
SQL User Defined
Code
Kathleen Durant

CS 3200

1

User Session Objects

• Literals

• Text single quoted strings

• Numbers

• Database objects: databases, tables, fields, procedures and
functions

• Can set a default database/schema

• Can also provide full context: database.table.field

• System defined functions

• User defined functions and procedures

• User session Variables

• Allows you to store the results of a query

• Can be passed to a function or another query 2

User Session Variables

• Variable are accessible by using the @ operation

• @variablename

• Use set to assign a value to a variable

• Set @var = 1; or @var := 1;

• Variables not assigned a value has a default value of NULL

• Can use other methods to assign a variable value

• Data type for a variable is determined by the last assigned
value

• User variables can be assigned a value from a limited set of
data types: integer, decimal, floating-point, binary or non-
binary string, or NULL value

• Assignment of other types are converted to one of the above
listed types

3

Variable limitations

• User variable defined by one client cannot be seen or used by
other clients

• All variables for a given client session are automatically freed
when that client exits

• A select expression is evaluated when it is sent to the client

• Do not expect a variable to be evaluated in a subquery

• All levels of the subquery will have the same value for the
variable

• User variables are intended to provide data values to a SQL
statement

• They cannot provide table name , field name, or command literal
to a query

• EXCEPTION: Prepared statements
4

Variable limitations

• User variables may be used in most contexts where
expressions are permitted

• Exception: limit

• Do not assign a value to and read the value of the same
variable within a single statement

• The value is the initial value of the variable

• Exception the SET command

5

Control flow statements

• IF expression THEN statement

ELSEIF statement2

ELSE staatement3;

• CASE WHEN EXPRESSION THEN ...

WHEN EXPRESSION2 THEN ...

ELSE END;

• WHILE expression DO

END WHILE;

• REPEAT statements

UNTIL expression

• END REPEAT; 6

Four types of stored programs

• Stored procedures
• An executable database object that contains a block of procedural

SQL code
• Use parameters to pass values to or from the procedure to the call

program
• Use the call program to execute a procedure
• Can make changes to the database
• Can return a result set

• Stored functions
• A user-defined function is an executable database object that

contains a block of procedural SQL code
• Functions can only return a scalar or single value
• Function can accept only IN parameters
• Cannot make changes database

• Trigger
• Event 7

Stored procedure

• Is executed using the CALL statement

• Can return a result set

• Can pass value via the Arguments

• IN – argument used as input variable (default argument type)

• OUT – argument used as output variable

• INOUT – argument users as input and output variable

• Example:

CREATE PROCEDURE (IN val1, OUT val2, INOUT val3)

BEGIN

DECLARE local_var var_type;

END 8

Stored procedure benefits

• Operations are performed uniformly

• Easier to maintain since the code is stored once in the
database as opposed to duplicated in different applications

• Traffic is reduced between the client and the server since the
stored procedure is executed on the server

• Security is enhanced – since clients can be granted fewer data
base objects permission and still retrieve the data it needs

9

Procedure Example

DELIMITER $$

CREATE PROCEDURE counter()

BEGIN

DECLARE x INT; -- example of DECLARE

SET x = 1; -- EXAMPLE OF SET

WHILE x <= 5 DO -- WHILE LOOP

SET x = x + 1;

END WHILE; -- CLOSE OF WHILE LOOP

SELECT x; -- 6 -- THIS WILL PRINT THE VALUE OF THE VARIABLE
END

$$ DELIMITER ; 10

Cursors

• Procedures can call the SELECT statement

• SELECT statement can return a variable sized result set

• Multiple rows

• Procedure or application code uses a cursor to walk through
each of the returned records one at a time

• DECLARE cursorname CURSOR FOR

• DECLARE CONTINUE HANDLER FOR ERROR error_handler;

• Error is thrown when you try to read beyond the last record
associated with a cursor

• Define a handler for this error to continue procedure control flow
after reading all records

11

FUNCTION

• Is executed typically in a SQL statement

• Allows you to create functions specific to the schema

• Only accepts IN arguments

• So NO keywords IN|OUT|INOUT

• Can only return a scalar value

• Example

• CREATE FUNCTION name
(argument1 argument1Type

)

RETURNS DECIMAL(11,2)

BEGIN

END
12

Function benefits

• Define schema specific operations on the data

• Easier to maintain since the code is stored once in the
database as opposed to duplicated in different applications

• Save coding time since the function is written once and can be
used by all developers

13

Prepared statements

• Can create a SQL statement where the checked values vary

• Can protect the database against SQL injection if the
arguments are defined as values to check instead of as free
form SQL code

• Less overhead for parsing the statement each time it is
executed. Statement is set up just change the input values

• Use PREPARE to prepare the SQL statement
• Inserts the arguments

• PREPARE preparestatement FROM statementstring;

• Use EXECUTE to execute the command
• EXECUTE preparestatement;

• Use DEALLOCATE to free resources associated with the
statement 14

