J and MySQL

	Chapter 12. Troubleshooting Connector/J Applications
	Chapter 13. Connector/J Support
	13.1. Connector/J Community Support
	13.2. How to Report Connector/J Bugs or Problems
	13.3. Connector/J Change History

	Appendix A. MySQL Connector/J Change History
	A.1. Changes in MySQL Connector/J 5.1.x
	A.1.1. Changes in MySQL Connector/J 5.1.20 (01 May 2012)
	A.1.2. Changes in MySQL Connector/J 5.1.19 (April 2012)
	A.1.3. Changes in MySQL Connector/J 5.1.18 (04 October 2011)
	A.1.4. Changes in MySQL Connector/J 5.1.17 (07 July 2011)
	A.1.5. Changes in MySQL Connector/J 5.1.16 (Not released)
	A.1.6. Changes in MySQL Connector/J 5.1.15 (09 February 2011)
	A.1.7. Changes in MySQL Connector/J 5.1.14 (6th December 2010)
	A.1.8. Changes in MySQL Connector/J 5.1.13 (24 June 2010)
	A.1.9. Changes in MySQL Connector/J 5.1.12 (18 February 2010)
	A.1.10. Changes in MySQL Connector/J 5.1.11 (21 January 2010)
	A.1.11. Changes in MySQL Connector/J 5.1.10 (23 September 2009)
	A.1.12. Changes in MySQL Connector/J 5.1.9 (21 September 2009)
	A.1.13. Changes in MySQL Connector/J 5.1.8 (16 July 2009)
	A.1.14. Changes in MySQL Connector/J 5.1.7 (21 October 2008)
	A.1.15. Changes in MySQL Connector/J 5.1.6 (07 March 2008)
	A.1.16. Changes in MySQL Connector/J 5.1.5 (09 October 2007)
	A.1.17. Changes in MySQL Connector/J 5.1.4 (Not Released)
	A.1.18. Changes in MySQL Connector/J 5.1.3 (10 September 2007)
	A.1.19. Changes in MySQL Connector/J 5.1.2 (29 June 2007)
	A.1.20. Changes in MySQL Connector/J 5.1.1 (22 June 2007)
	A.1.21. Changes in MySQL Connector/J 5.1.0 (11 April 2007)

	A.2. Changes in MySQL Connector/J 5.0.x
	A.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)
	A.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)
	A.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)
	A.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)
	A.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)
	A.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006, beta)
	A.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)
	A.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)
	A.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)

	A.3. Changes in MySQL Connector/J 3.1.x
	A.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)
	A.3.2. Changes in MySQL Connector/J 3.1.14 (19 October 2006)
	A.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
	A.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
	A.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)
	A.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)
	A.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)
	A.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)
	A.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)
	A.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)
	A.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)
	A.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)
	A.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)
	A.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)
	A.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004, alpha)
	A.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003, alpha)

	A.4. Changes in MySQL Connector/J 3.0.x
	A.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)
	A.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)
	A.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)
	A.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)
	A.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)
	A.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)
	A.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)
	A.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)
	A.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)
	A.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)
	A.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)
	A.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)
	A.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)
	A.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)
	A.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)
	A.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)
	A.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)
	A.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)

	A.5. Changes in MySQL Connector/J 2.0.x
	A.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
	A.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
	A.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
	A.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
	A.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
	A.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
	A.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
	A.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
	A.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
	A.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
	A.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
	A.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
	A.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
	A.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
	A.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

	A.6. Changes in MySQL Connector/J 1.2.x and lower
	A.6.1. Changes in MySQL Connector/J 1.2b (04 July 1999)
	A.6.2. Changes in MySQL Connector/J 1.2a (14 April 1999)
	A.6.3. Changes in MySQL Connector/J 1.1i (24 March 1999)
	A.6.4. Changes in MySQL Connector/J 1.1h (08 March 1999)
	A.6.5. Changes in MySQL Connector/J 1.1g (19 February 1999)
	A.6.6. Changes in MySQL Connector/J 1.1f (31 December 1998)
	A.6.7. Changes in MySQL Connector/J 1.1b (03 November 1998)
	A.6.8. Changes in MySQL Connector/J 1.1 (02 September 1998)
	A.6.9. Changes in MySQL Connector/J 1.0 (24 August 1998)
	A.6.10. Changes in MySQL Connector/J 0.9d (04 August 1998)
	A.6.11. Changes in MySQL Connector/J 0.9 (28 July 1998)
	A.6.12. Changes in MySQL Connector/J 0.8 (06 July 1998)
	A.6.13. Changes in MySQL Connector/J 0.7 (01 July 1998)
	A.6.14. Changes in MySQL Connector/J 0.6 (21 May 1998)

	Appendix B. Licenses for Third-Party Components
	B.1. Ant-Contrib License
	B.2. Simple Logging Facade for Java (SLF4J) License

