
Triggers and Events
Kathleen Durant PhD

CS 3200

1

Lecture Outline

• Trigger Description

• My SQL trigger example

• My SQL event example

2

Triggers

• Trigger: procedure that starts automatically if specified
changes occur to the DBMS

• A trigger has three parts:

• Event

• Change to the database that activates the trigger

• Condition

• Query or test that is run when the trigger is activated

• Action

• Procedure that is executed when the trigger is activated and its
condition is true

3

Trigger Options

• Event can be insert, delete, or update on DB table

• Condition:

• Condition can be a true/false statement

• All employee salaries are less than $100K

• Condition can be a query

• Interpreted as true if and only if answer set is not empty

• Action can perform DB queries and updates that depend on:

• Answers to query in condition part

• Old and new values of tuples modified by the statement that
activated the trigger

• Action can also contain data-definition commands, e.g., create
new tables 4

When to Fire the Trigger
• Triggers can be executed once per modified record or once per

activating statement

• Row-level trigger versus a Statement Level Trigger

• Trigger looking at the set of records that are modified versus the actual
individual values of the old and the new values

• Should trigger action be executed before or after the statement
that activated the trigger?

• Consider triggers on insertions

• Trigger that initializes a variable for counting how many new tuples are
inserted: execute trigger before insertion

• Trigger that updates this count variable for each inserted tuple: execute
after each tuple is inserted (might need to examine values of tuple to
determine action)

• Trigger can also be run in place of the action
5

Trigger Example

• CREATE TRIGGER YoungSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18
Trigger has
access to
NEW and
OLD values

6

Trouble with Triggers
• Action can trigger multiple triggers

• Execution of the order of the triggers is arbitrary

• Challenge: Trigger action can fire other triggers

• Very difficult to reason about what exactly will happen

• Trigger can fire “itself” again

• Unintended effects possible

• Introducing Triggers leads you to deductive databases

• Need rule analysis tools that allow you to deduce truths about the data

7

MY SQL limits the use of
triggers
• Triggers not introduced until 5.0

• Not activated for foreign key actions

• No triggers on the mysql system database

• Active triggers are not notified when the meta data of the
table is changed while it is running

• No recursive triggers

• Triggers cannot modify/alter the table that is already being
used

• For example the table that triggered it

8

MY SQL Trigger

CREATE TRIGGER <trigger-name> trigger_time trigger_event

ON table_name

FOR EACH ROW

BEGIN

END

• Syntax

• Trigger_time is [BEFORE | AFTER]

• Trigger_event [INSERT|UPDATE|DELETE]

• Other key words – OLD AND NEW

• Naming convention for a trigger
trigger_time_tablename_trigger_event

• Found in the directory associated with the database
• File tablename.tdg – maps the trigger to the correspnoding table

• Triggername.trn contains the trigger definition

Reviewing your trigger

• Go to the trigger directory and read the file (.trg)
Program Data\MySQL\MySQL5.5\data\<db-name>*.trg

• Use the DBMS to locate the trigger for you
Triggers in current schema

SHOW TRIGGERS;

ALL Triggers in DBMS using the System Catalog
SELECT * FROM Information_Schema.Triggers
WHERE Trigger_schema = 'database_name' AND

Trigger_name = 'trigger_name';
select trigger_schema, trigger_name, action_statement
from information_schema.triggers;

Changing your trigger

• There is no edit of a trigger

• CREATE TRIGGER …

• DROP TRIGGER <TRIGGERNAME>;

• CREATE TRIGGER …

Events

• MySQL Events are tasks that run according to a schedule.

• An event performs a specific action

• This action consists of an SQL statement, which can be a
compound statement in a BEGIN END block

• An event's timing can be either one-time or recurrent

• If recurrent can state an interval that determines how often it
gets run

• Can specify a time window to state when the event is active

• an event is uniquely identified by its name and the schema to
which it is assigned

• an event is executed with the privileges of its definer/author

• Errors and warnings from an event are written to the log

Events

• CREATE EVENT `event_name`

ON SCHEDULE schedule

[ON COMPLETION [NOT] PRESERVE]

[ENABLE | DISABLE | DISABLE ON SLAVE] --CLUSTERdb

• DO BEGIN

• -- event body

• END;

• DROP EVENT `event_name`

• ALTER EVENT `event_name`

Options for a Schedule

• Run once on a specific date/time:
AT ‘YYYY-MM-DD HH:MM.SS’

e.g. AT ‘2011-06-01 02:00.00′

• Run once after a specific period has elapsed:
AT CURRENT_TIMESTAMP + INTERVAL n

[HOUR|MONTH|WEEK|DAY|MINUTE]
e.g. AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

• Run at specific intervals forever:
EVERY n [HOUR|MONTH|WEEK|DAY|MINUTE]

e.g. EVERY 1 DAY

• Run at specific intervals during a specific period:
EVERY n [HOUR|MONTH|WEEK|DAY|MINUTE] STARTS date

ENDS date
e.g. EVERY 1 DAY STARTS CURRENT_TIMESTAMP + INTERVAL 1

• WEEK ENDS ‘2012-01-01 00:00.00′

Summary

• Triggers respond to changes in the database

• Allows you to define constraints on the data

• Events allow you to schedule tasks to be done by a calendar
date or an interval

15

